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PLURISUBHARMONIC FUNCTIONS WITH
LOGARITHMIC SINGULARITIES

by E. BEDFORD and B. A. TAYLOR

1. Introduction.

The set of plurisubharmonic (psh) functions with minimal (i.e.
logarithmic) growth is given by

^ = {u psh on C^ : u(z) < log-" |z|+C}

where the constant C depends on u. This class has been studied by
several authors, including Leja, Leiong, Sadullaev, Siciak, and Zaharjuta,
in connection with problems concerning polynomials in n variables. The
functions in ^ are bounded by log^ |z[ at infinity, but they do not
necessarily «look like » log+ z at infinity, and so it was also necessary
sometimes to use the more restricted class

(1.1) ^ == {upsh on C": log-" Izl-C^z^log-' z +C}

where again the constant C depends on u.

Of particular interest for the classes ^ and Jzf+ is the Robin function,
defined by

py(z) = limsupO^^Q-log'^ |^z|)
X-^00

\eC .

and its upper semicontinuous (use) regularization

p?(z) = limsupp^z).

Key-words : Plurisubharmonic functions - Complex Monge-Ampere operator - Green
function - Pluripolar set.
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(Neither lim sup can be replaced by lim.) It is clear that py and p?
are defined on P72"1 and give a natural generalization of the familiar
Robin constant from logarithmic potential theory on C1. The function
log | z | + p;(z) is psh on C" and is logarithmically homogeneous on
C" if it is not identically - oo . For further properties of the Robin
function see Levenberg [L].

We may also define

^(P^-i) == {nsc functions h on P""1: AHi^-Q},

where Q is the Kahler form on P"~1 corresponding to the Fubini-Study
metric. A direct calculation shows that H = log z| + h is psh if and
only if h e ^(P""1). Let us define

J^p = [UE J^eP^-1)}
= {M6^:p^-00}.

Thus ^fp is the subclass of ^ for which the Robin function makes
sense. A psh function u e j^p behaves like log+ z at infinity in the
following sense :

lim |u(ra)-logr| ^a(a) < + oo ,
r->oc J | a j = l

which is equivalent to

f
lim u(ra)-logr-p^(a)| ^o(a) = 0.
^^ J i a | = l

The purpose of the present paper is to show that many of the basic
results on psh functions can be carried out within the class J^p
Although it seems clear that the basic theory of psh functions cannot
be developed using a « potential theory » with respect to some sort of
kernel, it seems that the elements of J^fp may be able to play the role
of logarithmic potentials.

The main tool we develop in this paper is the following integral
formula : for u, v, w e J?',

(1.2) (uddcv-vddcu)/\(ddcw)n-l=2K\ (p^-pHW^+Qy1-*— r^v^^^-i-rv^-i
Jc^ Jp^-i
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(where ft denotes the Kahler form on IP""1). One step of the derivation
of this formula involves an integration by parts that is similar to one
of the classical Green formulas. It produces terms of the general form

f
du A d'u A (dd^y = + o o ,

Jc71

so the cancellation of terms in (1.2) is essential. The second step requires
a limiting operation analogous to taking a residue along the hyperplane
at x . It involves finding both the slicing and « residual mass» of a
certain current. Each of these operations requires some care in case the
functions involved are not continuous. However, the technical effort
required to do this is justified since (1.2) is derived for the purpose of
making applications to discontinuous functions. For instance, an
interesting application, part (i) of the Corollary which follows, is trivial
in case the relevant psh function is continuous.

One application we make of this integral formula is to the study
of capacities in C". For E c: C", the « Green function with logarithmic
pole at infinity » is given by the use regularization L^ of

Lg(z) = sup {v(z) : v e ̂ , v ^ 0 on E}.

Let p^(z) = p?^(z) be the corresponding Robin function. The associated
capacity is . .

C(E) = exp( - sup p j ) .
\ p"-1 /

Here we establish some convergence properties of p^ (see Section 6).

THEOREM. — The correspondence E -> — p^ satisfies the following
properties of a Choquet capacity :

(i) if £i c= £3, then - p^ ^ - p^
(ii) if K^ =3 K^ =) • • • is a sequence of compact sets, and if

T.

0 Kj = K, then lim p^.(z) = p^(z) for almost every z e P"~1 .
7-x J

x'

(iii) if £'1 c= £2 c= • • • , and if E = (J Ej is bounded then for every
z e P7 7"1 , i=l

lim p?(z) = p^(z).
j-^ x

The Robin function p^ reflects closely the nature ofA". For instance
fcf. Theorem 6.9) if A\ c: K^ are polynomially convex compact sets and
tf P^ = P^ a'e^ ^xen ̂  = ^-2\E fo7' some pluripolar set E.
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From Theorem 6.6 we deduce the corresponding properties of the
capacity C.

COROLLARY. — C has the properties :
(i) C is right continuous on compact sets.

(ii) C is an outer capacity.

Part (i) of the Corollary was proved earlier by Kolodziej [K 1]. One
consequence of it is that the capacity C coincides on all compact sets
with a certain set function, T, defined in terms of Chebyschev constants
by Zaharjuta [Z]. Sadullaev [Sa] showed that the capacity C coincides
with T for all regular compact setsK. Since T is known to converge
under decreasing limits, it follows from (i) that C and T coincide for
all compact setsA^. Interesting connections between convergence of the
Robin functions and properties of the capacity C have been studied by
Siciak [Si3].

An underlying question is to give the relation between the convergence
of a sequence Uje^+ and the convergence of the corresponding Robin
functions. It is an elementary consequence of convexity that: if Uj
decreases to u in J^+, then pu. decreases to py . For a sequence Uj
increasing a.e. to u in £^+ , we have the following result: p^. increases
to p^ a.e. if and only if (1.3) holds (Theorem 6.6).

(1.3) lim log(l+|z|)(AfM,y1 = | log(l+!z |) (dd^.
7-co Jc" JG"

We also show here that J^fp is rich enough to deal with polar sets.
It was shown by Josefson [J] that the concepts of «locally» and
« globally » (pluri-)polar sets coincide, and Siciak [Si 1] showed that if
E is polar, then it is defined by a function of logarithmic growth. Here
we obtain (in section 7) a more precise result.

THEOREM. - If E c: C" is polar, then there exists u e ^p with
{u= -00} => E .

Similar lines of argument also show that complete polar sets are
also complete ^ polar (Theorem 7.2). We note that in the theorem it
is not possible to take u such that p^(z) > — oo for allz. For instance,
if E contains a non polar portion of a complex line a, then p^(a) == — oc
for the corresponding point aeP""1.
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The arguments leading to the establishment of the integral formula
(1.2) also work in more general situations and can be applied locally
to functions like log |/| for meromorphic/. For M a compact, complex
manifold, let D+, D~ <=. M be disjoint smooth divisors on M and set

^(M,D+,D~) = { M p s h o n (M-D+uD~):
u(z) ^ - logdist(z,D+) + logdist(z.Z)-) + C}.

Since M is compact, ^(M,D+,D~) is independent of the choice of
smooth distance function. ^+(M,D+,D~) is again defined as in (1.1).
If h is a local holomorphic defining function for D+, and if
u e ^ ' ( M , D + , D ~ ) , then u + log \h\ is locally bounded above and thus
has a local continuation u over D+ . Although u depends on the local
choice of h, u - v and d^u are independent o f f e . Thus we define
^^M,D+,D~) as the elements u of ^(M.I^.jD-) such that u is not
identically - oo on any open subset of D+ u D ~ .

With this, we may extend the integral formula (*) (1.2) to

(1.4) (udd'v-vdd'u) A (Afw)71-1

JM^D^D")

=27i - (u-v) A (dd'wY-1

JD-^ JD-

for M, v, \ve ^(M\D+,D~).

This formula is applied to the study of the propagation of polar
sets. If E c C" is polar, then we may consider

E* = {z : \(/(z) = - oo for all v|/e J^fp with \|/ = - oo on E}.

In general E* may be dense in C" even if E is compact. However we
obtain the following result.

THEOREM. — If D is a smooth algebraic divisor in P", and if E is a
polar subset of C" - D, then D is not contained in E*.

Our purpose in introducing the general class ^(M,D+,D~) is to
cover the following sort of situation. We can study psh functions with
logarithmic decrease along a smooth complex manifold by considering
the blow up along the manifold. Define S and JSf+ in an analogous

(*) Note added in proof : The authors have recently extended (1.4) to the case where
D+ u D~ may be singular.
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fashion and then we have the Robin function defined along the blow up
(which would be essentially the projectivized normal bundle). Two
examples of this are : (i) logarithmic growth along a hypersurface (in
which case there is nothing to blow up); (ii) an isolated singularity, in
which case we blow up a point. For the first case, we set C" = P^P""1,
where P""' is the hyperplane at infinity. Thus, if M = P\ D^ = P""1,
D~ = empty set, we have ^ = ^(M,D^,D~) which is the case we
have just discussed.

The other case we wish to cover in this context is the case of
functions with logarithmic decrease at isolated singularities. Let Q c: C"
be a bounded domain containing a point z, and let Q^ be 0 with the
point z blown up. We set D+ == empty set, D~ = P'1"1, the fiber over
z, and we work with ^ = ^(P.^D+,D~). As before, p? is in
P^P'2"1). Much of the previous analysis relating u and p? continues
to hold in this case. In particular, we have the integral formula (1.2),
which holds for all u, v , w in ^+(M,D+,D~) such that u = v in a
neighborhood of 0^, and the integral is taken overQ instead of C".
Similarly, the convergence criterion (1.3) continues to hold for the new
class ^-(M,D+,D~) which gives us control on the Robin function.

Using this choice of the class J^f, we may also study the Green
function of a bounded domain with logarithmic singularity at the
point z, which has been studied by Lempert [Lpl,2], Klimek [Km],
and Demailly [D 2]. It is known that if Q is hyperconvex, then there
exists a unique psh function (the psh Green function) u^ on 0 that is
continuous up to the boundary, vanishes identically there, and satisfies:

(ddW =s 0 on Q,
^(0= log Iz-CI + 0(1), z - i;^0.

The last condition is just the condition that Uz belongs to ^f+ ; the
corresponding Robin function p^p is defined on P"~1 by

Pn,p(a) = lim sup ^(p+^a) - log |^ [
iO-^o

where aeC", |a| = 1 is identified with a point of P""1. We conclude
in particular that the Robin function of the psh Green function depends
continuously on the point z and the domain Q.z in the sense that if z
and Q. are varied so that u^ varies continuously on compact subsets
away from z, then the Robin function varies continuously too.
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2. Residual mass.

In proving the integral formula (1.2), the important limiting operation
involves the behavior of the current T = (dd^V1 near a (pluri-) polar
set { y = — o o } . We prove the existence of such a limit in this section
(Proposition 2.11)

lim [AfmaxO;,^)] A T.
a-> — oo

The restriction of this current to the polar set { f = — o o } is called the
residual mass of T. It was already used by Demailly [D I], who
considered the case when v is continuous and the polar set is compact.

The key estimate is provided by the following result. Here Q is an
open set in C", P(0) is the space of all psh functions on Q, and
LiSc (Q) is the space of all locally bounded measurable functions on Q.

THEOREM 2.1. — Suppose

u e P(Q) and u,, . . . , « , € P(Q) n L^ (Q).
Then

(i) vdd^i A • • • A dd^h is a (k,k) current on Q. mth locally finite
mass;

(ii) rrf^i A dd^z • • ' A dd^k is a 2k — 1 current on Q mth locally
finite mass;

(iii) dd'v A dd'u, A . • • A dd^^ = dd^vdd'u^ • • • ^ddcUk) is a clo-
sed, positive ( fe+1 ,^+1) current on 0.

Further, if S denotes any of the currents in (i), (ii), or (iii), if K is
compact, co is open, with K a co c: c: Q, then there exists a constant
C = C(K,w) independent of v , u^, . . . , u^ such that

k

\S\(K) ^ C||y|Li(,)nil^ll^((o).
< = i
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Remark 2.2. - Note that, in contrast to the case when r, M i , . . . , u^
are all uniformly bounded, the currents in Theorem 2.1 need not be
continuous under increasing limits. For example, if n = 1, v(z) = log |z|,

and u^z) = [- logej'Mog'^ -z-, then - 1 ̂  u, ̂  0, u, ^ 0 as s -^0,
and e

r r / \*- 2n = lim v(z)ddcu, + 0 = u(z)Af lim u,(z) .
^0 J J \e-0 /

Demailly has shown the currents of Theorem 2.1 are continuous
under decreasing limits.

Theorem 2.1 is known. See e.g. Cegrell [Ceg], where an estimate for
the mass in (ii) is given. A slightly different estimate is given in [AT].
A careful and complete treatment is given in Demailly [D I], Chapter 2.

From Theorem 2.1, we have the following corollary.

COROLLARY 2.3. - Suppose M i , . . . , Un are psh functions mth \Uj\ ^ 1
on a neighborhood G) of the closed polydisk, \Zj\ ^ 1. If A(s) = { I z J ^ e,
i z 2 ^ 1, . .. , |zJ ^ 1}, then there is a constant C = C((o) such that

r / i \~1
A f ^ A . . . AAfu^C log- , 0 < £ < . 5 .

JA(£) \ £/

If Mi, ... , Un are fixed, then as e -> 0,

1\-1
AfMi A ... A dd'Un = o log -

JA(E) \ £/

Proof. - Let T = dd'u, A . . . A dd^. By the Theorem,

l o g — — ^ < + o o , so l o g — — A r = o ( l ) ,
JA(1) I2!! JA(C) I2!!

which implies the corollary because log — ^ Log - on A(e).
|Zi | £

DEFINITION 2.4. - Let T= dd'Ui A . . . A rid^-i, where
^ e P(Q) n LSc^), Q c: C". Let i; e P(P). The r^^a; mass of T on
{ r = = - o o } 15 the (n,n) current

^(T,!;) = S(T) = ̂ -^dfv A T

(where ̂  denotes the indicator function of the set E).
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Remark 2.5. - It is clear from Theorem 2.1 that

S(T,v) = lim z^d^v A T.
a-»— x

LEMMA 2.6. — If v, T are as in Definition 2.4 anri

Ua = msLx(v,a)

then for all u e P(0) n LiSc (0),

lim u dd'v^ A T = u dd'v A T.
a-»—x

Proof. — We have for any test function \|/ on 0,

V|/M Afi^ A T = ^ Af(v|/uA 7)

= i;a vl/^'u A T + 2 Ua ̂  A fu A T

+ u^ Af\|/ A T.

The first and third integrals converge to the corresponding integrals
with Va replaced by v, as a -> — oo . The second integral differs from
the corresponding integral by

(Va-v)d^ A d'u A T

^ \(Va-v)d^ t\d^ A

= I.{a)h(a).

(Va-v)du A d'u A T
Spt(^)

Now, /i(a) -^ 0 by the dominated convergence theorem since vT has
locally finite mass. It is no loss of generality to assume u ^ 0 on a
neighborhood of the support of v|/ so that u2 is psh and 2 du A d^ ^ ddV.
But, vdd^u2) A T has locally finite mass so I^a) -> 0 as a -> — oo .
Thus,

lim \|/M Af^ A T = y Af(\|/M) A T
a^-oc j J

which is the conclusion of the Lemma.

COROLLARY 2.7. — On the set {v>a} we have

dd'Va A T = dd^v A T.
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Proof. - If a > b > - oo, then it follows from Proposition 4.2 of
[BT 2] that the currents dd'Va A T and dd'v^ A T agree on the (fine
open) set {v>a}. Thus,

(v-a)+{ddcVa^T-ddcv,^T} = 0.

By the lemma, this current has limit

(v-a)+{ddcv,/\T-ddcv^T}

as b -> - oo . Hence dd'v^ A T = Afy A T on the set { y > a } .
We can now easily give the limiting properties of the residual mass

current.

DEFINITION 2.8. - With v , T as in Definition 2.4,

5(r;a,r) = S(T;a) = 7^ dd^ A T

(where Va = max(u,<2)).

PROPOSITION 2.9. - lim S(T;a,v) = ^(T;!;).
a-»- oc

Proof. — We have

Afi; A T == 5c;^,^ ̂ ^ A T + 7;^ ^y A T
and

A^ A T = /;^,i ̂ c^ A r + ̂ ^ d^v, A r.
By Proposition 2.7, the last term of each of these equations is equal.
From Lemma 2.6 with u = 1, the limit of dd'Va A T as a -> - oo is
Afi; A T. Thus,

S(T,v) = lim 7i,^ dd^ A T = lim ^a; ̂ ^a A T
a-»-x a-+-oo

as asserted.

PROPOSITION 2.10. - For any test function v[/ and - oo < b < a,

r r r r
v|^(r;a,r)= NLS(;M)+ (a-^)^cv|/AT+ ^/d^Ar

v ^ Jb-^v^a Jb<u^a

and

^S(T;a,v) = ^S(T^v) + j (a-v) dd^ A T f vj/Afi; A T.
•/ •/ Jv<a J-co<v^a
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Proof. - From the definition of S(T\ a) and Corollary 2.7,

(2.1) dd^ A T = ^(7» + x^;^ A T.

If we replace a by b m (2.1) and substract the two equations, we
obtain

dd'Va A T - dd^, A T = ^(T;a) - S(T;b) - ̂ ^dd^ A T.

Hence, multiplying by the test form \|/ and integrating yields

p,-^) dd^ A F= |^(r;a)- lv|/5(r;fc)- f v)/^ A T
J J J Jb<v^a

which is the first equation of the proposition. The second equation
follows from Theorem 2.1, the dominated convergence tneorem, and
Proposition 2.9 by letting b -> — oo .

We conclude this section by noting that the residual mass of T on
v == — oo depends only on the singularity ofv.

PROPOSITION 2.11. - Let v , T be as in Definition 2.4. Suppose that
u e P(Q) and

v(z)lim inf -— ^ C > 0
u(z)^-oo U(Z)

uniformly on compact subsets of Q. Then

CS(T,-oo,u) ^ S(T,-oo,r).

Proof. — The proof is essentially the same as that given by Demailly
(see Demailly [D I], Theoreme 4.2, p. 41) so we omit it.

3. Transformation of the singularity at infinity
to a local singularity.

We will study the logarithmic singularity of functions in ^+ at oo
by introducing suitable local coordinates. (This transformation was used
by Sadullaev [Sa]; see also Siciak [Si 3].) Consider C" imbedded in P"
in the usual way ; i.e. z = (zi, . . . ,z/,) -> [ l ,Zi , . . . ,zJ , where
(zo,^i, • . . ,^n) denotes homogeneous coordinates on P\ Let
^ = {[zo, . . . ,^] e P": z,.+ 0}, i = 0, 1, . . . , n. On the coordinate
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patch ^i, we can introduce local coordinates (3 = (5,t) = (s,^, .. .,tJ,
where in terms of the local coordinates (zi, .. . ,z^) = z on ^o,

(3-1) ^i = 1/s, z, = r,/5, 2 ^ j ^ n .

Thus, s = 0 corresponds to the hyperplane at oo intersected with ^\.
If re^C"), say

(3.2) ^log( l+ |z | 2 ) + a ^ y ( z ) ^ 1 log (1 + |z|2) + p

and we define, for ^ = (s,f) e C",

(3.3) iJ(0 = v(s,t) = i;(l/5,r/5) + log |5|

then direct aftbstitution into (3.2) yields

(3.4) ^log(l+|i; |2) + a ^ v(Q ^ jlog(l+|(; |2) + p

for s ^ 0. Thus, iJ is a locally bounded psh function on C^^}. It
therefore can be extended to be psh on all of C" by defining

y(0, t) = lim sup v(s, t).
G=(s,0-»(0,<)

From (3.4), v e ̂  .

Note that t = (t^ . . . , ̂ ) provides local coordinates on the coordinate
patch of the hyperplane at oo which consists of those lines through the
origin in C" that can be parametrized byzi . From the definition of
p,.,p* in Section 1, it follows that

(3.5) v(0,t) = p*(0 + j l o g ( l + | r | 2 )

where 0 = At , log( l+ | ( | 2 ) denotes (a multiple of) the Kahler form

on P^.
Note also that u , v differ by the pluriharmonic function log 5] on

^o n -^i. That is, there is a closed, positive (1, 1) current on P"

(3.6) co(i;) = d^v = dd^,,

(in this notation, VQ = v ,v, = v). If v(z) = , log (1 + |z|2), the associated
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(1, 1) form is the usual Kahler form (up to a normalizing constant).
The functions u, e J^+ are unique, up to additive constants.

With the aid of these transformations, we can apply the results of
Section 2 to functions in ^f+ .

PROPOSITION 3.1. - Let v , M i , . . . , Un e ^+ and suppose a, P are
constants such that (3.2) holds for all of the functions v , u^ . . . , u^.
Then there is a constant C > 0, depending only on n, a, P, such that

f
\v\ dd'u, A • • • A dd^ ^ C.

Jc"
Further,

dd'u, A . . . A dd^n = o(log R)~\ as R -> oo.
J\z\>R

Proof. - Let 0 ^ ̂ ^ 1, 0 ^ ;' ^ n, be a C^ partition of unity
subordinate to the cover of P", ^0^1, . . . ,^/z. Then

v d^u, A ... A dd^n = E f (x,t;) dd^ A ... A d^u,.
•/c" ,=0 J^o^P"

The estimate for the term with i = 0 is easy because psh functions are
bounded on the support of /o (take v = const. in Theorem 2.1). To
get the estimate for the other terms, we take i == 1 to simplify the
notation. The integral extends only over ^o^^i , so from (3.3), it is
equal to

Xi(^-log Is |) dd^ A . . . A dd^n.
J^o^i

But, by Theorem 2.1, log |5| dd'u^ A . . . A dd'u^ has no mass on
s = 0. Also, the current v dd'u^ A • • • A ddVn puts no mass on the
polar set 5 = 0, since v , u^ . . . , fin are all bounded on a neighborhood
of the support of /i (see e.g. [BT I], Theorem 6.9). Thus the integral is
equal to

f
Xi(^-log 51)^^ A • • • A dd^.

For this integral, we have the estimates of Theorem 2.1 which shows it
is bounded by a constant which depends only on the supremum norms
of Ui, v and the L^norm of log |5| on a neighborhood of the support
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of /i . This proves the first assertion of the Proposition, and the second

is a direct consequence of it (take v = -log(l+ z | 2 ) ) .

Note also that if O)(M,) is the positive closed (1, 1) current on P"
associated to u^ e J^+ , we have shown that the current on P71,

T = i;co(ui) A • • • A (0(1^) == v AfMi A • • • A dd^n

has finite mass on P", and zero mass on the polar ser in IP" which is
the hyperplane at oo (or any other hyperplane, for that matter). Thus

\ T = \ v d^u, A ... A dd^n
jp" Jc"

whenever v, u^, . . . , u^ e ^+ .
From Proposition 3.1, it also follows that the integrals mentioned

in Section 1 involving the function p^ can be given in terms of the
function u.

PROPOSITION 3.2. - For u, v , w e j^+ , we have
r r

(p^-pnw^+or-1 = ?(0,0 - ^.^(^(o.oy1-1.
Jpn-l JC"-1

Proof. - The current T = (p^-p^^p^+Q]"-1 can be written in
the local coordinate t = (^ • • • ,^1) given in (3.1) for the coordinate
patch of lines in P""1 which can be parametrized byz i . From (3.5)
we see that

T = ^(o.o-^o.o^w^.or-1.
Thus, the current T has no mass on any hyperplane in P"~1, so the
integral can be written just over the coordinate patch for t ,

f T= \ WO.O-^O.O^w^O)71-1.
Jpn-l Jc»-1

4. Slicing via residual mass.

By the comparison inequality of Section 2, Proposition 2.11, we see
that the residual mass S(T,-oo,v) must vanish unless the psh function
v has the strongest possible singularity. In this section, we identify the
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residual mass in the simplest case, v = log |z i | . For this case, we will
show that the residual mass is the slice of the current T = (Afi^"1

on the set Zi = 0. Further, this current is the Monge Ampere opera-
tor (dd'uY-1 applied to the locally bounded psh function
(z2, . • . ,^n) -> M(0,Z2, . . . ,z^). For our purposes, it is important to know
the same result for the currents w(AfM)"~1, where u, w are locally
bounded psh functions. In all these cases, it is easy to see that the
slice of the current exists for almost all values o f z i . The point is to
know that it exists for all values o f z i .

Recall that the slice of an (n- l ,n- l ) current T with respect to a
hyperplane Zi = a is the current on Zi = a given by the formula

(4.1) <r,zi,a>(v|/)=lim-^ | ^2, • . . ,^) L dz^A^A T
E-0 7l£ Jlzi-a^e 2

where \|/ is a test form on Zi = a. By [F], Section 4.3, p. 435, the slice
of a normal (or flat) current exists for almost all a e C and is
characterized by the formula

(4.2) cp(zi)v|/(z2,...,z^) A T= cp(fl) A {<T,Zi,a>(v|/)}
J JaeC

for all test forms v|/(z2, . . . ,z^) and (1, 1) test forms (p(z0. From (4.2)
and the identity

(4.3) (^^(z'MzWuy-1

f f t )= (p(zQ A ^ vl/(zXz„z/)(^cu(z„z/))^-^
Jzi Uz' J

where z ' = (za, . . . ,z^) , it follows that when T = w^dd'uY'1 with u, un-
bounded psh functions, then

<T,Zi,a> = ^(^(^(a.z')/1-1

for almost all a e C . The formula (4.3) is obvious when u, w are
smooth and holds by a limiting argument in the general case. Similar
remarks apply to the currents T = u^ dd'u^ A • • • A dd'u^ and
T = w d^i A ^^2 A ^^3 A • • • A dd'Un, where w and the u, are
locally bounded psh functions.
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In fact, these slicing formulas hold for all hyperplanes Zi = a, not
just almost all hyperplanes.

PROPOSITION 4.1. — Let u,w be locally bounded psh functions on
Q c: C". If T denotes the current ^(dd'uy1, then the slice of T with
respect to the hyperplane Zi = 0 exists. Further,

<r,z,,o> == ^^^(dd^o^r-1
2K

where z' = (zg, ... ,Zn). The analogous formula holds for the currents

T = w du, A d^ A dd^ A . . . A dd^n
and

T = w dd^, A Afus A . . . A dd^n,

where w and the Ui are locally bounded psh functions.

Proof. — We will prove the proposition only for the case T = ^(dd^Y .
The other cases may be proved by exactly the same argument. Or, one
can use a polarization identity to reduce to the case considered here,
along with the identity dd'u2 = 2du A d'u + 2uddcu. For e > 0,
let Vs = max {log | z |, log e}. Then we have

r i r\|/w dd'v, A (Afu)71-1 = — (\|/w) Af|zi|2 A (Afu)"-1

J 2e Jizil^e

+ — f ^-IzJ2) ^(vl/w) A (d^u)"-1.
28 Jlzii^e

(The formula is easily verified when w, u are smooth, and the general
case is obtained from a limiting argument.) The first term on the right
hand side is 2n times the integral on the right hand side of (4.1) when
\|/ is independent o fz i . The second term on the right hand side tends
to zero as e -> 0, since it involves a bounded function times the currents
dd^ A (Afu)"-1, d\|/ A d^ A (Af^)"-1, or \|/Afw A (Af^)"-1. All of
these put zero mass on the polar set Zi = 0 and, hence, have total
mass on the « collar », |zi| ^ e, which goes to zero as e ->0. On the
left hand side, we have

wdd^, A (dd'ur-1 = ̂ ^wdd\ A (ddW1

= SMd^r-Moge.loglzJ).
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By Lemma 2.6 and Corollary 2.7, it follows that the limit of the left
hand side exists and equals

Xsz^oiwAflogIzi A (AfM)"-1.

Thus, the slice of ^(dd'uY'1 on Zi = 0 exists and is equal to
To = w rid'log zj A (dd'uV1. (Note that To, a current on C", is
really supported on Zi = 0 and hence can be identified with a current
on Zi = 0.)

We still have to show that

(4.5) w A f l o g l z ] A (AfM)71"1 = ^(O.z^^M^z'))71-1.

When u , w are smooth, this is obvious. The general case then follows
by taking smooth u,, w, decreasing to u, w . Both sides of (4.5) converge
(cf. the convergence theorems of [BT 1] or [D I], Theoreme 2.6), and
this completes the proof.

We note that it was actually proved •that the slice is the limit of
the currents ^(dd'uY"1 A dd0 max {log Zi ,loge}.

COROLLARY 4.2. - If w, u are locally bounded psh functions on
0 c= C", then

f
lim \|/w Af max {log z | , log 8} A (Afu)71-1

-0 J

= 27i vKO.z^O.z'X^O.zy-1,

for every continuous function v|/ with compact support in Q.
With the aid of the slices, one can make sense of boundary integrals

which occur in integration by parts formulas involving log | z |. For
example, we formally have

w(z) Af max {log |zi|, log e} A (dd^y

= I v^z^loglzil A (Af^zi.zy-1.
J|2ll=e

Write Zi = 86?19 so that d'log Zi = d9, and the last integral can be
written as

| w^.z'xr.zi.e^de
J-n

where T = (Afi^-1.
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COROLLARY 4.3. - If \|/ is any test function, then

lim —
£-^o 27T

i r"
lim — ^(se'^z'^^^z^Wu^^z))'1-1 d6
s-o 2 7 T J _ ^

= f vKO^^O.z'Hd^O.z^-1

Jc"-1

/or M,W locally bounded psh functions.

We can also consider the slightly more general case when v = log |/|
for / a holomorphic function on Q c C". All the results are local, so
at regular points of the manifold M = {/=()}, we have just to make
an analytic change of variable to see that

^(AfMr-V.O) = WM^W = wATlogl/ i A (Afu)"-1.

5. The Integral Formula.

In this section, we study psh functions which have logarithmic
singularities. We will prove a local version of the integral formula from
which the version stated in (1.2) of the introduction can be easily
deduced. The idea here is quite direct. For functions with a logarithmic
singularity on Zi = 0 e.g.

u(z) = log— + u(z), u(z) = 0(1),
z!

we want to prove the (formally obvious) formula,

d[(udcv-vdcu)/\(ddc^v)n~l] = (u d^v - v dd'u) A (Afw)71-1

-27^x„^o}(M(0,z/)-y(0,z'))(^cw(0,z/))n-l.

The « 8-function » term arises because dd0 log — is concentrated on
l^ i I

Zi = 0. The precise version of this result is given in Lemma 5.2.

Let 0 be an open set in C^ with Q n M ^ 0, where

M= {z, = 0}.

Consider the classes J^±(Q,M) of all locally bounded psh functions u
on Q\M such that

u(z) = T log |zi| + 0(1), Zi -^ 0
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uniformly on compact subsets ofQ. For MeJ^±(0,Af), let

(5.1) u(z) = u(z) ± log|zi|

so that u(z) is locally bounded on Q\M near points ofM. The function
u is psh on Q\M and hence has a unique psh extension to Q given
by

u(0,z') = lim sup M(ZI ,O .
z^0,^z-

For u , v , ^2, . . . , H^ e J^±(Q,M) the current

(5.2) 9 = (udd'v-vdd'u) A Afwa A • • . A Afw,,

is a well-defined (n,n) current on Q\M, since M , u , w, are locally
bounded on 0\M. The trivial extension by 0 of 6 to all of Q is a
current of locally finite mass on Q, since the formula (5.1) substituted
into (5.2) gives

(5.3) 6 = ± log |zi| dd^u-v) A dd^^ A . . . A dd^n
+ (udd^-vdd'u) A dd'w, A • • • A dd^n

which has locally finite mass on Q by Theorem 2.1. Hereafter, when
we write the current on the right hand side of (5.2), we will always
mean the current 9 of (5.3). Throughout the rest of this section, we
will assume

(5.4) T = Afw2 A . • • A dd^n, w, e ^(C1,M)J = 2, ... , n.

LEMMA 5.1. - Let u , v e ^+(Q,M) or u, v e J^-(Q,M). Then there
is a ( 2 n — l ) current, PV[(udcv—vdcv)/\T] defined on Q, by the formula

(PV[(^dcv-vdcv)^T}^) = lim \|/ A ( u d ' v - v d ' v ) A T
^° J|zii>e

for every test 1-form, v)/.

Proof. — We give the proof only for the case ^3 = • • • = w^ = w.
The proof in the general case is exactly the same. It also follows from
this special case by applying it to functions of the form
w = ^2 + • • • + tn^n. tj ^ 0, Z ^ = 1 » ^d then equating coeffi-
cients of the resulting polynomial in (tz, . . . , ^ n ) .

We will give the proof for the case u,v e J^+(Q,M). The proof in
the other case is similar. Write ^(zi) = log |zJ, and recall that
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u = u + ^ is a locally bounded psh function on Q. Then

ud'v - vd'u = (u-^d^-^) - (-^d^u-v) + Mri^ - vd'u.

Thus,

(5.5) \|/ A (ud'v-vd'u) A (Afw)"-1

J i 2 l i > £

\1/ A (u-u) dy A (Afw)"-1

J|2li>£

+ ^\|/ A d^u-v) A (Afw)"-1

J|2^>e

+ \|/ A (ud'v-vd'u) A (Afw)71-1.
J |2^1>£

The current (ud'v-vd'u) A (Afw)""1 is a (2n-l) current of finite mass
on n with 0 mass on the polar setM, since u , v , w are bounded psh
functions (see e.g. [BT I], Theorem 6.9). Thus, the limit of the last term
as e -> 0 is

\|/ A (ud^-vd^) A (A^w)"-1.
Jn

The limit of the next to last term also exists and is equal to

A|/ A d^u-v) A (d^w)"-1 = | A|/ A ^(M-U) A (d^w)"-1

J" Jft\M

== \̂|/ A (̂M-I;) A (d^w)"-1

Jn\Af

by Theorem 2.1 and the dominated convergence theorem. Thus, the
most singular term is the first one on the right hand side of (5.5). To
study it write the 1-form \)/ in the form

2n

^ = S ̂ fjdx,.
7-1

Since the (1,1) parts of dxj A d^ and d^ A d'Xj are the same, this
term is equal to

2n /•

- S ^("-i0 d/ A d'x, A (d^w)'-1.
7-1 J|Zil>e
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However, we claim that

(5.6) | ^(u-v) d^ A (1% A (dd^Y-1

J |Z l l>£

^d(^(u-v)) A d^, A (A^w)"-1

J|Z^|>£

+ loge | d(^(il-v)) A (fx, A (Afw)"-1.
J|zl|>£

If M , u , w are smooth, then (5.6) follows from an integration by parts
and Stokes' theorem. In the general case, approximate u, v, w by
decreasing limits of smooth psh functions. We then get the identity for
all except possibly the countably many £ for which the measures in the
integrand put positive mass on { | z i | = e}. However, all three terms in
(5.6) are right continuous functions o fe . Hence they are equal for all
£ > 0.

By Theorem 2.1, the first term on the right hand side of (5.6)
converges to the integral over {zi^O}, as s-t-0. The second term
converges to zero, by Corollary 2.5. Thus, the left hand side of (5.6)
has limit „

^ ^(v|/,(u-u)) A d^, A (dd^y
j=l Jz l^O

as e-»0, which proves the first assertion of Lemma 5.1.

LEMMA 5.2. — Under the hypotheses and notation of Lemma 5.1, we
have dPV[(u d'v - v ̂ u) A dd'w, A . . . A AFwJ = 9

T 2n^^[u(Q,z)-v(0,z1)] A dd^^z') A • • • A dd^^z')

where 9 is given in (5.2), z ' = (zz, • . . ,^n) • The — sign is chosen when
u, v e J^+(Q,M), and the + sign is chosen when u, v e »^-(Q,M).

Proof. - We give the proof for u , v e j^.(Q,M),
Wg = • • • = Wn = w. The assertion of the Lemma is that

lim - d\|/ A (ud'v-vd'u)) A (d^w)"-1

e-0 J |2 i !>E

= [ ̂ (udd'v-vdd'u)) A (Afw)"-1

Jo
- [ vKO^)(u(0,^-^(0,<») A (Af^O,^))"-1

JonM
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= ^(udd^-vd^u) A (dd^Y-1

Jn

+ ^dd^u-v) A (Afw)71-1

Jn

vKO^WO.z^-^O.z')) A (Afv^O.z'))"-1.
JftnM

By the argument given in the proof of Lemma 5.1, the limit is equal
to

(5.7) - ^(u-v)ddc^(ddcw)n~l

Jn
f

- 2 U^f A d(u-u) A (rf^w)71-1

Jn

- dv|/ A (ud'v-Wu) A (rf^w)"-1.
Jn

However, if we consider the functions

^g(zi) = max (log [zj , log e) = max (^, log e)
Me^) = U(Z) - 4(Z)

^(z) = v(z) - 4(z)

then we can also study the limit, lim/(e) where
E--0

(5.8) /(s) = ^(u^dd^-v^dd^) A {dd^Y~\

Since

u^dd^ - v^d^u, = (u-v)dd\-^) + ^dd^u-v) + O^u - v d d ' u ,

and drf'w = rf^w on Q\M, we have from Corollary 4.2, Theorem 2.1,
and the dominated convergence theorem,

(5.9) lim/(e) = + v|/<f dd^u-v) A (dd'wY-1

e-.O J

+ ^(udd'v-vdd'u) A (^w)"-1

- 271 ^^z')(u(Q,z')-v(Q,z1)) A (^w)"-1.
JnnM
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On the other hand,

7(e) = - d\|/ A (u^v.-v^u,) A (Afw)"-1

= + [dv|/ A ((u-v^^-^.d^u-v)) A (Afw)"-1

«/
- dv|/ A (ud'v-vd'u) A (dd'w)""1

= + |(u-i!)^4A(f\|/A (Afw)"-1

f
+ 4^ A d^u-v) A (Afw)"-1

J

- [d\|/ A (ud^-vd'u) A (Afw)"-1.

Integrate by parts in the first integral to obtain

- ^{u-v)dd^ A (dd^Y-1 - K^ A d^u-v) A (rf^w)"-1.

Thus, we have

/(£) = - ^,(u-v)dd^ A (dd^Y-1

- 2 <A|/ A ^(M-U) A (rf^w)71-1

- A|/ A (ud^-vd'u) A (Afw)"-1.

As before, it follows that /(c) converges to the expression in (5.7) as
s -> 0. This completes the proof.

Remark 5.3. - Note that, in general, the term ud^ A (AfwT'"1 is
not a current representable by integration on Q, because the singularity
of ud^ is too strong when u, v e J^+(Q,M). It is because of the
cancellation between the terms ud^ and vsd^u that the principal value
exists.

Remark 5.4. — We can consider the more general case of the classes
^f±(Q,M,/) where / is a holomorphic function on Q, M = {/==0} is
a complex submanifold of codimension 1, .and u = T log |/| + 0(1)
as z -> M. The only change is that the current on M is replaced by
the residual mas§ of (u-v) A (Afw)""1 on M with respect to the psh
function log |/|.
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Proof of the integral formula. — We now give the proof of the
integral formula for functions in the class J^+, defined in (1.1). Suppose
u, v , ^2, . . . , w^ 6 jy+ . Let T = dd'w^ A • • • A dd^n, and let T denote
the current which is the slice of T on the hyperplane at infinity; i.e.

T = (AFp^+Q) A ... A (ATp^+Q)

== ATw2(0,0 A . . . A ^^(0,0,

where we are using the notation of Section 3.

THEOREM 5.5. - (udd^-vdd'u) A T = 2n \ (p;-P?) A T.
Jc" Jp»-1

Proof. - We can assume Wg = • • • = w» == w. Consider
M , v , w e J^+ as functions on P", the n-dimensional projective space
with C" imbedded in P71 in the usual way, i.e. (zi, .. . , Z n ) corresponds
to the homogeneous coordinates [z i , . . . ,Zn, 1]. We claim that

(5.10) lim - \|/ A (ud^-vd'u) A (Afw)"-1 = 5'(\|/)
^-'x J\z\<R

defines a current on P" and

ri5' = 9 - U

where 6 = (udd'v-vdd'u) A (ATw)", on C\ extended by 0 to the
hyperplane at oo, U is a current with support on the hyperplane at
x, and U is given by

In(pf-pf) A (n+ATpS)"-1.

To prove this, it is enough to prove the formula for test forms with
support in the coordinate patches

^,= {[z i , . . . , z^JeP" :z^O}, 1 ^ i < n + 1.

Without loss of generality, take i = n 4- 1 and use coordinates

Zn = 1/S, Z^ == ^./5, 2 ^ J ^ n.

Then M e j^+ implies

M^(^ , . . . , r , , l )1= -log|5| + 0(1)
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so J^+ c: j^+(^,M), where M = {5=0} = ^ n {hyperplane at 00}.
Thus the limit in (5.10) exists by Lemma 5.1 and so S is a current
on IP". The assertion about dS follows from Lemma 5.2, provided we
note also that

u(s,r) = u -(ri,...,^-i) + log|s|,
L5 J

and, in the notation of Section 3,

p;(0 = i?(0,r) - ^ log( l+ | r | 2 )

so that

wo,o - v^D^dd^r'1 = (P;(O - P?(O) A (n+Aw))"-1

(where Q = d d - log (1+ | r | 2 ) ) . This completes the proof.

6. Applications to the Robin function.

Recall from Section 1 the definition of the classes J $ f , ^ f + and the
Robin function py associated to u e J?p. In this section, we show how
the Green formula can be used to establish several properties of this
function. Recall from Section 3, the functions u = u^ e o^+, the current
co(u) on P", and the local coordinate t on C"~1 c P""1 given in (3.1).
It is convenient to introduce the notations

Q(iQ = dd'v^t) = Afp* + 0

Q = A^logO+lt l 2 )

for these currents on P""1, and

(6.2) M(v,u,, . . . ,u,) = f v dd^, A . . . A dd^
Jc»

vdd'u, A . . . A dd'Un.
JP"



^ E BEDFORD AND B.A. TAYLOR

In this notation, the integral formula, Theorem 5.5, can be viewed as
computing the commutator of the first two slots in the multilinear
form M,

(6.3) M(v, u,, . . . , Un) = M(u,,v, u^ ..., ̂ )

+ 27i (P*-p^)0(^) A ... A Q(M,)
Jp'n-1

== M(U,,V,U^ . . . ,Mj

+ 27r [y(0,0-^(0,f)]Af^(0,r) A ... A dd'u^t).
jp71 1

Our first application is to an important inequality for functions
u, v e ̂ .

THEOREM 6.1. - If u, v e j^ and u ^ u , then

f r /z-l r
^^y)72 ^ i;̂ )̂̂  ̂  27i (p^-p*)^)"-1-7 A Q(My.

^c71 Jc" j = o Jp"-i

Proo/. - For u, v e j^ we have the identity

n-l

(6.4) u^dd^Y - v(ddcu)n = (udd^ - vdd^) + ^ {dd^Y ~l~j/\ (dd'uy
7=0

n-1

^(v-u) ^ (rf^y A ( î;)71-^j= i
or equivalently,

(6.5) M(u,t;, ...,u) - M(i;,M,...,M)
n- 1

^ Z M(M,i;,^..,u,u, . ..,M) - M(v,u,v, .. .,y,u, . . . ,M)n- l-y 7 n-r^r "^y^
n— 1

+ ^ M(l;-M,M, . . .,M,l;, . . . , 1 ; ) .

J ri^T'

Since M ^ v , the last term on the right hand side of (6.4) or (6.5) is
negative. The first term is the commutator of the first two slots ofM.
So from (6.3), the inequality of Theorem 6.1 follows.

As a corollary of Theorem 6.1, we have the basic inequality of[T].
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COROLLARY 6.2. - If ue j^, u ^ 0 for |z| ^ 1, and (d^)" is
supported in \ z \ ̂  1, then

u(z) da(z) ^ n sup py(a)
J|z|=l "<=^1-1

(da (z)= normalized surface area measure on | z |= l , da(z) = 1).
J|2|=l

Proof. - Since u ^ 0 on |z| ^ 1 and (Afu)" = 0 in |z| > 1, we
have from the maximum principle for the Monge-Ampere operator that

(l+e)M(z) > l o g - ^ l z l , 1 ̂  |z| < R

because the estimate holds for |z| = 1 and |z| = R » 1. Letting
R -^ + oo and 8-^0 then gives u(z) ^ log^ lz l = v(z) for allz. We
claim this choice in Theorem 6.1 gives the corollary. Because, we clearly

f
have v^dd'uY = 0, py = 0, Q.(v) = 0, so the right hand side of the

Jc71

inequality of Theorem 6.1 is the sum over 0 ^7 ^ n - 1 of the terms

(6.6) 2n | p^-1-7 A Q(uy ^ 27cp, | O"-1-7 A Q(uy.
Jpn-l Jp"-l

Now, for any choice of M i , . . . , u^ e ^+(C"), we have

| AfMiA ... A dd'Un = [ co(Mi) A ... A (o(u,) = (27i)".
Jc" JP"

So, the last integral in (6.6) is (27c)^~ l. Also, ^(dd'vY = (271)", and
Jc"

the inequality follows.

We next study the convergence of the multilinear form M(i;i, Mi , . . . , u^)
on J2f+ . It follows from known convergence theorems that M is
continuous under decreasing limits (e.g. [D 1] Chapter 2), combined with
the localization procedure of Section 3). However, M is not continuous
under increasing limits. Here we will show, in Proposition 6.4 and
Theorem 6.6 that this lack of continuity in M is measured by the Robin
functions p?. The first step is to note that M is continuous in the first
slot in a strong way.
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LEMMA 6.3. - Suppose Vj, v and u,, u^e^+ are monotone increasing
sequences in j and

lim v,(z) = y(z), lim u^(z) = y,(z),
J-»oo 7-»oo

/or a/wosr aH z e C^. TTî n /or an^ u e ĵ .

lim M(u-i;,,,Mi,,, ... ,M^) = M(M-U,MI, ... ,M^).

Proo/ - We can write the integral defining M as an integral
over P". Then choose a partition of unity subordinate to the coordinate
patches ^o, . • . , ̂ n discussed in Section 3. On each patch, say on ^i,
we have in terms of local coordinates in the patch, say in ̂ i

^(u-v^dd^j A . . . A ddV^
J^1

where / is a smooth function with compact support in^i. This integral

converges to ^u-^ddV, A . . . A d^u, by the continuity of the

Monge-Ampere operator on monotone limits of bounded psh functions.
Combining this lemma with the Green formula yields the next

Proposition.

PROPOSITION 6.4. - Suppose u,,ue^ and u, increases to u for
almost all z e C71. Then for 0 ^ k ^ n

lim u^uy1' A (dd^ = f ^ddW
^^JC" Jen

k-l F+ E ("wo-w^x^w^r-^^-^A^^o.o)*^^ = o Jc71-1

where w(r) 6 ̂ (C'-1) is the use regularization of lim u,(0,t).
J-^+K

Proof. - From the Green formula, or, equivalently, the identity
(6.3), and the symmetry of M(i;,Wi, .. .,w,) in Wi , . . . . v^, we have

(6.7) u(ddcu,)n-k A (dd^ = f u^uf
JG" Jen

+ E (u^-u^dd^-^ A (̂ u)*^
f-\ Jc"A-i F
Z J ̂ (W) - ^WO^M/o.o)71-1^^ A (^(0,0) .̂
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When j -> -I- oo, Lemma 6.3 implies that the second term on the right
hand side of (6.7) tends to zero and the third term converges to the
corresponding integrals with Uj(0,t) replaced by w(t), as asserted.

We also need the following potential theoretic lemma (see e.g. [Car],
Theorem 1, p. 15 for the case n = 1).

LEMMA 6.5. — Suppose u e J?7, v e ^+ and u ^ v for (dd^Y-almost
all points in the support of (Aft;)". Then u ^ v on C".

Proof. — It is no loss of generality to suppose that

(6.8) v(z) ^log(2+|z|2).

Suppose by way of contradiction that u(zo) > v(zo) for some Z o ^ C " .
Select E > 0, 8 > 0 such that 5 < e/2 and the set

S = S^ = [z e ̂  : M(z)+jlog(2+|z|2)>(l+e)y(z) i-

contains Zo. Then S has positive Lebesgue measure, and 5' is bounded,
since u e J?\ v e J^+ and § < e. Thus, by the comparison inequality,
Theorem 4.2 of [BT I], we have

r r r ^ "n" c
(6.9) 0 < Ud' u(z)+,log(2+|z|2) \\ <( l+ey 1 (dd^Y.

J s I L 2 JJ Js

However, for almost all points in S n spt (dd^Y, we have

(1+eMz) ^ u(z) + jlog(2+|z 2) ^ v(z) + jlog(l+|z|2),

or v(z) + -log(2+ z|2) (since 8 < e/2), contrary to the normalization

(6.8). Thus, the right hand side of (6.9) vanishes, which is a contradiction.
Therefore, u ^ v on C".

We can now give good conditions which relate the continuity of
p? and M under increasing limits.

THEOREM 6.6. - Let Uj, u e J^+ and suppose Uj increases to u for
almost all z € C". Then the following are equivalent :

(i) p?. increases to p? for almost all points in P""^
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(ii) for all 0 ^ k ^ n and all v e j^,

lim [(^^(A^)"-' A (ATM)* = f (i^O^y1;
J-x J Jen

(iii) for all 0 ^ k ^ n an^ ^acft 8 > 0, ttor^ exists 7? > 0 sucA that

\ log (1 + Izj)^^)"-* A (Afi^ < e ;
J\z\>R

(iv) t/i^ ^xfst5 u e J^+ such that lim v^d^u^ = v^dd^Y
j^+co j^n J^n

(v) lim | u^u^= | u^uY.
j -+xjc^ Jc^

Proo/. - (i) => (ii). Because of Lemma 6.3 it is enough to prove

lim | u(ddcuy~k A (dd^ = \ u^dd^.
^-++» Jc" Jc"

However, since p?(t) = u(0,r) - . log (1 + |t|2), it follows from

p^. 7 p^ that in Proposition 6.4, w(r) = M(O,Q, so (ii) follows.

(ii) => (iii). This is a standard fact from real analysis. Write
u, = (dd'UjY-" A (d^M)" and u = (dd^)" so that, with/(z) = log (1 + |z|),
we have fd[ij->fd[i weakly as Borel measures onC". If /^ is a
continuous function with 0 ^ 7^ ^ 1, 7^ = 0 for z ^ R and ^ = 1
for \z\ < R - 1, then

[x^ = f/^-H) + fx^/^ + f
J J J J

(6.10) x^/^ = fd(^- n) + x^H + (1 - X^)/^- H) •
J J J J

If s > 0 is given, choose Ro so large that the second term on the right
hand side of (6.10) does not exceed 8/3. Then choose J = J(Ro) so
large that the other two terms on the right hand side of (6.10) do not

exceed e/3 for j > /. Finally, choose R^ > Ro so that ^pfd^j < 8/3

for the finitely many ; = 1, 2, . . . , /, with R > R^. Then (iii) holds
for all R > ^i.
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(iii) => (iv) With the notation of the previous paragraph,

linkup j^-^i) ^lim^sup j(l-^)t;d(H,-H) +supl f^p , .

If R is large, then the last term is small because of (iii), while the
limsup of the other term is zero, since u^,-> 141 weakly as Borel
measures on C". Thus, (iv) is proved.

(iv) => (v) We have, with v E ^. as in (iv)

u^uy = v(ddcu,)n + (u-v^ddW.
JG^ Jc» Jen

The limit of the last term is (u-vWuY, by Lemma 6.3 (take
Jc"

Vj = v) so by hypothesis (iv), the limit is F u(dd,u)^.
Jc"

(v) => (i). By Proposition 6.4, we have

lim uWuY == f u^uf
• /^ -x Jc71 Jc"

n- 1 /•

+ Z [u^-w^dd^t)]'1-1-' A [dd^O, t}Y .
/ = o Jc""1

r "i*r T= lim «,(0,t) <
|j-x J

Thus, since w(t) = lim «,(0,t) < u(0,t), under hypothesis (iv) every
L-7"'00 J

term in the sum must vanish. In particular, the term with ^ = 0
vanishes, so u(^t) < w(r) for [dd^W1 almost all t on C"-1. Because
w(t)e ^(C^-1), we conclude from Lemma 6.5 that u (0,0 ^ w(r).
That is w(Q = M(O,Q, or, equivalently, p^. increases to p; for almost
all points in ^ n ~ l . This completes the proof.

There are two immediate corollaries of Theorem 6.6.

COROLLARY 6.7. - Suppose Uj, u e ̂ , that Uj(z) increases to u(z)
for almost all z e C", and that there exists a compact set K c= C" such
that (dd^r is supported in Kfor all j = 1, 2, . . . . Then p?/z) increases
to p?(z) quasi-everywhere in P71-1; i.e. except for z in a polar subset of
n"D^ ~ i -
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Proof. — It is already known that u^d^u^ converges weakly to
u^dd'uY as Borel measures on C" (see e.g. [BT I], Theorem 7.4). Thus,
if all the measures are supported in K, then (iv) of Theorem 6.6 holds,
so condition (i) does also.

We also obtain the following result of Kolodziej (see Section 1 for
the definition of the capacity C).

COROLLARY 6.8. - If Ki =3 K^ =3 • • • are compact sets in C" and if

K = H Kj, then
j = i

limC(A:,) = C(K).
J-.W

Proof. - This results directly from Corollary 6.7; (the case when
sup p^ = + oo follows from Corollary 6.2).

We next study the sense in which the Robin function p? determines u.
In particular, for K a compact subset of C", let

LK^) = sup [v(z): v e j ,̂ v(z) ^ 0 for z e K}

denote the extremal function of K and L^ its uppersemicontinuous
regularization. Then either K is pluripolar (L?==-hoo) or else
L? e J^+ [Si 1]. Let p^ denote the Robin function associated to L^.
We want to decide if p^ determines the compact seiK.

Now, this is clearly false in general. If one translates K, then p^
doesn't change. Also, if K is changed by a pluripolar set, then p^ is
unchanged. And, if

K = polynomially convex hull of K

then L^ = L^, so p^ = p^. However, we do have the following
comparison.

THEOREM 6.9. — Let K i , K^ be nonpolar compact sets m.C" with
Ki c: K^. If p^ = pIS: •> trien ^?i = ^^2 • ^^^ there is a polar set
E such that K^ = K^\E.

Proof. — It is no loss of generality to assume Ki = Ki. If we show
L^ = L^, then K, = K^\E, since {z e C": L^(z)=0} is equal to K,,
up to a pluripolar set. We have L^ ^ L^ and L^(z) = 0 for z 6 K^.
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except possibly for z in a pluripolar set; in particular, a set of
(rf^Liy-measure zero. Thus we have

0 ^ f L^dd^y = f L^dd^r - f L^dd^^Y.
Jc" Jc" Jc"

By Theorem 6.1, we see that the last expression is ^ 0. Hence
L^ = 0 = L^ almost everywhere with respect to the measure
(dd^^y . So, by Lemma 6.5, Z^ ^ L^, which implies the two functions
are equal. This completes the proof.

7. Applications to polar sets.

In this section, we show that the class

^p={ue^:p^-oo}

is rich enough to deal with (pluri-) polar sets in C". Recall that a
subset E of C" is a polar set if there exists a psh function U on C"
such that U is not identically — oo, and E c= {(7= —oo}. It was shown
by Josefson [J] that the concepts of «locally» and « globally» polar
sets coincide. Siciak [Si 1] showed that if E is polar, then it is ^f-
polar; that is, E<=.{u=—co} for some u e ̂ , a psh function of
logarithmic growth. Here we obtain a more precise result.

THEOREM 7.1. - If E c: C" is polar, then there exists u e J^p with
E c: {u= — oo}.

Note that, in general, it is not possible to take u such that
Pu(°0 > — oo for all aeP""1 . For instance, if E contains a nonpolar
portion of a complex line a, then pu(a) = - oo for this aeP71"1.
Siciak [Si 3] has also proved that Theorem 7.1 is a consequence of the
theorem of Kolodziej when E is an Fy-set (see Corollary 6.8).

Theorem 7.1 and its proof also give other information about polar
sets. A polar set E in C71 is complete if it has the form E = {U== -00}
for some U psh on C".

THEOREM 7.2. — If E is a complete polar set in C", then there exists
u € J^p such that E = { M = = — o o } .
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With the added hypothesis that E is an F^-set, it was shown by
Souhail [Sou] and Zeriahi [Ze] that E = {u= - 00} for some u e ̂ .

For polar sets which are not complete, we obtain information about
how they propagate. Given E , a polar set inC", define

£•* = n {u= -00}

where the intersection over all psh functions U on C" with E c: {U= - 00}.
It is evident that £"** = E * .

In general, E* can be dense in C", even when E is compact, and
E* need not be a polar set. When the set E* is an F^ and a G'§ it
was shown by Zeriahi [Ze] that it is a complete polar set. It also
follows from our results that the propagation of E is restricted.

THEOREM 7.3. - If H is a smooth algebraic hypersurface in P" and
if E is a polar set disjoint from H , then H is not a subset of E * .

Before proving these results, we record some simple equivalences for
determining when u e J?p.

LEMMA 7.4. — Let u e J^. Then the following are equivalent :
(i) u E J^p; i.e. p; ^ - oo .

(ii) inf u(m) do (a) - log r > - oo , where da (a) denotes surface
r L-1 r

area on |a| = 1 , normalized so that rfcr(a) = 1.
J|a|=l

(iii) lim |u(ra) - log r|rfo(a) < + oo .
^^Jo^l

(iv) u(ra)da(a) - logr decreases to (iTc)"7^1 P^""1, as
Jai=l JP"-I

r -> + oo .

Proof. - These are easy facts from potential theory. When n = 1,
one dimensional potential theory applied to the subharmonic function
"a(0 = M(^a), ^ e C , aeC", |a = 1, shows that

lim — u^re19) d6 - logr = p^u) > - oo
^^J-n



PLURISUBHARMONIC FUNCTIONS WITH LOGARITHMIC SINGULARITIES 167

if and only if

(7.1) ^ ( o = p , + l f log|^-r|A^(0, ^eC
^JteC

where AM^ is the positive Borel measure on C of total mass In given
by the Laplacian ofu^. In particular, from this representation it follows
that

(7.2) P u ( o Q = P a .

For the proof of the Lemma, (ii) o (iii) follows directly from Jensen's

formula. The limit in (iv) always exists, because r -> u(m) ^<j(a)
J|a|=l

is a convex function of log r . In fact, it is a decreasing limit, which is
- - requal to (In) (" 1) P?^" 1 by the monotone convergence theorem

Jp"-i
and (7.2), because

M(ra)Ar(a) - logr = ]-\ (u(re1^) dQ AT (a).
J|a|=l J|a|=l 2n J-n

We omit the details.

Proof of Theorem 7.1. — Suppose E c: C" is pluripolar. By Siciak's
theorem, there exists \|/ e ^ such that E c= {\|/== - 00} and \|/(z) ^ log'^ z|.
Consider the psh functions

v|/,,(z) = max{ev|/(z) + (l-8)log+ |z , - 2-7}

and the balayage of \|/ej from the ball |z| ^7 ,

w,,,(z) = sup [u(z) : M e ̂ , «(z) ^ \|/e,/z) for |z| ^ 7}.

Let \vfj denote the uppersemicontinuous regularization of \v^j. Then
wfj e jy+ and has the following properties:

(i) \v*j is increasing as e \ 0;

(ii) e\|/(z) + (l-e)^-" |z[ ^ w*, ^ log-^ z|;
(iii) w*,(z) = w^.(Z) if z[ ^ 7 ;
(iv) (d^w^)" is supported in |z| ^7 .

Assertions (i), (ii), (iii) are clear from the definition of wfj, while (iv)
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follows from the method of Section 9 of [BT 1] (see e.g. Corollaries 9 3
9.4, p. 32).

We therefore have that H^.(z) ^ log'^ |z| for almost all z e C" as
e \ 0. Because of (iv) and Corollary 6.7, it follows that p^ ^ 0 at
almost all points of P""1 and, by the bounded convergence theorem,

lim f (-p^-^O.
e-»0 Jpn-1

Choose 8 = £j; \ 0 such that

| (-p^o"-^ f ip^.m71-^ i .jp"-i jp"-i
Let w, = w*^ for s = e^ and define

00

w(z) = ^ 2-^.(z).
7=1

Then (from (ii)), w is psh and w e ̂ . If |z| <; and \(/(z) = - oo,
then w,(z) = v|/^,,(z) = - 27, by (iii). Hence, w(z) = - oo on the set
\)/(z) = - oo . Finally, we have w e ^p by (ii) of Lemma 7.4, because
by (iv) of that Lemma,

r oc rw(7?a) da(a) - log 7? = ^ 2-7 (w(^a) - log R) da(a)
J - x = l 7=1 J|a'=l

00 /*

>. ^ 2-J(27t)-/^+l p*^-^ -(27l)-ra+l.
J=l Jp»-l

This completes the proof.

COROLLARY 7.5. - If E is a complete ^-polar set then E is a
complete ^p-polar set.

Proof. - By (ii) of the proof of Theorem 7.1, the function w(z)
constructed there has the property,

w(z) ^ ff 2-^^).
\j=i /

Hence, if E is a complete J^-polar set, i.e. E = {v|/= -oo}, then
E = {w== -00} is also a complete J^fp-polar set.
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PROOF OF THEOREM 7.2. - We have E = [U= -00} for some U psh
on C". By Corollary 7.5, it suffices to construct \|/ e SO such that

00

E = {v)/= -oo}. Choose ^ . - ^ + 0 0 so fast that ^ 2~71og^ = + oo
and set 7=1

^ ^ { z e C " : |z|^., C/(z)^-/}.

Choose c, so large that

(7.3) U(z) < c, for |z| ^ 7?,

and then choose e; so small that

(7.4) £,([/(z)-c,) ^ - 1, z e K ,

(7.5) e, (c,-£/) < 1 .
J\z\<f

Define

^.^ ^ fmax{8,(£/(z)-c,),log+|z|-logJR,•}, |z| ^ R,
1 log|z| - logRj |z| > Rj.

Then v|/̂  is psh and \|/̂  < 0 for |z| < Rj. Further,

f 1^1 ^ £ . f (c,-U(z))< 1.
J\z\<Rj J\z\<Rj

Thus
v|/(z) = ^ 2-^,(z)

j= i

is psh, since the sum is locally convergent in L1 and since, on any
compact set, the partial sums of the series are eventually decreasing.
Note that if U(z) = - oo and |z| < Rj, then \|//z) = log'^ [z | - logRj
so that \|/(z) = - oo, since ^2'^ogRj = + oo. Also, v(/(z) > - oo
if z ^ £, since if U(z) ^ - J, |z| ^ Rj, then

v|/(z) = f; 2-^,(z) ^ v|/(z) = ^ 2-;v|/,(z) + 'f 2-7 > - oo.
^1 j=l j=J

It remains to show that \|/e^f. But, \|/^(z) < 0 if |z| ^ Rj. And, if
|z| > ^,; then v|/,(z) = log |z| - logR, ^ log"" | z [ , so \l/(z) ^ log-" [ z | .
This completes the proof.
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Proof of Theorem 7.3. — We will only give the proof in case H is
an affine hyperplane. The general case results from applying the integral
formula with the hyperplane replaced by the hypersurface. We can
choose coordinates (s,t) = (s ,^. . .^n) on C" so that the hyperplane
is {s=0}. Then the analytic change of coordinate of Section 3, Zi = 1/s,
(zz, . . . ,Zn) = t / s maps {s=0} into the hyperplane at infinity in P^ and
E into a pluripolar set E^ c: C". Then choose u e J^p, u == - oo on
£'1. The function u(s,t) = u ( l / s , t / s ) + log |5| is — oo on E and

u(0,t) = p^r) + , l o g ( l + | r | 2 ) is not = - oo. Thus, {5 = 0} is not a
subset of E * .
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