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FAMILIES OF JACOBIAN MANIFOLDS
AND CHARACTERISTIC CLASSES

OF SURFACE BUNDLES I

by Shigeyuki MORITA

0. Introduction.

Recently E. Miller [Mi] and the author [Mo2] have defined certain
cohomology classes of the mapping class groups of orientable surfaces
(henceforth we call them characteristic classes of surface bundles), and
proved that they are highly non-trivial. These cohomology classes are the
topological version of the corresponding canonical classes in the Chow ring
of the moduli space of compact Riemann surfaces of Mumford [Mu]. One
of the main purposes of the present paper is to show that there is a new
relation among the characteristic classes which becomes rather strong when
they are combined with the previously known ones (see §3). This relation
comes from an idea similar to that of various vanishing theorems in the
theory of characteristic classes of foliations and will be derived along the
following line of arguments.

Recall first that to any compact Riemann surface M, there is associa-
ted the Jacobian variety J(M) and if we fix a base point of M, then there is
defined a holomorphic map j : M —> J(M) called the Jacobi mapping (see
[G][Mu2] for example).

Now let TT : E —^ X be an oriented surface bundle, namely an
oriented differentiable fibre bundle with fibre E^, which is a closed oriented
surface of genus g. Then as is shown in [Mo2] we can always assume that
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TT is a differentiable family of compact Riemann surfaces over X so that
we can write E = U Mp, where Mp is a Riemann surface. The unionPCX
J = U J(Mp) admits a canonical structure of a smooth manifold. Ifpex
there is given a cross section s : X —^ E, then we can define a fibre
preserving map j : E —^ J such that the restriction otj to Mp is the Jacobi
mapping of it relative to the base point s(p). Topologically the canonical
projection TT : J —> X admits the structure of a flat fibre bundle whose
fibre is a 2g - dimensional torus T29 with a prescribed symplectic form
UJQ and the structure group is the group of all linear transformation of T29

which preserves the form UJQ. In another word there is defined a transversely
symplectic foliation F of codimension 2g on J which is transverse to the
fibres. Therefore there is a closed 2-form a; on J which restricts to the
symplectic form on each fibre (see §1 for details). It turns out that twice of
the de Rham cohomology class [cj] e ^(J;^) lifts to a canonical integral
class n C ̂ (J; I). Our main .work is then to identify the cohomology class
J*(0) C H^^E^J.) in terms of .our characteristic classes (Theorem 1.3 and
Theorem 2.1). Now the relation mentioned above comes from the obvious
fact that (^+1 vanishes identically.

As a key step of the proof of our main result, we determine the first
(co)homology groups of the mapping class groups with coefficients in the
homology of the surface together with an explicit construction of their gene-
rators (see§§4-6) and we think that it has its own meaning. In fact it enables
us to prove a topological version ofEarle's embedding theorem [E]([Mo6]),
to construct canonical group cocycles for the characteristic classes of sur-
face bundles and to interpret the Casson invariant for homology 3-spheres
as the secondary invariant associated with the first characteristic class (see
[Mo7]).

The author would like to express his hearty thanks to T. Yoshida
who has informed him the existence of Johnson's paper [J]. One of the
motivations for the present work was to understand it from our point of
view.

1. Statement of the main theorem.

A surface bundle is a differentiable fibre bundle TT : E —> X whose
fibre is a closed orientable surface of genus g wich we denote by S^. We also
call such a bundle a Ep - bundle. Given a surface bundle TT : E —^ X, let
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$ be the tangent bundle along the fibres of TT, namely it is the sub-bundle
of the tangent bundle of E consisting of vectors which are tangent to the
fibres. Assume that TT is orientable and there is given an orientation on ^.
Then we have the Euler class

e=e(OeJI2(E;Z).

Now let Mg be the mapping class group of Eg, namely it is the group
of all isotopy classes of orientation preserving diffeomorphisms of Eg. If we
fix a base point po e X and an identification Tr'^po) = Eg, then we can
define .a homomorphism

h : 7ri(X,po) —> Mg

called the holonomy homomorphism which indicates how the bundle is
twisted along various closed curves. I f ^ > 2 , then the above homomorphism
completely determine the isomorphism class of the surface bundle TT :
E —^ X (see [Mo2]). Now choose a sympletic basis x ^ , . . . , Xg\ y ^ , . . . , yg of
.Hi(Eg;Z) so that

and X i ' x , = y ^ y , = 0
Xi • y j = Sij

where xi ' yj denotes the intersection number of the homology class x^
with yj. With respect to the above basis, the group of all automorphisms
of H^ (Eg;Z) which preserve the intersection pairing is expressed as the
Siegel modular group Sp(2^;Z) which consists of all 2g x 2g matrices A
with integral entries satisfying the condition

^AJA = J

where J = ( _^ j . Now the action of Mg on ffi(Eg; Z) clearly preserves

the intersection pairing so that we have a representation

p : Mg——Sp(2^;Z).

For each point p e X, we write Ep for the fibre Tr"1^) over p. Let
Jp = H^(Ep;H)/Hi(Ep',l) be the "Jacobian manifold" of Ep. The union
J = U Jp is naturally a smooth manifold and the canonical projectionp^.x

TT : J —> X admits the structure of a fibre bundle whose fibre is
ffi(Eg; IR)/fli(Eg; Z) which is identified with the 2^-dimensional torus T29

via the symplectic basis of ^i(Eg; Z) and the structure group is Sp(2^; Z).
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Let iJo = ctei A dy^ -t-.. . + Az^ A dyg be a symplectic form of T29. Then the
natural linear action of Sp(2^;Z) on T29 preserves the form 0:0. Now the
fibre bundle TT : J —>• X is flat in the sense that the transition functions are
locally constant. Hence there is a closed 2-form uj on J whose restriction
to the typical fibre is 0:0. In fact the bundle TT : J —> X is nothing but the
flat T^-bundle defined by the homomorphism ph : 7Ti(X) —^ Sp(2^;Z) so
that we can write

J = X xT29

7Tl(X)

where X is the universal covering space of X and the action of 71-1 (X) on
X is given by the deck transformations while that on T29 is defined by
the homomorphism ph. Since the action of 7i-i(X) on T29 preserves the
symplectic form UQ, the form g* (0:0) on X x T29 projects to the desired
form uj on J, where q : X xT29 —> T29 is the projection. We have the
de Rham cohomology class [^\ e H2^; H). It turns out that 2[c<;] lifts to a
canonical integral cohomology class n C ^(J;!). Here we only define 0
and postpone the proof of the fact that 0 = 2[cj] in ^(J; R) until §7.

First we define a nilpotent Lie group Gg as follows. As a set we put
Gg = R x ^i(Sg; R). The group law is defined by

(5, x)(t, y) = (s -h t + x • y, x + y)

where 5, t e IR and x, y ^. Jfi(Ep; R) so that we have a central extension

O—^R-^Gg -^Jfi(S^R) —^ 1.

Gg contains a lattice Fg = {(n,x) € Gg; n e Z, a: E ^(S^Z)} and we
have also a central extension

O^l—.Tg-.H^l)-^!.

We write Ng for the associated nilmanifold G g / F g . Then we have an
^-bundle

S^ ^Ng^T29=H^n)/H^I).

LEMMA 1.1. — The linear action ofSp(2g; 1) on T29 lifts to an action
of it on Ng.

Proof. — It is easy to see that the rule A(s,x) = {s,Ax) where
A e Sp(2^;Z) and (s,x) e Gg defines an action of Sp(2^;Z) on Gg as
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automorphisms. Clearly the lattice Tg is invariant under this action. Hence
we have the desired action of Sp(2p; Z) on Ng.

Let Ng —> J —> X be the flat TVp-bundle over X denned by the
homomorphism ph : 7Ti(X) —> Sp(2^; Z) and the action of Sp(2<y; Z) on Ng
just defined above. The natural projection J —>• J has the structure of an
oriented fi^-bundle and we define H C ̂ (J; Z) to be the Euler class of it.

PROPOSITION 1.2. — (i) Let i : T29 — ^ J b e the inclusion of the
typical fibre. Then we have z*(0) = 2[o;o] € H2^; Z).

(ii) Let SQ : X —> J be the "zero section", namely so{p) = 0 e
H^(Ep',R)/H^Ep',I) for all p eX. Then s^ (cj) = 0 and ^(H) =0.

Proof. — (i) It suffices to show that the Euler class of the
^-bundle S1 -> Ng -^ T29 is 2[^o] e ^(F^Z). But in terms of
the group cohomology, the Euler class is represented by the 2-cocycle of
Tri(r^) = ^i(E^Z) defined by

(x,y) —> x ' y

for x, y € fli(S^; Z). On the other hand the sympletic form UJQ is defined as
cjQ = dxi Ach/i +.. .-{-dxg/\dyg where a;i,. . . , X g , y i , . . . ,yg is a symplectic
basis of .Hi (Eg; Z) and serves simultaneously as a global coordinate for the
torus T29 = ffi(S^;IR)/Jfi(S^;Z). If we compare the above two facts, we
can conclude that the Euler class is a multiple of the de Rham cohomology
class [<jJo] € Jf^r29;^). Now if we evaluate the above cocycle on the cycle
(.1*1,2/1) — (i/i, x-t) we obtain 2, while the value ofc^o on it is 1, whence (i).

(ii) Clearly s^^) vanishes identically. For the second assertion, it
is easy to construct a cross section of the 5'1-bundle S1 —> J —^ J on
the subset So{X) C J by using the fact that the action of Sp(2^;Z) on
Ng preserves the origin of Ng. As we have mentioned before, we shall later
prove that fl = 2[o;] in ̂ (J; IR) at the universal space level (see Proposition
7.4).

Next assume that our surface bundle TT : E —> X admits a
cross section s : X —> E. Choose a Riemannian fibre metric on
^ so that each fibre Ep inherits a Riemannian metric. We can de-
fine a fibre preserving map j : E —^ J as follows. For each point
z of Ep choose a curve i from the base point s(p) to z. Identify
^(E^IR) with the space of harmonic 1-forms on Ep. For each harmonic
1-form 0 € ^(Ep'.H) consider the integral f^0. It is well defined modulo
the periods of 6 and we can define a map jp = j \ E p ' ' Ep —>• Jp by
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jp(z) = {6 -^ /^; 6 € H\E^R)} e HomOTEp^.^^periods}

^^i(Ep;R)/^i(^;Z)=Jp.

We can always assume that the Riemannian metric on each fibre Ep is a
hyperbolic one for g > 2 or a flat one for g = 1 (see [Mo2]) so that each
Ep is a Riemann surface. In such a situation the mapping j : E —> J is
nothing but the one given in the Introduction. We shall call the map j also
the Jacobi mapping.

Now s(X) is a submanifold of E of codimension two and by assump-
tion that our surface bundle is oriented, the normal bundle of s(X) in E,
which is just ^[^(x)? is also oriented. Hence we have the corresponding
cohomology class v e H2^;!). Now we can state our main theorem.

THEOREM 1.3. — Let TT : E —>• X be an oriented surface bundle with
a cross section s : X -> E and let j : E —^ J be the Jacobi mapping.
Then we have the equality

j*(n)=2^-e-7r*5*(e)

inH2(E•,l).

Remark 1.4. — The above theorem holds for all genus g. We shall
prove it for g > 2 in §7. The proof for the remaining cases g = 0 and 1 is
given in [Mo4].

2. Reformulation of the main theorem in terms
of the cohomology of groups.

Assume that g > 2. Then as we shall see soon below, the classifying
spaces of the bundles we concern turn out to be all Eilenberg-MacLane
spaces. In this section we reformulate Theorem 1.3 in terms of cohomology
of the fundamental groups of these spaces.

First we recall a few facts from [Mo2]. Let Diff+Ep be the group of
all orientation preserving diffeomorphisms of Eg equipped with the C°°
topology. Let

Eg —> EDiff+E^ —> BDiff+Ep
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be the universal oriented Ep-bundle over the classifying space BDiff+S^.
Rigorously speaking the definition of this Ep-bundle as well as the following
arguments in this section should be done in the framework of semi-simplicial
objects and maps between them. However to avoid unnecessary intricate
expressions we work in the category of usual spaces and maps. Then the
above three spaces are all Eilenberg-MacLane spaces and the associated
short exact sequence of the fundamental groups is

1 —^Tri(E^) —>M^ M,

where Mg = 7To(Difi+Ep) is the mapping class group already introduced
in §1 and Mg^ = 7ro(Diif+(Ep,*)), where Diff+(Ep,*) is the topological
group of all orientation and base point preserving diffeomorphisms of E^.
Now define a space EDiff+E^ by the following pull back diagram

EDiff+E^ ————> EDiff+E^

EDiff+Ep ————> BDiff+E^.

Namely EDiff+E^ = { ( z , z ' ) C EDifF+E^ x EDiff+E^; 7r(z) = TT^')} and
7r(^,2/) = z, ^ ( z , z ' ) = z ' . Consider the resultant E^-bundle

S. -^EDiff+Ep- -^EDiff+E^.

It has a cross section s : EDiff+Ep —> EDifF+Ep defined by s(z) = (z, z).
In fact this Eg-bundle is the classifying bundle for such bundles. More
precisely let TT : E —> X be a surface bundle with a cross section s : X —> E
and let

E EDiff+Eg

X BDiff+E^
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be the classifying bundle map. Then we can define a bundle map

E —b-——> EDiff+E^

X ————> EDiff+S^
b

by b1 = bs and b\z) = (bs7r(z), b(z)) (z € E). This bundle map preserves
the cross sections because b s = sV. Hence the given surface bundle
TT : E —^ X with cross section s is isomorphic to the pull back of the
universal bundle EDifi+Ep -^ EDifF+Eg by the map b' : X -^ EDifF+E^.
As is easily shown the space EDifF+E^ is also an Eilenberg-MacLane space
whose fundamental group M g * is given by the following pull back diagram

M g * ——————————————> Mg^

Mg^ ——————————> Mg.

Namely ~Mg^ = {(<^,^) e Mg^ x Mg^; 7r(^) = 7r(-^)}. Let 7Ti(Ep) x
Mg* be the semi-direct product defined by the natural action of Mg* on
TTi(Ep) so that as a set it is equal to 71-1 (Ep) x Mg* and the group law is
given by

(a^)(/3,^)=(a^(/3),^)

for a,/3 C TTi(E^), (j),^ C M g * . It is easy to see that the correspondence

~Mg* 3 (<^) H-. W1,^) € 7ri(Eg) x M^,*

is an isomorphism. Henceforth we identify ' M g * with TTi(Ep) x AL * by the
above isomorphism. In short then the split extension

1 —————— 7Tl(E,) —————— M g * ^Mg* —————— 1
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serves as the universal model for surface bundles with cross sections, where
the splitting homomorphism s : Mg* —^ Mg^ is given by s((f)) = (1,^>).
Now let

T^ -^ ESp(2^; Z) -^ K(Sp(2g^ Z), 1)

be the universal Qat T^-bundle with structure group Sp(2^;Z). This
should be considered as the universal model for the family of Jacobian
manifolds which we associated to each surface bundle in §1. More precisely
if TT : E —> X is a surface bundle, then the associated bundle TT :
J -> X is the pull back of the above universal flat T^-bundle by
the map X —> AT(Sp(2^;Z), 1) which is defined by the homomorphism
ph : Ti-i (X) —> Sp(2^;Z). If we apply this fact to the universal Ep-bundle
EDiff+S^ —f EDiff+E^ with cross section, we find that there is a fibre
preserving map

EDiff+S^ ESp(2^;Z)

EDiff+Sg ^(Sp(2^;Z),l)

such that for any surface bundle TT : E —^ X with cross section s : X —> E,
we have the following commutative diagram

-^EDiff+Sp

•ESp(2^;Z)

EDiflF+S^

K(Sp(2^;Z),l)
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By the obvious naturality of the cohomology classes in Theorem
1.3. under bundle maps, it is enough to prove our main theorem at the
universal space level. Now ESp(2^; Z) is also an Eilenberg-MacLane space
whose fundamental group which we denote Sp(2^;Z) is the semi-direct
product Sp(2^;Z) = H^g',1) x Sp(2^;Z) where Sp(2^;Z) acts naturally
on ^fi(E^;Z) via the symplectic basis r r i , . . . ,Xg\ y i , . . . ,yg chosen in §1.
The group law on Sp(2^; Z) is given by (x, A)(y, B) = (x-^Ay, AB) ( x , y €

ffi(Eg;Z), A,B e Sp(2^;Z). Now the following commutative diagram of
split extensions should be considered as the universal model for the Jacobi
mapping j : E —>- J defined in §1.

1 —— 7n(S,) —— Mg. ^ Mg. —— 1
s

p p

1 -^ ^i(S,;Z) -^ Sp(2ff;Z) ^ Sp(2g;Z) -^ 1
S

where the homomorphism ~p '. Mg^ —> Sp(2^; Z) is defined by ^(7,^) =
(h},p7r((t))Y here 7 € TTi(Sg), (j) e Mg^ and [7] e H^g',1) denotes the
homology class of 7.

Now define a 2-cochain of the group Sp(2<y; Z) by the formula

((:c,A),(^)) — — x - A y .

It is easy to check that this is actually a cocycle and we denote fl, C
H'2(Sp(2g^ Z); Z) for the corresponding cohomology class.

Observe that 5*(^) = 0 in H2 (Sp(2^; Z); I\, where s : Sp(2^; Z) ->
Sp(2^;Z) is the splitting. It is almost clear that this definition coincides
with the previously defined one (§1). Next the Euler class of the universal
S^-bundle with cross section EDiff+Sg —>• EDiff+Sp is clearly equal to
7r*(e) e H^CMg^',!) = ̂ (EDiff+S^Z). Since ^STT = TT : ~Mg^ -> Mg^
(see the pull back diagram defining M^*), we have 7r*5* (7r*(e)) = 7r*(e).
Finally since ^(EDiff+Sg) is a "submanifold" ofEDiff+Sg of codimension
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two, we have the corresponding cohomology class v G H2{Mg^•,J.). With
these in mind the statement of Theorem 1.3 now takes the following form
at the universal space level.

THEOREM 2.1. — Let p : M g * —^ Sp(2^;Z) be the homomorphism
defined above. Then we have the equality.

io*(n)=2i/-7r*(e)-7f*(e)

in^M^Z).

Remark 2.2. — It would be interesting if one can define a natural
cocycle of the group Mg * which represents the cohomology class v C
^(M^;Z).

3. New relations among characteristic classes
of surface bundles.

First we review the definition of our characteristic classes of surface
bundles very briefly (see [Mo2] for details). As is explained in [Mo2] and
also in §2, the short exact sequence

1————^ri(^)————>Mg^—"——^Mg————>1

serves as the universal E^-bundle and we have the universal Euler class
e C ^(Mg.;!). We define e, C H2i(Mg•,l) to be ^(e^1) where
7î  : H^(Mg^'^J.) —> ^"^(M^Z) is the Gysin homomorphism. We write
7r*(e^) simply by e^. These cohomology classes define homomorphisms

Q[ei,e2,...]-^*(M,;Q)

Q[e,ei,e2,...]——2r(M,,*;Q)

which are by no means injective and it is an important problem to
determine their kernels = relations among the characteristic classes.

Now our task is to derive new relation from Theorem 2.1. For that
we need

PROPOSITION 3.1. — ^+1 = 0 in Jf^+^Si^Z^Q). In fact the

order ofW^ in ̂ ^(S^Z^Z) divides y 2 9 ^ ^ '
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Proof. — Over the reals this is almost clear because in the nota-
tions of §1, n is represented by twice of the closed 2-form a; on J (see also
Proposition 7.4) and obviously uj9^1 vanishes identically. To obtain infor-
mations on the order of ^+1, we use the technique of [Mo3], §6. Let us
write V for the vector space H^ (E^; R) and let UQ be the symplectic form on
V defined by the intersection pairing on V (see §1). The group Sp(2(y;Z)
acts on V by affine transformations : (x,A)v = Av 4- x(x e 7:fi(E^;Z),
A € Sp(2^;Z) and v e V. Clearly it preserves the form c<;o. Now let
K = {Kp} be the standard semi-simplicial complex of Sp(2(/;Z). Namely
K? = { ( C r i , A i ) , . . . , (:rp,Ap)); (xi,Ai) € Sp(2^;Z)}. The face and dege-
neracy operators are the usual ones. The fat realization |[ K || of K is
a K(Sp(2g', Z),l). Now let A*(^,Q) be the rational de Rham complex
of K in the sense of Sullivan [S]. Namely a g-form on K is a compa-
tible family of g-forms on all simplices of K such that on each simplex
it is a sum of polynomials of affine coordinates times various constant
forms. The integration I : A*(J<T;<Q) -^ G*(Sp(2^;Z);Q) induces an iso-
morphism on cohomology. Now following Dupont [D] we define a closed
2-form rf = {7^; a C K^} € A^J^Q) as follows. For each 2-simplex
a = ((a:,A),(2/,B)) E K^, which is geometrically expressed as a copy
A2. of the standard 2-simplex A2 = (0,1,2), we define an affine map
k^ : A2 -^ V by ^(0) = 0 (the origin of V), ^(1) = (x,A)0 = x
and fc^(2) = (x, A)(y, B)0 = Ay + x. We set

j]a =k^{2^o).

Next let T = ((:r,A),Q/,5),(^G)) C K^ be a 3-simplex of K. We define
an affine map kr : A^ V by ^(0) = 0, fc^(l) = (x,A)0 = x, kr(2) =
(x, A)Q/, B)0 = Ay + x and ^(3) = (x, A)Q/, ̂ )(z, G)0 = ABz +Ay+x.
We set

T?T = A;;(2cL;o).

Since the action of Sp(2^; Z) on V preserves the form CJQ, the restriction of
rjr to any face a of r equals T^. Clearly we can apply the above procedure
on any g-simplex e Kq for any q and we have the desired 2-form 77. From
the form of c^o, it is clear that 77 is a rational form. Now for each natural
number TI, we apply the integral operator I to ^n and obtain a 2n-cocycle
IW E Z^Wg'^q).

Next let L be the cell complex defined by the triangulation of
|| K || x || K || given in [Mo3], §6 so that each simplex of L is one of
the simplices of the standard triangulation of the product A^ x A^ for
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some CT,T e K. For two natural numbers m and ?z, we define a closed
rational 2(m + n)-form ^m x rj71 on L by setting

(rX7T)A=^(r)A^(7f)

where j^(z = 1, 2) is the projection to the i-ih factor of A^ x A^. We
consider the corresponding cocycle 7(7^ x 7/1) e Z^^^L; Q).

SUBLEMMA. — (i) I(rj) = n.

(ii) ^r W) and ^4^, ^/ J^ x ^n) are integral cocycles
for all m, n.

(iii) J(^+1) =0.

Proof. — The first two assertions follow from an elementary argument
concerning the integrals of constant forms on affine spaces V and V x V.
The point for (ii) is the fact that (2n)! times the volume of any 2?z-simplex
in H271 such that the vertices are all contained in the lattice I29 is an integer.
(iii) follows from the obvious fact ^+1 = 0.

Now as in [Mo3], §6 let F. : G.(L) -^ C^K) ® C^K) be the
Alexander-Whitney map and let G^ : C^(K) 0 C^(K) -^ C^(L) be the
Eilenberg-MacLane map. Choose a chain homotopy H^ : C^(L) —> (7++i(L)
so that

GqFq-id=9H^Hq^9.

Define a cochain Cm,n € (72(m+n)-l(X;Q) by

Cm^) = W X 7?n)(^2(m+n)-lrf*(^)) (^ ^ ^2(m+n)-l)

where d+ : C^(K) —> C^(L) is the diagonal map. Then by exactly the same
argument as that of [Mo3], §6 we can conclude

I(rfm)UI(rin)-I(rJm+n)=ac^n

where the cup product is the usual one. Observe that '^n(————r^m^n is
Z^ \ I i b \~ Ti ' j .

an integral cochain. Now starting from the equation Q = I(rj), an inductive
argument using the Sublemma shows

Q^+1 =a(cg^ + ^ _ l , l U n + . . . 4 - C l , l U ^ - l y
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Since —pTf——~^ times the cochain in the parenthesis above is integral,

we finish the proof.

If we combine Proposition 3.1 with Theorem 2.1, we obtain

COROLLARY 3.2. — (2i/-7r*(e) -7r*(e))^+1 = 0 in ^^^(M^^Q).

PROPOSITION 3.3. — (i) v2 = i/7r*(e) = i/7r*(e) in H^(Mg^;l).

(ii) TrxcTr*^1) = e,, where TT* : ^-^(M^*; Z) -^ ^(M^*;!)
is the Gysin map.

(hi) TT*(^) = 1.

Proof. — (i) follows the Thorn isomorphism theorem applied to the
image of a cross section of a surface bundle which is a submanifold of the
total space of codimension two. (ii) and (hi) are clear.

Now if we apply the Gysin homomorphism TT* : H*(M^^;Q) —^
H^~2(Mg.*•,Q) to the following equation using Proposition 3.3

(2y - 7r*(e) - Tr*^))^1^'1) = 0 (h > 0)

we obtain

2P+ie^ - {e^_i + (^ 1) ̂  + • • • +

(R.1) ( 9 ^ 1^ ee^-i +e^} = 0 in ̂ ^(M^Q) (^ > 0).

Here we understand e_i = 0 and eo = 2 — 2^. Similarly if we apply the
Gysin homomorphism TT* : Jf*(M^*;Q) —> Jf*-2(M^;Q) to the equation
(R.I) x e^, we have

V^eg^k+k-i - [eg^-keh-i + ( g ^ ) e^+fc-ie/, + . . . +

^ + 1 ^) efce^_i + e,_ie^} = 0 in ̂ ^^-^(M,; Q)

(R.2) for all h, k ^ 0.

Remark 3.4. — The above relations (R.I) and (R.2) can be streng-
thened if we use the estimate of the order of ^+1 given in Proposition
3.3.
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The above relations, when combined with the previously known ones,
are very strong. For example if g = 2, then only the class e is non-trivial in
H^(M^^; Q) and also i f^=3 , then only the class ci survives in H*(M^ Q).
Thus in these cases there are no other relations.

4. Crossed homomorphisms and ^(Mg'.H^-^Eg)).

In the following three sections we compute the first (co)homology
groups of the mapping class groups with coefficients in the (co)homology of
the surface Eg. To avoid complicated notations, henceforth we simply write
iJi(Eg) for the integral homology of Eg and similarly for the cohomology.
Let A be an abelian group. Mg acts on H1 (Eg; A) from the left by the rule
(f)u = (cf)-1) * (u) (<^ € Mg, u C ^(E^A)). If we identify ^(^;A) with
Hom(ffi(Eg),A), then the rule becomes (f)u(x) = ̂ ^(x)) (x C ^i(Eg)).
Now let Zl(Mg',Hl(^g',A)) be the set of all crossed homomorphisms
d : Mg -^ ^(E^A). Namely

Z\M^H\^g;A)) ={d: Mg^ ^(E^A); d(^) = ̂ +<W, ̂  € Mg}.

Let 6 : ^(E^A) -^ Z^M^^E^A)) be the homomorphism defined
by

6u((/)) = (f)u — u.

Then as is well known we have

H\Mg',H\^A)) = Z\Mg^H\^g',A))llm6

(cf. K.S. Brown [Br]). Now for each crossed homomorphism d : Mg —^
^(E^A), consider the associated map

fd: MgXH^g)——A

defined by fd((f),x) = d((f)~l){x), (f) e Mg, x e JIi(Eg). It is easy to check
that f = fd satisfies the following two conditions :

(i) /(</), x - ^ y ) = f ( ^ x ) - ^ f ( ( f ) , y ) .

(ii) fW,x) = f(cf>,^(x)) + f{^,x) for all ^,'0 € Mg and a:, ^ C
jHi(Eg). Moreover if we denote F(Mg xffi(Eg), A) for the set of all maps / :
Mg x Jfi(Eg) —^ A satisfying the above two conditions, then it is easy to see
that the correspondence d —^ fd defines a bijection Zl(Mg•,Hl(Eg•,A)) ^
F(Mg x Ifi(Eg),A). Under this bijection the coboundary 6u corresponds
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to the map 6u : Mg x ^i(Sg) -^ A given by 6u((f),x) = u((f>^(x) - x)
(we use the same letter). Henceforth we identify the above two sets and
call elements of F(Mg x H^g),A) also crossed homomorphism.

PROPOSITION 4.1. — ^(Mg^^Eg)) = 0 for all g > 1.

Before proving the above Proposition, we recall a few well-known
results on the mapping class group Mg. First Lickerish [L] proved that
Mg is generated by the Dehn twists along the 3g — 1 simple closed curves
i\,..., ̂ g, mi , . . . , mg, HI , . . . , 7Zg_i on Eg illustrated in Figure 1. We write
\i, fii, vi for the isotopy classes of the right handed Dehn twists along i^m^
and rii respectively. Let 0 be the isotopy class of the homeomorphism of
Eg which moves each handle to the next one, namely it is represented by
rotation by 27r/g of Eg to the direction indicated in Figure 1. Then clearly
we have

\ _ n\ z)—l/\^-(-1 — (7A{\J
(R.I) /A,+i = e^e-1

^+1 = e^e-1

(all subscripts are modulo g) so that Mg is generated by four elements
^15 /^i? ^i and 0 ([L]). Next we recall several relations among the above
generators from Birman and Hilden [BH].

(R.II) Let 5i and <§2 be two mutually disjoint simple closed curves on Eg.
Then the corresponding Dehn twists mutually commute. For example Ai
and /^ commute if i ̂  1.

(R.III) Let 5i and 52 be two simple closed curves on Eg and assume that
5i intersects s^ transversely in one point. Then the isotopy classes of the
corresponding Dehn twists TI and r^ satisfy r\r^r\ = r^r\r^. For example
we have \\^\\\ = /AiAi/Ai .

(R.IV) Let T = ^lAll/lA2^2 • • .\g-lVg-l\gllg^g\gVg-\\g-\ . . . 1/2^2 ̂ 1 AI/AI .

Then r commutes with [t\.

There are still other relations than the above, but we need only (R.I)
- (R.IV) for the proof of Proposition 4.1.

Next we compute the actions of A^, [LI and ̂  on the homology H\ (Eg).
We write Xi and yi for the homology classes of the simple closed curves ^
and mi with the orientations given in Figure 1 respectively. The result is
given in Table 2. The blanks in it mean that the corresponding homology
class is fixed by the corresponding homeomorphism.



FAMILIES OF JACOBIAN MANIFOLDS 793

Figure 1.

Proof of Proposition 4.1. — Let

/ : M g X H ^ g ) ^ !

be a crossed homomorphism. Our task is to show that / is a coboundary,
namely to seek for a cohomology class u € ^(Eg) such that f((f>,x) =
u((f)^(x) - x) for all 0 e Mg and x C ffi(E^). If such a class exists, then
we should have

u(xi) = f(\i,yi)

^i) = -f(P'i^i)



Shigeyuki MORITA

§

J?

g

5ft

Ol
^

Ol^

CM^

h

5^
+

^

^

&
+

CM
^

CM
<<.

Ol
5ft
+
Ol
^

d
^

5ft

^

5

g
CM
^3

CM

Ol
5ft
|
Ol^

Ol

CM
5ft
|

5^
+

CM
^

g

+

5ft

^

S^

g

g
+
M
^

00
5ft
+

g

CM
^

S1

Ol
5ft

Ol
5ft
+
d
^

S
+

1—1

^

0)
^

Ol^



FAMILIES OF JACOBIAN MANIFOLDS 795

for all i = 1,... ,g (see Table 2). We define u by the above equations and
prove that f((f),x) = u((f)^(x) - x) for all (f> and x. Since / is a crossed
homomorphism it is enough to show this for the generators A^,/^ and ^.

(I) f(\i,Xj) = 0, f(\z,yj) = 0 for all j ^ i. To prove this we use
the relation (R.II); A,A^ = A^A,. We have f(\i\^x) = f(\j\i,x) for all
x € ^(Sp). Hence

/(A,,A,(^))+/(A,^)=/(A,,A,^)+/(A,,^.

If we substitute ̂  for x, we obtain f(\z,Xj) = 0. Next we use the relation
(R.II); \ip,j = {jij\i (z / j). If we substitute Xj for a- in the equation

f(^^(x))-^f(^,x)=f(^,\i(x))+f(X^x),

we obtain /(A^,^) = 0.

(II) f(lJti,Xj) = 0, f(p.i,yj) = 0 for all .7 / %. This follows from the
same proof as that of (I).

(Ill) f(\i,Xi) = 0, f(^i,yi) = 0 for all i = 1,... , g . To prove this first
we use the relation (R.II); ̂ ^ = v^. We have

f{^i^i(x)) + f(vi,x) = f(^,^(x)) + f{p,i,x).

If we substitute a*,+i for x, we obtain /(/^,^ - 2/,+i) == 0. Hence we have
f(^Vi) = 0 by (II). Next the relation (R.III); A,/^A, = /^A,/^ yields

f(\z^i\i(x)) + f(^,\i(x)) + /(A,, a:)

= /(^, A,^(.r)) + /(A,, ̂ (x)) + f(^i,x).

Substituting ^ for x, we have /(A,, x,) = f{^yi). Hence /(A,,^) = 0 by
the above.

(IV) f(^,Xj) = 0 for j ^ i, i + 1 and /(^,^) = 0 for all j. The
relation (R.II); i/,A^ = A^, (j / z, % + 1) yields

/(^, A, (a;)) + f(\^x) = /(A,, ̂ (rr)) + f(^x).

If we substitute ̂  for .r, we obtain f(vi,Xj) == 0. Next the relation (R.II);
i/ip.j = ̂ ji^i yields

f^i^j(x))+f(^,x)=f(^^i(x))+f(^x).

If we substitute xj for a;, then we obtain

f^Vj) = f(^j^j) - f(^j^i(Xj))
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which is zero by (II) and (III) because Xj - i^i(xj) is a linear combination
of yk 's.

(V) f{vi,Xi + a-.+i) = 0. The relation (R.III); A^A, = i/,A,^ yields

/(^, ̂ (rr)) + /(^, A,(^)) + /(A,, x)
= /(^, >i^i(x)) + /(A,, l/i(x)) + f(^i,x).

If we substitute a^+i for a*, we obtain

/(A,,.r^i) = f{yi,Xi +^+i +^ -^+1).

Hence /(^,^ + ̂ +1) = 0 by (I) and (IV).

(VI) If we put Ci = /(^, x,) + u(yi) - u(y^) = f{y^ Xi) - /(^, Xi) +
/(/^+i,:z^+i), then we have ci = ... = c^-i = c^. To prove this we use the
relation (R.I); ^4-1 = O^O'1 and ^+1 = 0i/i^~1. We have

/(^+i,^+i) = f{6vi6~^,Xi^)
= f(6^6-\x^)) + y^^-1^!)) + f(0-\x^)
= f(0,Xi - y, + ^+1) + /(^,^) + /((9-l,^+l).

Similarly we have

/(^+i,a;,+i) =/((9,^-^)+/(^,.z:,)+/((9 - l,^+l)
/(/^+2, ̂ +2) = /(^, ̂ z+i - 2/z+i) 4- /(/^z+i, x^) + /(^-1, ̂ +2).

Hence we conclude

c,+i - c, = /((9,a;, - y, + i/z+i) + /(^"S^+i) - /(^^ - 2/z)
- f(6-\xw) + /(0^m - ̂ +1) + f(0-\x^)

=f(e,x^)+f(0-\x^)
=f(00-\x^)
=0.

We write c for c^.

(VII) c = 0. To prove this we use the relation (R.IV); T/AI =
/AIT, where r = /^lAii/i ... \g-^g-^\g^g^g\gi/g_^\g_^ .. .^iAi/Ai. We have
/(T,/Ai(.r)) +/(/^i,a;) = /(^i,r(.r)) +/(r,a;). T acts on ^i(Sp) by multi-
plication by -1 (see [BH]) so that if we put x -==- a;i, then we have

2/(/Ai,.ri) = /(r,i/i).
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Now we compute /(T,i/i). The action of r on y\ is given by

P'1 AI V\ \2 ^2

Vl —————^2/1 —————^1 + 2/1 —————^1 + 2/2 —————^1 + ^2 + 2/2 —————^1 + ^2
Ag-l l/g-1

+2/3 -^ • • • -> ^1 + • • • +^p-2 +2/(?————^1 + • • • +^p-l +2/<7-1————^

'^9 ^9 P ' g
X\ + . . . + .Tp-l + ^————————>Xi + . . . + Xg + Vg———————>Xi + . . . + Xg————————>X^

\g Vg-\

+ . . . + Xg - Vg————————^1 + . . . + Xg-1 - Vg———————>X^ + . . . + Xg-^ - Vg^

^g-1 V\ \\

———>x^ + ... 4- Xg-^ - ̂ -i -> ... -^ x\ - 1/2———^i - 2/1———> - 2/1
p ' i

From this we have

/(^2/i) =/(/^i,-2/i)+/(Ai,^i -2/i)+/(^i,a*i - 2 / 2 ) + . . . +
/(Ag-i,rri + . . . 4-^-1 - 2/g-i) + f(^g-i,xi +...+^-1 -i/g)
+/(Ap,a;i + ...+^ -2/9) +/(^,a:i + . . .+^9)
+/(/A9,a;i + . . . -h^+2 /9 )+ / (^ (p^ i +...+^-1 +1/9)
+/(^/9_l,a ll 4- . . .+^- i+2/p- i )
+/(A9-i,a;i + . . .+a;p-2 +2/5-1)
+ ... + /(i/i, a;i + 1/1) + /(Ai, 2/1) + /(/^i, 2/i)

=2{/(i/i,a;i) + ... + /(i/9-i,^-i) + /(/A?,^)}.

Here we have used (I) - (V). Hence we have

2{/(^i,a;i) + ... + /(^-i,^-i)} = 2{/(^i,.n) - /(^,^)}.

On the other hand (VI) implies

/(^i,^i)+.. .+/(^-i,^-i) = {g- l )c+/(/^i ,rri) - f{p.g,Xg).

Therefore we conclude
(2g - 2)c = 0.

(We write as above instead of just c = 0 for later use). Now clearly
(I) - (VII) imply that the crossed homomorphism / coincides with the
coboundary 6u. This completes the proof of Proposition 4.1.
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5. H^Mg^H^^I/n)).

In this section and the next, we will explicity determine the coho-
mology group ^(M^^J^E^Z)). Most of the results of §§5,6 are not
strictly needed for the proof of the main theorem which will be given in §7.
In fact a glance at the Hochschild-Serre exact sequence in the beginning
of the proof of Proposition 6.4 together with Proposition 4.1 will be suffi-
cient for it. We include these results here because we think that they have
their own meaning. As was mentioned in the introduction, they will play
an important role in our subsequent papers [Mo6], [Mo7].

In the following three sections (§§5-7) we assume that g > 2.

Proposition 5.1. — Let f : Mg x H^g) —^ 1/n be a cros-
sed homomorphism and put c = /(^i,a;i) - f{^,x^} + /(y^, x^) €
J./n.Then this number c depends only on the cohomology class [f] C
^(Mp; ̂ (S^; Z/n)), (2g - 2)c = 0 and the correspondence [f] i-̂  c gives
an isomorphism

^l(M,;^l(S,;Z/n))^Homz(Z/2^-2,Z/n) (g > 2).

First we observe that the arguments of (I) - (VII) in the proof of Pro-
position 4.1 can be equally applied to the crossed homomorphism / :
Mg x JIi(Sp) —^ Z/n and we can conclude that there is a cohomology
class u e H^^Lg', 1/n) such that the value of / on the generators A^,/^ and
Vi differ from those of the coboundary 6u only at (^,;z^)'s and we have

f{yi,Xi) - f(^i,Xi)+ /(/^+i,a;,+i) =c

for all i = 1 , . . . ,^ — 1. Obviously the cohomology class u is uniquely
determined by the above properties so that the number c depends only on
the cohomology class [f]. Moreover we know that (2g — 2)c = 0. Therefore
to prove Proposition 5.1, we have only to show the existence of a crossed
homomorphism

/: MgXH^g)^l/(2g-2)

such that the above constant c is coprime to (2g — 2). Such a crossed
homomorphism will be construted in the proof of Proposition 6.4.

Almost the same proof as those of Proposition 4.1 and Proposition
5.1 yields.
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PROPOSITION 5.2. — We have an isomorphism

H1 (Sp(2^; Z); H1 (S,; 1/n)) ̂  Hom(Z/2,1/n)

for all g > 1 and n > 0.

We have only to replace the relation (R.IV) of Mg (see §4) by
(1.9) of Birman [Bi] for the group Sp(2^;Z). For g > 2, the generator
of ^l(Sp(2^;Z);^l(S,;Z/2)) ^ Z/2 can be represented by the crossed
homomorphism / : Sp(2^; Z) x ^i(S^) -^ Z/2 defined as

29 g
f(A,x) = ̂  (^%a2+(^)^ mod 2

j=i 1=1

for A = (a^-) € Sp(2^; Z) and a; = .s^i +. . . + SgXg + <s^+i^/i + . . . + s^gVg E
^1(^9).

Remark 5.3. — It is easy to see directly that the cohomology group
in Proposition 5.2 is annhilated by 2 since -1 c Sp(2^; Z) lies in the center
and acts by -1 on the coefficients. Actually this is all which is needed in
the proof of Proposition 7.4. (This remark is due to the referee to whom
the author would like to express his hearty thanks.)

COROLLARY 5.4. — (to proposition 5.1)

Jfi(M,; H^g)) ̂  l/(2g - 2) (g > 2).

Proof. — This follows from Proposition 5.1 and the short exact
sequence

O^Ext(I:^o(M,;^l(S,)),Z/n)^ffl(M,;^l(S,);Z/n))

^ Hom(^i(M^i(E^)),Z/n)-> 0

because we clearly have H^Mg'.H^g)) = 0.

Remark 5.5. — Harer [H] has computed the second homology of the
mapping class groups. However unfortunately Lemma 1.2 of [H] is false and
a minor change on his results is necessary.

Namely we have

H^Mg;Z)^I for all g> 5.
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This can be shown by modifying Harer's proof using the results of his paper.
However there is also a simple argument to show the above by using only
the results of [H].

Now we prepare a few facts which will be used in the next section.
Let S^ be the compact surface obtained from Eg by subtracting the
interior of an embedded disc D2 and choose a base point bo € S^.
Let ai, . . . ,o^,/3i. . . ,f3g be the free generators of 7Ti(S^,6o) as shown in
Figure 3 (compare with Figure 1). We put C = [^i^0i] - ' - [ ^ g j 0 g } where
[a^, l3i\ = OLiftiOL^1 /^-1. It is represented by the simple closed curve ^ parallel
to the boundary (see Figure 3). Now let o^ and f3^ be the elements of
7Ti(Sp;&o) represented by the same curve as OL{ and 0i respectively. Then
as is well known 71-1 (Eg, &o) 1s generated by them with a single defining
relation

[ai,^]...[a^]=l.

Now let M^i be the mapping class group of S^. Namely Mg^ =
7To(Diff(S^(9E^)), where Diff(E^,9E^) is the group of all diffeomorphisms
of S° which restrict to the identity on the boundary. For a simple closedy
curve t on S° we write r^ e Mg,i for the right handed Dehn twist along i.
The kernel of the natural homomorphism TT' : Mg^ —^ -^,* ls isomorphic
to Z whose generator is r^. Obviouly r^ commutes with any element of Mg^
and the central extension

0 -^ Z -^ Mg^———^Mg^ -^ 1

corresponds to the cohomology class e € II^M^*;!). We have the follo-
wing commutative diagram

1 ————————> TTiWSg) ————————> Mg^ ————————> Mg ————————> 1

1 ————————> 7Tl(Eg) ————————> Mg^ ————————> Mg ————————> 1

where TiSp is the unit tangent bundle of Ep (see [Mo2]). The injective
homomorphism i : 7Ti(Sp) —> Mg^ is given explicity as follows. For each
simple closed curve 7 representing an element of 7Ti(Sp) (which we also
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Figure 3

denote by 7), (.(7) is the mapping class in Mg* of the homeomorphism
of Eg which takes the base point 60 round along the curve 7-1 until its
original place (here 7-1 appears because we use the usual convention of
multiplications of the groups TT^S,) and M<^, namely the former is given
by the product of paths while the latter is given by the composition of
mappings). More precisely for each closed curve a, (or A), choose two
simple closed curves a,(+) anda.(-) (&,(+) and &,(-)) in Sg as illustrated
in Figure 4. We define

W = TO.(+)T^_)

TO = T6.(+)^7(l_).

Then we have t(a,) = v'i(di) and t(/?J = 7i-'t(/3J.
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Oz(+)

Figure 4

Now we consider /^i, ^ and 1/1 as elements of Mpj. It is easy to
compute the action of these elements on 7i-i(20). For example we have

/^i(ai) =ai/?i~1

^2(a2) = a^1

i/i(o;i) = ai/^f1^^^1'

Also it is easy to determine the action of F(a,) and i(f3,) on 7ri(S°). For
example we have

^i)(/?i)=C~Wi^-1.



FAMILIES OF JACOBIAN MANIFOLDS 803

6. H\Mg^H\^)).

In this section we compute ^(M^fl-^Eg)). For that we first
consider H\M^;H1^)). Recall from §5 that TT^) is a free group
on the generators QI, ..., Qg, A,..., A, (see Figure 3). Now let Fa be the
free group generated by two elements a and /3. Any element 7 £ ̂  can be
uniquely expressed as

-y = a;6!/^! ...a6"^

where e, and 6, are 0, -1 or 1. Define an integer d(-y) by

n n

^^E^-E^E^2^-2^ 2. £^*=i j=i »=i .7=1+1
Now for each i = 1,.. .,g let p, : Tri(Eg) -^ ̂  be the homomorphism
defined by p,(a,) = Q, p,(/3,) = /? and ̂  (other generators) = 1. For each
element 7 e 7ri(S^) we set ^(7) = d(p,(7)) and finally we define

^(7)=E^^)-

9
^ n

LEMMA 6.1. — For any dement 7, 7' e 71-1 (S^), we have

rf(7y)=ri(7)+d(7')+M-[7']

wAere [7] denotes tAe Aomoiogy dass 0/7 in ffi(S^) ̂  ̂ (Sg) aad [7] • [7']
denotes the intersection number of [7] and [7'].

Proof. — This follows directly from the definition.

LEMMA 6.2. — For each dement <f> 6 Mg^, the map ̂  : 71-1 (S°) ̂  Z
denned by ̂ (7) = d(<f>(^)) - ̂ (7) is a Aomomorpnism.

Proof. — By Lemma 6.1, we have

<4(77') = rf(^(77')) - d(77')

= ri(^(7)) + dW7')) + [<^(7)] • [<A(7')]

-'^-W-M-M
=^(7)+^(7')

because the action of M,,i on ffi(S^) preserves the intersection number.
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In view of Lemma 6.2, we can define a map / : Mg i x H^(Eg) —> Z
by

/(<^)=^(7)

where (f) C Mpj, re C ^i(E^) and 7 € TTi(E^) is an element such that
M = x.

LEMMA 6.3. — The map f : Mg^ x Hi(Eg) -^ 1 defined above is a
crossed homomorphism.

Proof. — It remains to prove that /(<^,;r) = /(^,'0(rc)) -+- (^,x) for
all (/), ^ € Mg^ and a; C Ifi(S^). But this follow easily from the definition.

Now consider the central extension

0———>I———>Mg^———^Mg^———>1.

The first three terms of the associated Gysin sequence of the cohomology
with coefficients in -H'^E^) are

0 ̂  H\M^H1^)) -> H^Mg^H1^))
^HO{Mg^',Hl^g))=0.

Hence we have an isomorphism

^l(M,,*;^l(E,))^IIl(M,,l;ffl(E,)).

In fact it is easy to see that the above crossed homomorphism / of Mg^
factors through a crossed homorphism / : Mg* x H^(Eg) —> Z (we use the
same letter).

PROPOSITION 6.4. — ^(M^^Jf^E^)) is an infinitive cyclic group
generated by the cohomology class of the above crossed homomorphism /.

Proof. — Consider the exact sequence

l-^7ri(E^)-.M^ -.Mg ->1.

The associated Hochschild-Serre exact sequence (see [HS]) is

0 - H\M^H\^)) -. H\M^H\^))

-^(^(E^^E,))^....
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We know that the first term vanishes (Proposition 4.1) and it is easy to
see that the third term is isomorphic to Z whose generator corresponds to
the intersection pairing H^(^g) x Jfi(Ep) —>• Z which is invariant under
the action of Mg. To determine the image of the cohomology class [/] in

( \ -^9
H1 TT^g^H^Eg)) , we choose ai e 7n(Sp) and A (E 7n(E^) (see §5).
Then we have

f(a^f3,)=d(l{a,)(f3,))-d(/3,)

=d^~l^l^l)-d{^^l)

=2-2g

because d(C) = 2g. Hence [/] goes to (2 — 2g) times the generator of

( \ ^-9
H1 7^l(^g)•,Hl(^g)) . Therefore to prove Proposition 6.4, it suffices
to show that [/] is not divisible in H^^Mg^'^H^^g)). This condition
is equivalent to the following fact. For each divisor n of 2 ^ — 2 , let
f^ : Mg^ x ffi(S^) —f Z/n be the mod n reduction of /. Then the
cohomology class of f^ is non-trivial in ^(M^^Jf^S^Z/n)). Now it
is easy to check that f^ factors through Mg so that it defines a crossed
homomorphism f^ : Mg x H-^(Tig) —> Z / n (we use the same letter). Since
the homomorphism H1 (M^JFf^S^Z/n)) -^ H^Mg^', ̂ (S^Z/n)) is
injective, we have only to prove that the cohomology class [/yj is non-
trivial in If^M^; ̂ (S^; Z/n)). For that we compute the constant c of the
crossed homomorphism f^ (see Proposition 5.1).

As in §5 we consider the Dehn twists [LI and v^ as elements of Mg^.
Then we have

C = 7n(^ [^l]) - 7n(/^l. [^l]) + 7n(/^2, [^2])

= rf(i/i(o;i)) - rf(ai) - d(/^i(ai))
+^(ai ) -hd( /A2(a2))-^(a2)

= d^^a^a^) - d(a^1) + {a^1)

Here we have used the actions of /^ and V{ on 7Ti(S^) given in §5. This
completes the proof of Proposition 6.4. Also the existence of the crossed
homomorphism /2p-2 : ^g x ^1(^9) ~" ^/(2^ - 2) finishes the proof of
Proposition 5.1.
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7. Proof of the main theorem.

In this section we prove Theorem 2.1. Recall the split extension

1^7ri(E,)-^M^^M,,*^l
s

which serves as the universal model for E^-bundles with cross sections (see
§2). Now let {E^, dr} be the Hochschild-Serre spectral sequence for the

'integral cohomology of the above group extension. The £'2- term is given
by E^ = HP(Mg^',H^Eg)). Our task is to prove the equality

P*(n)=2.^-7r*(e)-7r*(e)

in^2(M^;Z).

LEMMA 7.1. - (i) E^° = E2,0 = H^Mg.-a).

(ii) E^^E^^H^M^^H1^)).

(iii) I%2 = E°,2 = H^Mg.'^H2^)) - Z.

Proof. — Since our group^extension splits, the induced homomor-
phism TT^ : Jf*(M^; Z) -^ H*(Mg^; Z) is injective. Hence the differentials
c?2 : E^1 —^ E^1'0 are all zero. (i) and (ii) follows from this (take;? = 0 and
1 respectively), (iii) follows from the fact that i^{v) = 1 c H2(Eg•,l) ^ Z.

We have the following short exact sequence

0 - E2^ = H^Mg.; Z) ̂  H^Mg^; Z) -. K -. 0
5*

where K = Cokpr* can be naturally identified with Ker 5*.

LEMMA 7.2. — Both of the cohomology classes p*(n) and 2i/-7r*(e) -
7r*(e) are contained in Ker 5*.^*

Proof. — p*(n) e_Ker 5* because 5*(H) = 0 in J:f2(Sp(2^;Z);Z)
where 5 : Sp(2^;Z) ^ Sp(2^;Z)) is the splitting (see §2). Next 5*(2i/ -
TT (e) -7T*(e)) = 2(s*(i/) -e) = 0 because the cohomology class v restricted
to the cross section of a surface bundle is equal to the Euler class restricted
there.

Next consider the following exact sequence

0———E^ =Hl{Mg.^Hl(Eg))———K——^E^ =H\Eg)———0.
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By Lemma 7.2, we may assume that both ofjo*(n) and 2i/-7r*(e)-7r*(e) are
contained in K. The homomorphism r above is induced from the inclusion
of the fibre. Therefore if we identify J%2 = H2(^g', Z) with Z, it is easy to
see that

r(p*(Q))=2^ rM=l,

r(7r*(6)) = 0 and r(7T*(e)) =2-2g

so that we have r(jo*(Q)) = r(2i/-7r*(e) -7r*(e)). We know by Proposition
6.4 that E^- = ^(Mg^'.H^^g)) is an infinite cyclic group. Hence to
prove Theorem 2.1, we have only to check the required equality on a single
non-trivial example of E^-bundle with cross section such that the classifying
map to the universal bundle induces a non-trivial map on the -E^-term in
the spectral sequence. For this purpose it is enough to consider the following
S^-bundle

E = 2jg X Sn . > X. = LIQ

where 7r(j?,j/) = p and s{p) = (p,p) ( p , p ' e Sp). We have to prove that
the two cohomology classes coincide in ̂ (E; Z). This cohomology group is
naturally isomorphic to }lom(H^(E; Z),Z). Hence it suffices to prove that
they have the same values on any 2-cycle of E. By the theorem of Kiinneth
H^E',1) ^ J l2(^;Z)0le^i(S^Z)^^i(S^Z)el0^2(^;Z). We
already know that the two values are the same on homology of the fibre
1 (g) H^(T^g\ Z). By virtue of the obvious symetry of our example, they are
also the same on the homology of the base ^(Sp; Z) 0 1. Thus it remains
to prove the coincidence on the cycle [7] x [7'] for any 7,7' € TTi(Eg). Now
a simple computation corresponding to the argument of §2 shows that the
classifying homomorphism

K : 7Ti(E) = TT^Eg) X 7ri(E^) ——. ~Mg^

of our example is given by ^(7,7') =- (7'7-l,7). Hence we have p/c(7,7') =
([7'7~1], 1). Now in terms of the group homology, the cycle [7] x [7'] of E is
represented by the 2-cycie ((7,1), (1,7')) - ((1,7'), (7? 1)) of ^i(E). Hence
we conclude

W * (H)([7] x [7']) = [7-1] • [7'] - [Y] • [7-1]

=-2[7]-[7'].

On the other hand the values of 7r*(e) and 7r*(e) on [7] x [7'] are clearly
zero and the cohomology class v is now the Poincare dual of the diagonal
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s(Tig) C E. From this it is easy to deduce

(2^ - 7r*(e) - 7f*(e))([7] x [V]) = -2M • M.

This completes the proof of Theorem 2.1.

Remark 7.3. — The final part of the above proof essentially identifies
the "E^1- part" of the cohomology class p*(Q). If we compare it with the
proof of Proposition 6.4, we can conclude that the cohomology class p*(n)
is not divisible as an integral class. In particular it is not divisible by 2.
This fact can also be proved directly by using Proposition 5.2.

Next we prove here the following fact which was promised in §1.

PROPOSITION 7.4. — Let TT : ESp(2^; Z) -^ K{Sp(2g; Z), 1) be the uni-
versal T29-bundle with structure group Sp(2^;Z), cj the associated closed
2-form on ESp(2^,Z), and let fl C ^^2[ESp(2^ Z); 1\ be the cohomology
class defined in §1. Then we have 2[cj] = Q in JEf2(ESp(2^ Z); R).

Proof— Let {'£^9, c .̂} be the Hochschild-Serre spectral sequence for
the real cohomology ofESp(2^; Z) and let K ' = Ker(^ : Jf2(ESp(2^; Z), R)
^ H2(K(Sp(2g', Z), 1); R), where 5o : K(Sp(2g', Z), 1) ̂  ESp(2^; Z) is the
zero-section. In view of Proposition 1.2, (ii) both of 2[c<;] and ^ lie in K ' .
Now the same argument as in the proof of Theorem 2.1 above implies a
short exact sequence

0 —— 'E^ —— K ' —— 'E^ —— 0.

Here 'E^1 = 'E^ = JIl(Sp(2^Z);^l(S^) = 0 by Proposition 5.2.
Hence K ' = 'E^2 = Im(^2(ESp(2^;Z);R) ^ ^2(r^;n)). The result
then follows from Proposition 1.2, (i).

8. Concluding remark.

Remark 8.1. — As stated in the Introduction, one of the motivations
for the present work was Johnson's paper [J]. It turns out that there is
a close relationship between Johnson's question on the homology of the
Torelli group Ig and non-trivialities of some of the characteristic classes
restricted to I g . More precisely if i : Ig —> Mg denotes the inclusion, then
by an obvious reason we have z*(efc) == 0 for all odd k. However there is no
reason for the classes i^(e^}, i* (64) , . . . to vanish and in fact if Johnson's
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conjecture in [J] were true, then we must have non-trivial classes i^(e^k)
for small k. We would like to discuss these points in detail in a forthcoming
paper.
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