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THE SCHOTTKY-JUNG THEOREM
FOR MUMFORD CURVES

by Guido VAN STEEN

Introduction.

The classical Schottky relations for theta functions are relations which
are valid for theta functions on the Jacobian variety of a Riemann surface.
These relations are derived from a theorem by Schottky and Jung.

In [6] Mumford gives a pﬁrely algebraic geometrical version of this
theorem. However, in the case of a complete non-archimedean valued base
field there exists a theory of theta functions on analytic tori which is very
similar to the complex theory, cf. [3].

In this paper we use these theta functions to prove the Schottky-Jung
theorem in the particular case that the torus is the Jacobian variety of a
Mumford curve. In Section 2 we prove a slightly weaker version of the
theorem. In Section 3 we prove the stronger version in the particular case
of hyperelliptic curves. In Section 3 we prove the theorem in the general
case using the technique of analytic families of curves.

I would like to thank M. Van der Put for his helpful suggestions.

Notations.

i) k is an algebraically closed complete non-archimedean valued field,
char(k) # 2,3 .

Key-words : Mumford curves — Theta functions.
A.M.S. Classification : 14K25 — 14G20.
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ii) P! is the projective line over & .

1. Theta functions and the Riemann Vanishing Theorem.

Let I' C PGL(2,k) be a Schottky group of rank g+1 . Let Xpr = Q/T
be the corresponding Mumford curve; Q C P! the set of ordinary points of

T" . The Jacobian variety Jr of Xr can be identified with an analytic torus;
cf. [4]. We recall briefly how this is done.

_17 2=2a)
If a,b € Q we define u, 3(2) g‘ g s Z€EN.
This product defines a meromorphic function on Q which satisfies
a functional equation c,5(7) * %ap(72) = Uap(z) With v € T and cqp €
Hom(T',k*) . If b ¢ T'(a) then u,p has zeroes in the orbit I'(a) and poles
in the orbit I'(b) . If b = y(a) with v € T, then u, does not depend on

a . In this case we denote u, = 4, and ¢, = ¢, 5 . The function ., has no
zeroes or poles.

Let Gr = Hom(T', k*) . This group can be identified with (k*)9*! and

hence has an analytic structure. The subgroup Ar = {¢, | ¥ € '} is a free
abelian group of rank g + 1 and is discrete in Gr .

n
With a divisor D = Z(&i —b;) on Xt with deg(D) = 0 corresponds

=1
n

a homomorphism ¢ = Hca.',be € Gr ; a;,b; € Q . This correspondence

i=1
induces an analytic isomorphism from Jr onto the quotient Gr/Ar .

Let p € Q be a fixed point. Define tr : @ — Gr by tr(z) = ¢;,p . The
induced map #r : Xr — Jr is the canonical embedding of Xt into Jr with
base point p . This map is extended to divisors in a canonical way.

The dual variety fr of Jr can also be represented as an analytic torus.
One has Jp = Gr/Ar with Gr = Hom(Ar, k*) and

Ar = {d € Gr | 3a €T such that d(c,) = ca(y) for all ¢, € Ar} .
The group Ar acts on
O*(Gr) = {f | f holomorphic and nowhere vanishing function on Gr} .
For f € O*(Gr) , ¢y € Ar and ¢ € Gr one defines f7(c) = f(c,c) .
If ¢ € Z'(Ar,O0*(Gr)) is a 1-cocycle then we denote

L(§) = {h | h holomorphic function on Gr , h(c) = &, (c)h(c,c)
for all ¢y € Ar} -
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Elements of L(¢) are called holomorphic theta functions of type £ .

Let A¢ : Gr — Gr be defined by A¢(c)(cy) = ¢(7) - This morphism
induces a morphism X¢ : Jr — Jr .

If L(¢) # 0, then )¢ is an isogeny and dim(L(£)) = [Ker )¢ : Ker X¢]
where Ker ), is the image in Jr of Ker \¢ C Gr ; cf. [3], [11].

A canonical 1-cocycle can be defined in the following way. Let
pr: Ar X Ar - k*

be a symmetric bilinear form such that pi(c,,cs) = c,(6) for all 4,6 € T .
Define & by &r,c. (¢) = pr(cy,¢y)e(Y) ; ¢4 € Ar , ¢ € Gr . In this case Ag.
is an isomorphism and hence dim(L(¢r)) = 1 . In fact L(ér) is generated
by the Riemann theta function 0r(c) = Z ér,c, (c) . The divisor of 6r

cyEAr
is Ar-invariant and hence induces a divisor on Jr . This divisor defines a

polarization Or on Jr .

The isogeny form Jr onto Jr which can be associated with a polar-
ization is in this case 5\& . Since this is an isomorphism, Or is a principal
polarization. In fact Or is the canonical principal polarization which exists
on a Jacobian variety. This follows from :

THEOREM 1.1 (Riemann Vanishing Theorem).

i) The holomorphic function 0 o tr has a I'-invariant divisor which,
regarded as a divisor on Xr , has degree g+ 1 .

ii) If the map tr : Xr — Jr is based at the point p € Q , and if
Kr = (div(f otr) — p)modI" € Div(Xr) , then 2Kt is a canonical divisor.
Furthermore, the class of Kt under linear equivalence of divisors does not
depend on the choice of p .

iii) If ¢ € Gr then 6r(c) = 0 if and only if ¢ = tr(D — Kr) for some
positive divisor D of degree g . The order of vanishing of 0r at c is equal
toi(D) , the index of speciality of D .

Proof. — The divisor fr is calculated in [4]. The other assertions are
easily proved in a similar way as in the complex case; e.g. the proof such
as given in [1] can easily be adapted. O
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2. The Schottky-Jung theorem.

Let Xr be as in Section 1. Let 7 : X — Xr be an analytic covering
of Xr ; X a curve of genus 2g + 1 .

The condition of 7 being analytic is stronger than being just un-
ramified, cf. [8]. In particular this condition implies that X is a Mumford
curve corresponding to a Schottky group A with A a subgroup of I" with
[[': A] = 2. Since A is normal in T , both groups have the same set of
ordinary points. So X = XA = /A . Moreover, the map 7 is given by

w(A-orbit of ) = (T-orbit of z) ; £ € N .

The Jacobian variety of XA is constructed in the same way as Jr . We
keep the same notations as in Section 1 but to indicate that we work with
respect to A we will denote

~ — ﬂ ~ ~a, ~ ~
Ugp(2) = %]:[A %;— ; Cap(0) = #6((?))- , €6 = Ca,b(a)s---

We take a symmetric bilinear form pan : Aa X Aa — k* such that
PA(€a,83) = & (B) . The canonical 1-cocycle o € Z'(Aa,0*(Ga)) is
defined by £z, (€) = pa(Cs,é5)E(8) ; é € Aa and é € Ga . The Riemann
theta function on G, is defined by

0a@) = > taz@); E€Ga.

Cs€EAA

Let (0,71, --,7¢) be a free basis for the group I' . We may assume v ¢ A
andv; € Afori=1,...,9.

So A has a free basis 60,61,.. .,69,6_1,. .. ,6_9 with 60 = ’)‘g ,6,‘ =%,
i =77 ! ;i=1,...,9 . The bilinear forms can be normalized such
that

1) Pa(Cso,850) = cxo(70) 5
ii) Va, B € A : pa(cajas €s) = Pr(cy,cp) -
(Cal, is the restriction of ¢, to A .)
Let 7* : Jr — Ja be the dual map of 7 . This map is defined by
7*(cmod(Ar)) = c|]a mod(Ap) -

Since 7 is unramified Kern* has order 2. The non-trivial element
of Kern* is ¢y with ¢y € Gr defined by co(7) = —1 and co(v;) = 1



SCHOTTKY-JUNG THEOREM 5

i=1,...,9 . More relations between Jr and Ja can be found in [11]. The
relation between 0r and 04 is given by

THEOREM 2.1 (Schottky-Jung relation). — There exists a homo-
morphism eq € Gr such that e2 = ¢y and such that
6a(cla)
6r(eoc) - Or(egtc)
is a constant function in ¢ € Gr .

In this Section we will prove only that eo satisfies e3 = co mod(Ar) .
This weaker version of the theorem is basically the same as the algebraic
geometrical result given in [6].

Meromorphic functions on Xr or Xa can be lifted to I'-invariant or
A-invariant meromorphic functions on Q .

A similar correspondence holds for divisors on X and X5 . We make
no difference between divisors on Xr (or Xa) and their lifts to Q . If D is
a divisor on Xt then denote
Lr(D)={f|f,T-invariant meromorphic function on Q with div(f)+D =0}.

(Similar meaning for La .)

PROPOSITION 2.2. — Let D be a divisor on Xr with deg(D) =
g and let 7*(D) be the reciprocal image of D on XA . The following

sequence is exact :
0 — Lp(D) 2 La(n*(D)) <5 Lp(D - Do) — 0
with :
i) Dy = div(fo) and fo a meromorphic function on Q such that
co(7)fo(ve) = fo(c) for all y €T
ii) a(f) = f for all f € Lr(D)

- o *

iii) Blg) = L2 - f, for all g € La(w*(D)) -

Proof. — It is easy to verify that these maps are well defined. If
g € Ker 8 then g = go~yy and g is A-invariant. So g is I'-invariant and in
fact g is an element of Lp(D) . If f € L(D — Dy) then f = 8(f/fo) . So 8
is surjective. O

Let p € Q. We have canonical maps tr : Xp — Jr and £p : Xa — Ja
with Ir(Z) = €;,p,ta(Z) = Cz,p - These maps are extended to divisors.
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Define Kt and Ka as in Section 1. According to the Riemann
Vanishing Theorem 2KT and 2K are canonical divisors on Xt and X, .
Since 7 is unramified 7*(2Kt) and 2K, are linear equivalent. Hence
7*(Kr) = Ka+E where E is a divisor of degree 0 such that 2F is principal.

Let € € Ga such that tao(E) = £, (¢ is defined up to periods in Aa).
We have the following '

Oa(cla-€) . . .
LEMMA 2.3. — —————"— is a nowhere vanishing holomorphic
| Br(c) - Or(cco) & P
function on Gr .

Proof. — 1If 6r(c) = 0 then ¢ = #r(D — Kr) ; D a positive divisor
on Xr with deg(D) = g . Hence 7*(¢) = c|a = ta(x*(D) — *(Kr)) and
consequently 7*(C) - £ = Ta(n*(D) — Ka) . It follows that a(c|la -€) =0 .
In a similar way we find that 0a(c|a - €) = 0 if Or(cco) = 0 . Furthermore
the vanishing order of Oa(c|a - €) is the sum of the vanishing orders of

Or(c) and Or(ccy) - This follows from 2.2 and the Riemann Vanishing
Theorem. a

LEMMA 2.4. — Ka and 79(Ka) are linear equivalent.

Proof. — It follows from the definition of Ka that
Yo(Ka) = div(fa o ta o 70) — 70(p) -

If z € @ we have ¢ta(7%(2)) = Eyo(x)p = &0 * Eyzi(a)p = Cbo -é’;‘;ﬂo(p) )
cf. [10]. (If & € Ga , then &% is defined by &7°(6) = &(075 ") -)
Since % € O0*(Ga) and since 05 (™) = 0a(¢) , we find that
A

Yo(Ka) = div(0a(Es,o(p)) — Y0(p) - It follows from 1.1 that yo(Ka) and
K are linear equivalent. (]

As a consequence 7o(E) and E are linear equivalent and hence
€7e~ € A . Since e™e7! is yp-anti-invariant, we have e7e~1 = §l°¢;!
for some § € A, cf. [11]. Hence, after replacing ¢ by e¢; ! , we may assume
that € is invariant under the action of 7, . It follows that ¢ = 7*(eg) for
some ey € Gr . :

We have the following weaker version of Theorem 2.1.

PROPOSITION 2.5.

i) e = comod Ar
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Oa(r*(c))

i) fr(ceo) - Or(ceg?)

is constant in c .

Proof. — Since 9_01‘%2%% € O*(Gr) it has a decomposition of

the form A - v, with A € k* , @ € I" and va(c) = ¢(@) , cf. [4].

But as a quotient of theta functions —O—A—(—W—(C)L) itself is a theta
Br (e (cco)
function of type £ € Z'(Ar,0*(Gr)) with & (c) = %‘l% . On the other
0

hand Ava(cy€) = ¢y(0) - Ava(c) = ca(7) - Ave(c) . Hence i =c;' € Ar
and we find that «
Oa(n*(c)) _ _ Oa(m*(cegl)e)
Or(ceg)fr(ceo)  Or(ceg!)fr(ceglcocz?)
= tp.e-1 (ceg o) - Mva(cer) -

fa (7" (c))

0 ———————— = Apr(ca,C a)”! . This e ssion is constant i
B (cez )r (cea) Pr(Ca; Ca)co() is expre: i n
C. O
Remark. — The homomorphism ep is only defined up to periods in

Ar . If one replaces eg by egc, with v € T', then e = coca-142 . S0 a is
only defined up to squares in I" .

In the following sections we will prove that eg can be chosen such that
a=1.

3. The case of hyperelliptic curves.

We take m : XA — Xr as in Section 2, but we now assume that
X is hyperelliptic. So there exists an element s in the normaliser of A in
PGL(2,k) such that s6s™! = §~' mod[A,A] for all § € A | cf. [9).

Since y2 € A for all vy € T and since I'/[[, T] is a free abelian group we
find that sys~! = 7 1 mod[[, I'] . Hence Xt is also hyperelliptic. We may
assume that s has order 2. Furthermore there exists a free basis vg,...,7,
for I such that sy;571 =971 ;i =0,...,9; cf. [9]. We also may assume
that o ¢ A . If v, ¢ A (i =1,...,9) , then v;v0 € A and 4y; € A .
But s(vi70) - (707:) 717! = ;76 trive = (%%0) (101:) T mod([A, A] . This
contradicts the fact that sés™! = 6! mod[A,A] for all § € A . This
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means that 7,...,7, satisfy the assumptions of Section 2 and that A
has a free basis 6o, 61,...,65,0-1,...,6_4 with § = 42 , §; = 7; and
S—i=rv1 =19

Let M—i= 6~¢§0 = Y07Yi%Yo - So 50,51, . ,59,[1.._1, ceesl—g is a basis for
A and séos™r =651, s(6;)s =6 and spysT =pl ,i=1,...,9.

Let a and b be the fixpoints of s and let a; and b; be the fixpoints of
s7i; 1 =0,...,9 . The fixpoints of s, are then y5'(a) and v51(b) and the
fixpoints of su_; are v5 (a;) and 751 (b:) -

All these fixpoints are ordinary points. The double coverings

Xr — PY(k) and XA — Pl(k)

are ramified in the points a,b,ao,bo, .. -,85,b, € Xr and @,b,as,bi,...,

g, 09,75 (), 151 (8), 75 1 (@1), 75 L (Ba)s - - - Y5 H(ag), 75 2 (by) € XA respec-
tively; cf. [9].

We will now calculate Kr and Ka . The linear equivalence classes
of these divisors do not depend on the base point of the canonical maps
ir : Xr — Jr and fa : Xa — Ja . We may assume that this base point is
a.

The tr-images of the ramification points of Xr — P! (k) are calculated
in [10].

We have
1. Cba,('Yi):_l; Z—’:'Oa)g
2.2, =C.o =Cu; Cha = Cha; Caia; Chia;(7i) = —1 and

Coiai(7;) =1forall j#i; i=0,...,9.

LEMMA 3.1. — Let ¢ € Gr such that ¢ = ¢, € Ar with v ¢ [I,T]
and such that ¢(y) = —pr(cy,¢,) . Then 0r(c) =0 .

Proof. — fr(c) =6r(c™'cy) = &pp (7 H)r(c™) .

But &rc (¢7!) = pr(ey,¢y) - ¢(y)™! = —1 and since fr is an even
function the assertion follows. O

Since ¢p;0(7:) = —Caia(y:) = £pr(cy:,¢y;) we find that 6p o tr has a
zero in a; or in b; foreach ¢ =0,...,9g .

In a similar way we find that 6 ot has a zero in v5!(a) orin y~1(d) ,
in a; or in b; and in v5!(a;) or in 5} (b;) foreachi=1,...,g.
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An easy calculation shows that ¢, -1 (a)a(60) = pa(&s,,€s,) and hence
6 ota(vg (b)) =0 . After an eventual mtercha,ngmg of a; and b; we may
assume that Oa(¢,,,) =0fori=1,...,9.

g
PROPOSITION 3.2. — Ka =151(b) + Za—,-+70‘1(b,-) —a
=1

Proof. — We only have to show that Oa(ta(v51(b:))) = 0 for
i=1,...,9 . Assume that 71,...,7, are numbered such that
fa(ta(rg'(b:) =0
fori =1,...,kand 6a(ta(vg'(ai))) = 0fori = k+1,...,gwith 1<k <g.
We have

Ka=7'0)+ Y @+vt(a)+ Y, @i+ (i) —a.
i=1 i=k+1
We find that A (Ka — 70(Ka)) = ¢ with ¢ € Ga and

CW
g
¢ = Cyy(b)a " Coa - H Cyo(b:)vo(as) * Coisas -
Hence ¢(8;) = c(p—;) =c(dp) =1 f z =k+1,...,9 and
c(6;) = c(p—;) =-1 for 1= 1,...,Ic .
It follows that c> = land ¢ # 1. Soc ¢ Ar and K, is not linear equivalent
with v9(Ka) . This contradicts 2.4. O

We can number 7, ... ,7, and choose ag and g such that fr(tr(a:)) =
Ofori=0,...,k and Or(tr(b;)) =0fori =k +1,...,g with £ 20 . We

have
k 9
Kr=Y @+ » bi-a
i=0 i=k+1
and ta(m*(Kt) — Ka) = £ with

g
€ = Cap v 1(a) Cy ‘(ao)no“(b)'Hcvgl(ae)no“(be)' H Cbisa; -

i=1 i=k+1
We find
2 _ (= ~ 2 Caga é’vo“(ao),’vo‘l(a) 2
€= (caom}‘l(a) ’ c’ro_l(ao),‘ro’l(b)) - (~ e (a)a ‘(a) - 1(b))
Since (Caga * Cyz1(a0) g ~1(g))% = aoa]A = Cyoy = Coo = é eia)a Ve have

e2=1.In Sectlon 2, we found that € = e, with €] = cocq-1; a €T .

Since €2 = 1 we have c,—1 = 1 . This proves Theorem 2.1 in this special
case.
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4. Analytic families of Mumford curves.

Let S be a connected analytic space and let p : P! x S — S be the

projection on S . Let Autg(P! x S) be the group of analytic automorphisms
u of P! x S which satisfy pou=9p .

Let T" be a free group of rank g + 1 and let 9 : T' — Autg(P! x S) be
a family of Schottky groups.

If s € S define then vg : Autg(P! x S) — Aut(P') by v,(u)(z) = y if
and only u(z,s) = (y,3) ; u € Auts(P! x 8), z,yeP!.

The map v, o ¢ is then injective and I's = Im(v;, o 9) is a Schottky
group. If y € I" and s € S then denote y(s) = v; o Y(y) .

There exists an analytic subdomain Q C P! x S such that forall s € S

the set 0, = {z € P! | (z, s) € 0} is the set of ordinary points of I; . This
result is proved in [7].

The group I’ acts in a canonical way on Q . Let Xp = /T be the
quotient space and let p : Xr — S be the map induced by p. Foralls € S
the fiber Xr , = p~1(s) is then isomorphic to the Mumford curve Xr, .

The Jacobians of the curves Xr, can be regarded as fibers of an
analytic family over S .

Let Gr = Hom(I',k*) , Gr = Gr x S'and 7 : Gr — S be the
projection on S . If v € T then define A, : Gr — Gr by A,(c,s) = (d,s)
with d(6) = c(8)cy(5)(6(s)) -

PROPOSITION.

i) Ay is an analytic automorphism

ii) A, has a fixpoint <=> ), is the identity <= v € [[,T] .

Proof.

i) S admits an admissible covering by affinoids S; , (¢ € I) , such that
each S; admits analytic sections g, z; : S; — Q such that zo(s) # z1(s)
forall s € S; , cf. [2]. If s € S; then

Us,z, (1:0(8), S)
c 6(s)) = .
1O = g ol 9)
with us,(2,8) = H 2= o (s)) where 0 : P! x S — P! is the
’ 2= o8 (s)
projection on P! . The function us ., is analytic on QN (P! x S;) . It follows
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that the restriction of A, to Gr x S; is analytic. Hence A, is everywhere
analytic.

ii) Ay(c, ) = (c,s) if and only if c,(5)(6(s)) = 1 for all § € T' . This
means that y(s) € [I5,I}] . O

Let A = {\y | ¥ € I'} . We can make the quotients space Jr = Gr/A .
Let 7:Jr — S beinduced by 7: Gr — S .

PROPOSITION 4.2. — For all s € S the fiber Jr s = 77 1(s) is
isomorphic to the Jacobian variety Jr, of X .

Proof. — Define a : Jr s — Jr, = Hom(I;,k*)/Ar, by a(c,3) =¢5
with ¢;(7(s)) = ¢() - This map is an isomorphism. O

Let A C T be a subgroup of index 2. We can find a basis vy, ...,7,
for T' such that 99 ¢ A and v;,...,7y € A . The group A has a basis
60,61,...,0g,0_1,...,0_¢g with §g = 'yg , 0, = v and 6_; = ’)’0’)/{76'1 ;
i=1,...,9 .For s € S we denote A; = {6(s) €5 |6 € A} .So Asisa
Schottky group and I'; and A; satisfy the conditions of Section 2. For data

which refer to these groups we keep the same notations as in Section 2.

We have an analytic family of Mumford curves p : XA = Q/A — S
and for each s € S the fiber X4 s is isomorphic to the Mumford curve
Xa. .

s

Let m : XA — Xr the canonical map induced by the identity on € .

Define J A in a similar way as Jr . We have a dual map n* : Jpr — Ja
with 7*(¢;3) = (¢, 3) -

The analytic space S locally admits analytic sections z¢ and z; with

values in 2 such that zo(s) # z1(s) for all s, (cf. Prop. 4.2). We now
assume that zo and z; exist on S itself.

Let tr : @ — Gr and ta : Q@ — Ga be defined by

t[‘(.’L‘, 5) = (c’ S) with 6(7) = cz,a(zo(s))(7) ’ (7 € F)
ta(z,s) =(¢s) with &6) = & 0(z0(s))(6) » (6€A)
(0 : P! x § — P! the projection on P!).
These maps are analytic and induce maps #r : Xr — Jr and
ta : Xao — Ja . For each s € S the restrictions of f{r and fa to the

fibers over s are the canonical maps fr, : X1, — Jr, and fa, : XA, — Ja,
based at a(zo(s)) -
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Let pr, : Ar, X Ar, — k* and pa, : Aa, X Aa, — k* be symmetric
bilinear forms such as in Section 2 and assume that they are normalized
as before. So we have theta functions fr,,0a, and divisors Kr,, Ka, and
E; = 1*(Kr,)— Ka, . Let €5 € Ga, such that s, (E;) = £, and such that
€100 = ¢, . So e, = *(eo, ;) With eg ; € G, .

Defineey: S — Gr and e: S — Gp by
eo(s) = (a,8) with a(y) = ep,s(7(s))
and
e(s) = (a,s8) with a(é) =es(6(s)) .
Soe=7n*o¢ .

The sections eg and € need not to be analytic. However, if one defines
multiplication of sections in an obvious way, we can prove the following.

LEMMA 4.3. — S admits an admissible covering (S;);c; with the
following properties :

For each i € I one can choose the homomorphisms eg s in such a way
that the restriction eg ; of e to S; satisfies that e?,,,- is analytic. Furthermore,
for each i,j € I there exists a B;; € I such that for all s € ;N S; ,
eo,ieg; () = (a, ) with a(7) = cg,,(s)(7(s)) -

Proof. — For each s € S define dr, € Gr, and da, € Ga, by
dr, (Vi) = Pr.(Cyi(s):€vi(s)) 5 1=0,...,9
and
da,(6:) = pa,(Cs:(s):Csi(s)) 5 ©=0,...,9,—1,...,—g.
Define functions nr and na on Gr and Ga respectively by
nr(c, s) = O, (dr, - ¢s) with cs(y(s)) = ¢(7)
and
Na(G, 8) =0a,(da, - €) with &(8(s)) = &) .

These functions are holomorphic, (cf. [2]).

The divisors Ly = div(nr o tr) and LA = div(na o ta) are invariant

under the actions of I' and A respectively. So they can be regarded as
divisors on Xr and Xa .

Let E' = n*(Lr) — La . For each s € S the restriction E! of E’
to the fiber X , has degree 0 . One has a corresponding homomorphism
€' € Ga, , (defined up to periods in An,), such that ta,(E.) =€/ .
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The section €/ : § — Ja with €(s) = (@,s) and a(8) = €,(6(s))
is then analytic. Let Dr, and Da, be divisors on Xr, and XA, such
that Ir,(Dr,) = dr, and a,(Da,) = da, - So div(fr, - tr,)) is linear
equivalent with div(fr, o tr,) + Dr, and div(fa,(da, - ta,)) is linear
equivalent with div(6a, ota,) + Da, , cf. [4]. It follows that E! is linear
equivalent with E, + v(s)(Da,) and hence ¢, = €5 - §smod Aa, with
3s(6:(s)) = pA,(égi(s),E}?((:))) ;8=0,...,9,—1,...,—g . Since €, is only
defined up to periods we may assume that this congruence is an equality.
Since §2°(*) = §, we have €70(9) = ¢’ . So there exist g;,e, € Gr, with
9s|a, = Js and es|a, = €5 .

Define sections g : S — Gr with g(s) = (a,s) with a(y) = gs(7(s))
and &: § — Jp with &(s) = (b, s) with b(y) = es(7(s)) . So & = n*o€and &
is analytic. It follows that € can locally be lifted to an analytic section with
values in Gr . There exists an analytic covering (.S;);c; of S and analytic
sections e; : §; — Gr such that for each s € S; , e;(s) = e(3) .

If s € 5;NS; then e;(z) = ej(s)mod A and since e;ej! is analytic
there exists a ;; € I such that Ag,;(ei(s)) = e;j(s) forallsC S;NS; .

Define eg; : S; — Gr by ep; = e;-g . For each s € S; we have
eo,i(s) = eo(s) in Ir . Moreover, it is easy to verify that g2 is analytic. Hence
e} ; is analytic and the sections (eq,:)icr satisfy the required conditions. O]

We proved in Section 2 that €3 , = co,s mod(Ar,) with co,s(76(s)) =
—1 and ¢g 5(6(s)) = 1 for all §(s) € A, . Define ¢p € Gr by co(70) = —1 and
co(6) =1 for all § € A . The section ¢ : S — Gr which maps s onto (¢, s)
is then analytic and for all s € S; we have e} :(s) = c(s)mod A . Since both
sections are analytic there exists a a; € T' such that e} ; = A, (c(s)) for all
s € S; . We can sum up as follows.

PROPOSITION 4.4. — The analytic space S admits an admissible
covering (S;);er with the following properties :

i) for each i € I one can choose the homomorphisms ey s , s € S; ,
in such a way there exists a a; € I' with

e s(1(3)) = Cay(s)(7(8)) forall y € T ;

ii) for all i,j € I there exists a B;; € T such that aza;' = B2 .

Remark. — The homomorphism c,,(;) depends only on the class of
a; in T'/[T,T] . Furthermore, since e s is only defined up to periods, «; is
only defined up to squares in I" .
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COROLLARY 4.5. — If XA, is hyperelliptic for some s € S , then
one can takea; =1 forallie I .

Proof. — Assume s € S; . We proved in Section 3 that eg s can be
chosen such that e} ; = co,s . Hence we can take a; = 1.

For all k such that SN S; # 0 we have oy = B,";j . Since ay, is only
defined up to squares we can take o = 1. This argument can be repeated.
Since S is connected any S; is reached in this way. O

We can now finish the

Proof of Theorem 2.4. — Let S be the Teichmuller space Tg4; . A
point in Tgyy can be identified with an ordered set v = (v, ...,v,) with
v; € PGL(2,k) and such that :

i) vo,...,v, is a basis for a Schottky group of rank g+ 1 .

ii) ¥ has 0 and oo as attractive and repulsive fixpoints respectively.
iii) vy has 1 as attractive fixpoint.
The space Tg4; has a connected analytic structure, cf. [5].

Now take I', A and 7,...,7, as in the previous part of the section
and define ¢ : T — Aut,(P* x S) by

w(’ﬁ)(x’”) =(l/i(.’t),l/) ; 1=0,...,9.

For each v € S , the Schottky group I', is then generated by
v,...,Vy . Furthermore, any situation as in Section 2 can be realized by
taking the fibers Xr , and X4 , . In particular X4 , is hyperelliptic for at
least one v € Ty41 . So we can always choose eg,, such that e§ , = co,, .0
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