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THE SCHOTTKY-JUNG THEOREM
FOR MUMFORD CURVES

by Guido VAN STEEN

Introduction.

The classical Schottky relations for theta functions are relations which
are valid for theta functions on the Jacobian variety of a Riemann surface.
These relations are derived from a theorem by Schottky and Jung.

In [6] Mumford gives a purely algebraic geometrical version of this
theorem. However, in the case of a complete non-archimedean valued base
field there exists a theory of theta functions on analytic tori which is very
similar to the complex theory, cf. [3].

In this paper we use these theta functions to prove the Schottky-Jung
theorem in the particular case that the torus is the Jacobian variety of a
Mumford curve. In Section 2 we prove a slightly weaker version of the
theorem. In Section 3 we prove the stronger version in the particular case
of hyperelliptic curves. In Section 3 we prove the theorem in the general
case using the technique of analytic families of curves.

I would like to thank M. Van der Put for his helpful suggestions.

Notations.
i) k is an algebraically closed complete non-archimedean valued field,

char(fc) -^ 2,3 .

Key-words : Mumford curves - Theta functions.
A.M.S. Classification : 14K25 - 14G20.
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ii) P1 is the projective line over k .

1. Theta functions and the Riemann Vanishing Theorem.

Let F C PG£(2, k) be a Schottky group of rank g+1 . Let Xr = O/F
be the corresponding Mumford curve; fl, C P1 the set of ordinary points of
r . The Jacobian variety Jr of Xr can be identified with an analytic torus;
cf. [4]. We recall briefly how this is done.

I f a , f r € n we define Ua^{z) ='[[ ̂ 7(a) ; z C ^ .
7€r 7V /

This product defines a meromorphic function on 0 which satisfies
a functional equation Ca^) ' Ua^z) = Ua,b(z) with 7 € F and Co,& e
Hom(r,fc*) . If b f. r(a) then Ua,b has zeroes in the orbit F(a) and poles
in the orbit F(&) . If b = 7(0) with 7 € T , then Ha,& does not depend on
a . In this case we denote u^ = Ua,b and c^ = Ca,& . The function u^ has no
zeroes or poles.

Let Gr = Hom(r, fc*) . This group can be identified with (fc*)^"^1 and
hence has an analytic structure. The subgroup Ar = {c-y | 7 e F} is a free
abelian group of rank g + 1 and is discrete in Gr .

n

With a divisor D = Y^(ai - bi) on Xr with deg(-D) = 0 corresponds
1=1

n

a homomorphism c = JJca.,b. € Gr ; ai.bi € Q . This correspondence
i=i

induces an analytic isomorphism from Jr onto the quotient Gr/Ar .

Let p e 0 be a fixed point. Define tr : 0 -^ Gr by ^r(a;) = Cx,p . The
induced map fp ^ Xr -^ Jr is the canonical embedding of Xr into Jr with
base point p . This map is extended to divisors in a canonical way.

The dual variety Jr of Jr can also be represented as an analytic torus.
One has Jr = Gr/Ar with Gr = Hom(Ar,fc*) and

Ar = {d e Gr | 3a € F such that d(c^) = 0^(7) for all c^ e Ar} .
The group Ap acts on
0*(Gr) = {/ | / holomorphic and nowhere vanishing function on Gr} .

For / € 0*(Gr) , c^ € Ar and c € Gr one defines f^(c) = /(c^c) .
If $ € Z^Ar, 0*(Gr)) is a 1-cocycle then we denote
HO = {h I h holomorphic function on Gr , h(c) = ^(c)/i(c^c)

for all c^ € Ar} .
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Elements of L($) are called holomorphic theta functions of type $ .

Let A^ : Gr ~^_Gr be defined by A$(c)(c^) = 0(7) . This morphism
induces a morphism A^ : Jr —^ JT •

If L(Q / 0 , then A^ is an isogeny and dim(L($)) = [KerA^ : KerA$]
where KerA^ is the image in Jr ofKerA^ C GT ; cf. [3], [11].

A canonical 1-cocycle can be defined in the following way. Let

pr : Ar x Ar —^ k*

be a symmetric bilinear form such that j^(c^,c^) = c^(6) for all 7,^ e r .
Define ̂  by $r,c^(c) = ?(^,0^)0(7) ; c^ € Ar , c € Gr . In this case A^
is an isomorphism and hence dim(L($r)) = 1 . In fact L($r) is generated
by the Riemann theta function 0r(c) = ^ $r,c^(c) . The divisor of Or

c-y eAr
is Ar-invariant and hence induces a divisor on Jr . This divisor defines a
polarization Or on Jr .

The isogeny form Jr onto Jr which can be associated with a polar-
ization is in this case A^ . Since this is an isomorphism, Or is a principal
polarization. In fact Or is the canonical principal polarization which exists
on a Jacobian variety. This follows from :

THEOREM 1.1 (Riemann Vanishing Theorem).

i) The holomorphic function Or o tr has a T-invariant divisor which,
regarded as a divisor on Xr , has degree g + 1 .

ii) If the map fr : Xr -*- Jr is based at the point p e 0 , and if
KY = (div(0 o tr) - p) modr e Div(Xr) , then 2Kr is a canonical divisor.
Furthermore, the class ofKy under linear equivalence of divisors does not
depend on the choice ofp .

hi) IfceGr then 0r(c) = 0 if and only ifc = fr(D - Kr) for some
positive divisor D of degree g . The order of vanishing of0r at c is equal
to i{D) , the index of speciality of D .

Proof. — The divisor Oy is calculated in [4]. The other assertions are
easily proved in a similar way as in the complex case; e.g. the proof such
as given in [1] can easily be adapted. D



4 Guido VAN STEEN

2. The Schottky-Jung theorem.

Let Xr be as in Section 1. Let TT : X —> Xr be an analytic covering
of Xr ; X a curve of genus 2g + 1 .

The condition of TT being analytic is stronger than being just un-
ramified, cf. [8]. In particular this condition implies that X is a Mumford
curve corresponding to a Schottky group A with A a subgroup of r with
[r : A] = 2 . Since A is normal in F , both groups have the same set of
ordinary points. So X = XA = Q/A . Moreover, the map TT is given by

7r(A-orbit of x) == (F-orbit of x) ; x € n .

The Jacobian variety of XA is constructed in the same way as Jr . We
keep the same notations as in Section 1 but to indicate that we work with
respect to A we will denote

- f \ TT z"" ̂  - ^\ ^(z) ~
^(^-l^TT^ ca^)=^%))5 ^=c^)--

We take a symmetric bilinear form PA '' AA x AA —^ k* such that
pi(ca,c^) = Ca(0) . The canonical 1-cocycle $A e Z1(AA,0'(6(GA)) is
defined by $A,c^(c) = p^(cg, cs)c(6) ; c^ € AA and c € GA • The Riemann
theta function on GA is defined by

0A(C)= ^ $A,C,(C); C 6 G A .
C<>€AA

Let (70»7i 5 • • •»7p) be a free basis for the group r . We may assume 70 t A
and 7z € A for i = 1,..., g .

So A has a free basis SQ, <? i , . . . , 6g, 5-i,..., 6-g with ^o = 7J 5 ^i == 7 i»
5_^ = 7o7t7o^ 5 z = I? • • • ^ 9 - The bilinear forms can be normalized such
that

i) PA (cs^cso) =0^(70) ,
ii) Va,^€ A :pA(Ca|^,^) =pr(c-y,c/3) .

(c^ is the restriction ofc^ to A .)

Let TT* : Jr —> J^ be the dual map of TT . This map is defined by

7^ilc(cmod(A^)) = c|Amod(AA) .

Since TT is unramified KerTT* has order 2. The non-trivial element
of Kerpr* is CQ with Co € Gr defined by 00(70) = —1 and co(7i) = 1 ;
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i = 1,... ,<7 . More relations between Jr and JA can be found in [11]. The
relation between Or and 0^ is given by

THEOREM 2.1 (Schottky-Jung relation). — There exists a homo-
morphism CQ C Gr such that e§ = Co and such that

e^w
0^(eoc)•0^(ec^lc)

is a constant function in c C G'r •

In this Section we will prove only that eo satisfies e^ = Co mod(Ar) .
This weaker version of the theorem is basically the same as the algebraic
geometrical result given in [6].

Meromorphic functions on Xp or X^ can be lifted to F-invariant or
A-invariant meromorphic functions on S l .

A similar correspondence holds for divisors on Xr and X^ . We make
no difference between divisors on Xr (or X/^) and their lifts to n . If D is
a divisor on Xy then denote
Lr(D)={/|/,r-invariant meromorphic function on H with div(/)4-D^O}.

(Similar meaning for LA .)

PROPOSITION 2.2. — Let D be a divisor on Xr with deg(P) ==
g and let TT*(D) be the reciprocal image of D on X^ . The following
sequence is exact :

O-^Lr(D) ^LA(7r*(D)) -^ Lr(0 - Do) -^ 0
with :

i) DQ = div(/o) Si^d fo a meromorphic function on fl, such that
co(7Vo(7c)=/o(c)forali7€r

ii) a(f) = / for all f € Lr(D)

hi) f3(g) = 9——9p^. /o for all g € L^(D)) .

Proof, — It is easy to verify that these maps are well defined. If
g € Ker/3 then g = g o 70 and g is A-invariant. So g is r-invariant and in
fact g is an element of Lr(D) . If / e L(D - Do) then / = /3(f/fo) . So f5
is surjective. D

Let p e n . We have canonical maps ?r : -XT —^ ^r and ?A : Xi —^ *^A
with fr(x) = Ca;^,?A(^) =::: Ca;,p • These maps are extended to divisors.
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Define Ky and K^ as in Section 1. According to the Riemann
Vanishing Theorem 2Kr and 2K^ are canonical divisors on XT and XA .
Since TT is unramified 7r*(2Ar) and 2K^ are linear equivalent. Hence
7r*(Kr) = K^+E where E is a divisor of degree 0 such that 2E is principal.

Let e € GA such that ?A(-K) = £ , (^ is defined up to periods in AA).
We have the following

LEMMA 2.3. — 7i———TT-T—r is a nowhere vanishing holomorphicor(c) •0r(cco)
function on Gr '

Proof. — If 0r(c) = 0 then c = fr(D - Kr) ; D a positive divisor
on Xr with deg(JD) = ^_Hence 7r*(c) = CJA = t^(^(D) - 7r*(Ar)) and
consequently 7r*(c) • e = ^A^CD) - K^) . It follows that 0^(c\^ ' e ) = 0 .
In a similar way we find that @A(c|A • £) = 0 if 0r(cco) = 0 . Furthermore
the vanishing order of 0^(c\^ ' e) is the sum of the vanishing orders of
<?r(c) and 0r{cco) . This follows from 2.2 and the Riemann Vanishing
Theorem. D

LEMMA 2.4. — K^ and ^o(K^) are linear equivalent.

Proof. — It follows from the definition of K^ that

7o(^A) = div(0A o ^A ° 7o) - 7o(p) .
If x € Q we have t^o(x)) = c^),p = c^ . c^-i(^ = c^ . c^ ̂  ,
cf. [10]. (If c € GA , then c70 is defined by c^°(8) = c(7o^7o"1) •)

Since A[C6C) € O*(C?A) and since 0^°) = 0^(c) , we find that
fA ̂ } ____

7o(-^A) = div(0A(^a;,7o(p)) ~ 7o(?) • It follows from 1.1 that ^o(K^) and
-K'A are linear equivalent. D

As a consequence 70 {E) and E are linear equivalent and hence
^70^-1 ^ ̂  Since e^°e~1 is 7o-anti-invariant, we have e^°e~1 = cj°c^1

for some 8 € A , cf. [11]. Hence, after replacing e by ecj^ , we may assume
that £ is invariant under the action of 70 . It follows that e = 7r*(eo) for
some eo € GT .

We have the following weaker version of Theorem 2.1.

PROPOSITION 2.5.

i) e§ = CQ mod Ar



SCHOTTKY-JUNG THEOREM 7

.., gA(7T*(c)) . ^ .11) T:—;—r———iT is constant in c .Or(ceo)' 0r(ceo1)

Proof. — Since Av u \ € 0*(Gr) it has a decomposition of
yr(c}yr(cco)

the form A - Va with A € A* , a € F and z;a(c) = c(a) , cf. [4].

But as a quotient of theta functions . •- v . itself is a theta
0r(c)0r(cco)

function of type $ € Z1 (Ar, O* (Gr)) with $c (c) = e0-7- • on t^ other

^ co (7)
e2

hand A'ya(c^c) = c/y(a) • Az;a(c) = ^(7) • Ava(c) . Hence -°- = c^1 € ArCQ
and we find that

^(TT*(C)) ^ ^(^(ceo-1)^
^^^^(ceo) ^(ceo-1)^^1^^1)

= ^^(ceo^Co) • AVa(cCo"1) .

So — — , — - = \pr(ca,Ca)co(a)~1 . This expression is constant in
cT^eo^r^ceo)

c . D

Remark. — The homomorphism eo is only defined up to periods in
Ar . If one replaces eo by eoc-y with 7 € T , then e§ = 000^-1^2 . So a is
only defined up to squares in r .

In the following sections we will prove that eo can be chosen such that
a = l .

3. The case of hyperelliptic curves.

We take TT : X^ —> Xy as in Section 2, but we now assume that
XA is hyperelliptic. So there exists an element 5 in the normaliser of A in
PGL(2, k) such that s6s-1 = 6-1 mod[A, A] for all 6 6 A , cf. [9].

Since 72 € A for all 7 € r and since r/[r, r] is a free abelian group we
find that s^s~1 = 7~1 mod[r,r] . Hence Xy is also hyperelliptic. We may
assume that s has order 2. Furthermore there exists a free basis 70? • • • 5 7p
for r such that s^s"1 = 7^~1 ; i = 0,... ,p ; cL [9]. We also may assume
that 70 i A . If 7i ^ A (z = 1,... ,g) , then 7^70 € A and 7071 € A .
But 5(7,70) • (7o72)~15~l = 7^~17o-17^7o ^ (7z7o)(7o70~1 mod[A, A] . This
contradicts the fact that s6s"1 = <?~1 mod[A, A] for all 6 € A . This
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means that 7o,...,7g satisfy the assumptions of Section 2 and that A
has a free basis ^i,... ,<^-i,... ̂  with ^ = 7o2 , 6i = 7z and
<?_,== 7o7z7o1 ; z = l , . . . , ^ .

Let ^_, = 6.i6o = 707,70 . So<?o,^i,. . . ,<^-i,... ,/^ is a basis for
A and 5^5-1 = ̂ 1 , 5(^)5-! = 6^ and 5^6-1 = /c,1 , i = 1,... ̂  .

Let a and & be the fixpoints of 5 and let a, and bi be the fixpoints of
57, ; i = 0, . . . , g . The fixpoints of s6o are then 7o'l(a) and 7o'l(&) and the
fixpoints of 5/A-, are 7o-l(a^) and 7o'l(&^) .

All these fixpoints are ordinary points. The double coverings

Xr-^P\k) and X^^P^k)

are ramjfied_in_the points g^a^b^..., Og.bg € Xr and a, fr, ai, &i,...,
^^p,7ol(^),7o~l(&),76-l(ol),76"l(&l),•..,7o~l(ap),7o-l(^) e X^ respec-
tively; cf. [9].

We will now calculate Ky and K^ . The linear equivalence classes
of these divisors do not depend on the base point of the canonical maps
tr : Xr -> Jr and f^ : X^ -> J^ . We may assume that this base point is
a .

The ̂ -images of the ramification points of Xr -^ P1 ( k ) are calculated
in [10].

We have

1- C6a(7z)= -1 ; 2 = 0 , . . . , ^
c» o _ Q
z ' ^ia == ^a = î 'i ^ia = Cbiai ' Caia ; ^bia^i) = -1 and

^idi (7j) = 1 for all j ̂  i ; i = 0 , . . . , g .

LEMMA 3.1. — Let c e Gr such that c2 = c^ e Ar with 7 ^ [r,F]
and such that 0(7) = -pr(c/y,c^) . Then 0r(c) == 0 .

Proof. — 0r(c) = 0r(c-1^) = ̂ (^"'^(c-1) .

But $r,c^(c~1) = pr(c^,c^) • c(7)-1 = -1 and since 0r is an even
function the assertion follows. Q

Since c^(7z) = -Ca.a(7z) = ±pr(c^,c^) we find that Or o ^r has a
zero in a^ or in bi for each i = 0,..., g .

In a similar way we find that 6^ ot^ has a zero in 7o-1 (a) or in 7-! (&) ,
in a, or in 6, and in 7o"l(a,) or in 7o'l(^) for each i = 1,..., g .
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An easy calculation shows that o^-i^^o) = PA^o^J and hence
^A ° ̂ A(7o~l(^)) = 0 . After an eventual interchanging of 0.1 and bi we may
assume that 9^{ca,a) = 0 for i = 1,..., g .

____ g ____
PROPOSITION 3.2. — K^ =^ol(b)+Y^ai+^ol(bi)-a .

i=i

Proof. — We only have to show that O^t^o1^))) = 0 for
i = 1,..., g . Assume that 71,..., ̂ g are numbered such that

^(^o^)))^
tori == ^...^and^^^o"^))) =0fon = fc+1,... ,^with 1 ̂  & < 5?.
We have

___ fc ____ p ____
^A=7o~ lW+Z^+7o~ l(0+ ^ aT^o-1^)-^.

i=l i=fc+l
We find that ^\(^A - 7o(^A)) = c with c e GA and

9
c = ̂ oWa ' ha ' ]J C7o(&iho(ai) • ̂ ,0. •

z=fc+l
Hence c(^) = c(/A-i) = c(<5o) = 1 for z = A; 4-1,..., g and

c(6i) = c(j[A-,) = -1 for z = l , . . . , f c .
It follows that c2 = 1 and c 7^ 1 . So c ^ Ar and J<^ is not linear equivalent
with 7o(^A) • This contradicts 2.4. D

We can number 71,..., 7^ and choose OQ and &o such that 0r(tr(ai)) =
0 for i = 0, . . . , k and Or(tr(bi)) = 0 for z = k 4-1,... ,g with fc ^ 0 . We
have

k g _

^r = ̂ ^^ ^ 6^-a
i=0 i=A;+l

and ?A(7r*(^r) - -^A) = £ with
fc 9

^=^^-i^)-C^-i(^)^-i(fc).]Jc^-l(^)^-l(^)- JJ Cfr,,a. .

i=l i=A;+l
We find

,2 / , , \2 ^ ^o^'S"1^)^-1^) ^2

^ =(,cao,7o-l(a)•c7o-l(^),7o-l(0)J = [T~~J~~^) '
So'^^a So'^^^o"^^'

Since (cao,a • c^i(^),^-i(^)2 = c^ = c^ = c^ = ^.^^^ we have
e2 = 1 . In Section 2, we found that e = eo|^ with e^ = Coc^-i ; a € r .
Since e2 = 1 we have Ca-i = 1 . This proves Theorem 2.1 in this special
case.
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4. Analytic families of Mumford curves.

Let 5 be a connected analytic space and let p : P1 x S -^ S be the
projection on S . Let Aut,s(P1 x S) be the group of analytic automorphisms
u of P1 x S which satisfy p o u = p .

Let r be a free group of rank g + 1 and let ^ : T -^ Aut^P1 x S) be
a family of Schottky groups.

If s 6 S define then vs •' Aut^(P1 x S) -^ Aut(P1) by Vs(u)(x) = y if
and only u{x, s) = (y, 5) ; u € Aut^P1 x 5) , a;, y € P1 .

The map VQ o -0 is then injective and 1̂  = Im(i^ o ̂ ) is a Schottky
group. If 7 e r and s € 5' then denote 7(5) = z/s o -^(7) .

There exists an analytic subdomain n C P1 x S such that for all s C 5
the set fl,s = {a; € P1 | (re, 5) € 0} is the set of ordinary points of Ts . This
result is proved in [7].

The group F acts in a canonical way on 0 . Let Xr = 0/r be the
quotient space and let p : Xr —> S be the map induced by p . For all 5 € 5
the fiber Xr,a = p'^5) ls ̂ ^ isomorphic to the Mumford curve X^ .

The Jacobians of the curves X^ can be regarded as fibers of an
analytic family over S .

Let Gr = Hom(r,fc*) , Gr = Gr x S and r : Gr -^ 5 be the
projection on S . If 7 € r then define Xy : Gr —^ Gr by A^(c,5) = (d,5)
with d(8) = c{6)c^)W) .

PROPOSITION.

i) A/Y is an analytic automorphism
ii) A^ Aa.s a Ax-point ^==^ A^ is the identity ^==> 7 € [F, r] .

Proof.

i) S admits an admissible covering by affinoids Si , (i € I ) , such that
each Si admits analytic sections XQ^X\ : Si —> 0 such that a?o(5) 7^ a;i(5)
for all 5 € 5, , cf. [2]. If 5 € Si then

/.,^ ^i0go00^)
C^)(^))=^(^^^))

with us^s) = TT z"(707(a;l(')) where a : P1 x S - P1 is the
l^z-ao^6(x^s))

projection on P1 . The function us^xi is analytic on nn(P1 x Si) . It follows
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that the restriction of A^ to Gr x 5, is analytic. Hence A^ is everywhere
analytic.

ii) A^(c,5) = (c,5) if and only if c^)(6(s)) = 1 for all 6 e F . This
means that 7(5) e [I^E,] . Q

Let A = {A^ | 7 e r} . We can make the quotients space Jr = Gr/A .
Let f : Jr —> S be induced by r : Gr —> S .

PROPOSITION 4.2. — For all s e 5' the fiber Jr,, = r-^s) is
isomorphic to the Jacobian variety J^ of X .

Proof. — Define a : Jr., -^ Jr, = Hom(r,,fc*)/Ar, by a(c^) = c;
with €,(7(5)) = 0(7) . This map is an isomorphism. D

Let A C r be a subgroup of index 2. We can find a basis 70,..., 7p
for r such that 7o ^ A and 71,... ,7^ c A . The group A has a basis
^oA,.. . ,<^,<5-i, . . . ,<5-p with So = 7J , 6i = 7, and <?-, = 7o7z7o'1 ;
i = 1,... ,g . For s e S we denote A^ = {6(s) e FJ <? 6 A}. . So A, is a
Schottky group and I, and A, satisfy the conditions of Section 2. For data
which refer to these groups we keep the same notations as in Section 2.

We have an analytic family of Mumford curves p : XA = n/A —> S
and for each s € S the fiber XA,, is isomorphic to the Mumford curve
X^ .

Let TT : XA -> Xr the canonical map induced by the identity on Q .

Define JA in a similar way as Jr . We have a dual map TT* : Jr -> JA
with7T*(c7s)=(cJA75) .

The analytic space S locally admits analytic sections XQ and x^ with
values in 0 such that xo(s) + x^(s) for all s , (cf. Prop. 4.2). We now
assume that XQ and a;i exist on S itself.

Let tr : 0 -^ Gr and t^ : fl, -> GA be defined by

tr(x, s) = (c, s) with 0(7) = c^^,^) , (7 e F)
^, 5) = (c, 5) with c(^) = c^^(6) , (<$ e A)

(cr : P1 x S -> P1 the projection on P1).

These maps are analytic and induce maps fr : Xr -^ Jr and
^A : XA -> JA . For each s e S the restrictions of tr and ?A to the
fibers over s are the canonical maps f^ : X^ -^ Jr, and f^ : X^ -> JA
based at o-(xQ(s)) .
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Let pr, : Ar, x Ar, -> fc* and J?A. : AA, x AA, -^ fc* be symmetric
bilinear forms such as in Section 2 and assume that they are normalized
as before. So we have theta functions Or^O^ and divisors Ky^K^ and
Es = ̂ {Kr,) - K^ . Let Cs € GA, such that f^(Es) = €s and such that
e]°^ = £, . So e, = 7r*(eo,,) with eo,, € Gr, .

Define eo : 5 —> Gr and e : S -> GA by
eoOO = (a, s) with 0(7) = 60,5(7(5))

and
e(s) == (a, 6) with a(6) = ̂ OO) .

So £ = 7T* 0 CQ .

The sections eo and e need not to be analytic. However, if one defines
multiplication of sections in an obvious way, we can prove the following.

LEMMA 4.3. — S admits an admissible covering (5i)^j with the
following properties :

For each i 6 I one can choose the homomorphisms 60,5 in such a way
that the restriction eo,i ofeo to Sz satisnes that e^ ^ is analytic. Furthermore,
for each ij e I there exists a /3ij e F such that for all s € Si H 6j; ,
^i^o^s) = (a,s) with 0(7) = c^.^)(7(5)) .

Proof. — For each s € S define dr, e GT, and d^ e GA, by
^r,(70 =Pr.(c^(5),c^(5)) ; % = 0 , . . . , ^

and
^A,(^) =PA,(C^(5),C^(5)) ; Z =0,. . . , ?,-!,...,-^ .

Define functions rfr and T^A on Gr and GA respectively by
rir(c,s) = 0rAd^ ' c^) with Cs{-r{s)) = 0(7)

and
77A(C,S) = 0A,(^ '€5) With €5(^(5)) = C(6) .

These functions are holomorphic, (cf. [2]).

The divisors Lr = div(7yr o tr) and LA = div(^A o ^A) are invariant
under the actions of F and A respectively. So they can be regarded as
divisors on Xp and XA .

Let E' = 7r*(Lr) - LA . For each s € S the restriction E'^ of E'
to the fiber XA,S has degree 0 . One has a corresponding homomorphism
£'s € GA, , (defined up to periods in AA,), such that f^(E^) == i^ .
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The section i7 : S ^ JA with i7^) = (^7) and ~a(6) = e^O?))
is then analytic. Let Dr, _and DA, be divisors on Xp, and X^ such
that ?r.(^rJ = d^ and ?A.(^A.) = (?A, . So div(0r! • ^r )) is5 linear
equivalent with div(0r, o t^) + Dr, and div(0A,(dA. • t^)) is linear
equivalent with div(0A. o t^) + DA, , cf. [4]. It follows that E', is linear
equivalent with E, + -fo(s)(D^) and hence ^ = e^ • ^modAA. with
^?(5)) = J?A.(^(,),c^g) ; z = O,...,^,-!,...,-^ . Since ^ is only
defined up to periods we may assume that this congruence is an equality.
Since g^ == g, we have e^ = e', . So there exist ^,e, e GT, with
^|A, =^ and 65 IA, =e's '

Define sections ^ : 5 -^ Gr with ^(s) = (a, 5) with 0(7) = gs(^(s))
and e : 5 -> Jr with e(5) = (b, 5) with 6(7) = €,(7(5)) . So £' = TT* oe and e
is analytic. It follows that e can locally be lifted to an analytic section with
values in Gr . There exists an analytic covering (S^i of S and analytic
sections e, : 5, -^ Gr such that for each s € Si , Ci(s) = e(s) .

If 5 € Si H 5'j then ei(x) = e^(5)modA and since ae"-1 is analytic
there exists a Aj € F such that \^(ei(s)) = e^(5) for all 5 C Si H Sj .

__pefine_ep,z : 5, -^ Gr by eo,z = e, • g . For each 5 € Si we have
eo,i(s) = eo (5) in Jr . Moreover, it is easy to verify that g2 is analytic. Hence
e^i is analytic and the sections (eo,OieJ satisfy the required conditions. D

We proved in Section 2 that e^ = co^mod(ArJ with 00,5(70(5)) =
-1 and co^(6(s)) = 1 for all 6(s) C A^ . Define Co € Gr by co(7o) = -1 and
co(6) = 1 for all 6 e A . The section c : S -^ Gr which maps 5 onto (co, s)
is then analytic and for all 5 € Si we have e^(5) = c(5) mod A . Since both
sections are analytic there exists a a, e F such that e^ = \ai(c(s)) for all
s € Si . We can sum up as follows.

PROPOSITION 4.4. — The analytic space S admits an admissible
covering (5'i)^j with the following properties :

i) for each i e I one can choose the homomorphisms eo,s , s e Si ,
in sucA a way there exists a a.i e r witA

^(^CO) = ^(^(7(5)) for a» 7 e r ;
ii) for all ij e I there exists a Aj € F such that a -̂1 = /^. .

Remark. — The homomorphism c^(s) depends only on the class of
Oi in r/[r,F] . Furthermore, since 60,5 is only defined up to periods, Oi is
only defined up to squares in r .
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COROLLARY 4.5. — JfX^.s is hyperelliptic for some s € 5 , then
one can ^afce 0.1 = 1 for a!i i e J .

Proof. — Assume 5 € Sj; . We proved in Section 3 that 60,5 can be
chosen such that e^ = co,s . Hence we can take Oj? = 1 .

For all fc such that Sk H 5j 9^ 0 we have c^ = /3j • . Since a.k is only
defined up to squares we can take o.k = 1 . This argument can be repeated.
Since S is connected any Si is reached in this way. D

We can now finish the

Proof of Theorem 2.4. — Let S be the Teichmuller space Tp+i . A
point in T^+i can be identified with an ordered set v = (i/oi • • • ̂ g) with
Vi C PGL(2, k) and such that :

i) i/oi • • • i ^g is a basis for a Schottky group of rank g + 1 .

ii) I/Q has 0 and oo as attractive and repulsive fixpoints respectively.

hi) i/i has 1 as attractive fixpoint.

The space Tp+i has a connected analytic structure, cf. [5].

Now take F, A and 70? • • • ̂ g 3-s in the previous part of the section
and define -0 :. r -4 Aut^P1 x 5) by

^(7i)(^ ̂ ) = (^z(^), ̂ ) ; i =0,..., ̂  .

For each ^ € S , the Schottky group Fi/ is then generated by
i/o, • . • , ^g - Furthermore, any situation as in Section 2 can be realized by
taking the fibers Xr,i/ and XA,I/ . In particular XA,I/ is hyperelliptic for at
least one v € T^+i . So we can always choose eo,i/ such that e§^ = co,i/ .D
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