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SMOOTHABILITY OF PROPER FOLIATIONS

by J. CANTWELI/1) and L. CONLON<2)

Introduction.

Let (At, F} be a foliated manifold. If QM ̂  0, we usually assume that
QM is ^-saturated. The manifold M is assumed to be of classe C°°, but
the foliation F may only be of class C°.

DEFINITION. — If F is given by a G71 atlas of foliation charts,
0 <, n <, oo, that are ^-compatible with the C°° structure of M, then
(M, F} is a ^-foliated manifold.

DEFINITION. — Let 1 <, n <, oo. The foliated manifold (M,.F)
is ^-smoothable if there exists a ^-foliated manifold (M',.F') that is
homeomorphic to (M, T).

Let N be a g-manifold. If q -f. 1,4 and if n > 0, there exists a C^
diffeomorphism / : TV —> N that is not topologically conjugate to one of
class C^1 [Harl], [Har2]. For q = 1 and n > 2, this is false by a theorem
of Denjoy [De]. For q = 4, it seems to be unknown. Using the suspension
of /, one shows that, in all codimensions other than 1 and 4, and for each
integer n > 0, there are purely topological distinctions between foliations
of class C71 and those of class C714"1.

In codimension one, however, there is an interesting class of foliations
for which there is no qualitative distinction between smoothness of class
C2 and that of class (7°°. This can be viewed as a partial generalization of
Denjoy's theorem.

(1; Work partially supported by N.S.F. Contract DMS-8420322.
{2) Work partially supported by N.S.F. Contract DMS-8420956.

Key-words : Foliation - Proper leaf - C^-smoothable - Epstein-Millett hierarchy.
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DEFINITION. — A foliated manifold (M,J*) is proper if each leafL of
T is proper. That is L\L is a closed subset ofM.

MAIN THEOREM. — Let M be a compact, orientable manifold, T a
transversely orientable C2 foliation of M of codimension one and tangent
to 9M. If (M,.F) is proper, then (M,.F) is C°°-smoothable and the C00

foliation can be required to be C°°-flat at the boundary.

Here, C'°°-flat at the boundary means that all holonomy around loops
in 9M is (7°°-tangent to the identity there.

Examples described in §5 show the necessity of requiring that all
leaves be proper and that (M,.F) be of class C2.

Our principal tools will be the Epstein-Millett hierarchy [M] for
proper (7°-foliated manifolds of arbitrary codimension and the Poincare-
Bendixson theory for totally proper leaves in compact, C^-foliated mani-
folds of codimension one [C.C2]. We will construct the smoothing home-
omorphism by transfinite induction on the hierarchy. Examples show (§5)
that the Epstein-Millett hierarchy for foliated manifolds as in the Main
Theorem can be order-isomorphic to any countable, non-limit ordinal.

The hypotheses of orientability and transverse orientability are in the
Main Theorem so that we might use the Poincare-Bendixson theory of
[C.C2] without change. There would seem to be no serious obstruction to
modifying that theory so as to avoid these restrictions.

There are other ways in which it is natural to try to sharpen the
Main Theorem. For instance, can one find a C°° subatlas of the C2 atlas of
foliation charts ? We think that this is generally impossible. Does our C°°
smoothing of the foliated manifold leave unchanged the C°° diffeomorphism
class of the underlying manifold M ? We do not know.

1. The Epstein-Millett hierarchy.

Let (M,.F) be a proper, C'°-foliated manifold of codimension g. It is
not required that M be compact. We sketch here the main facts from [M]
that will be needed subsequently.

A C'° atlas of foliation charts provides an imbedded g-manifold T C M
that is transverse to T and meets each leaf and has at most countably
many components. Let d : T x T —> [0,1] be a metric, compatible with
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the topology of T and such that d(x,y) = 1 precisely when x and y lie in
distinct components of T. We can assume that T meets each leaf at least
twice.

For x e T, let L^ denote the leaf of T through x. Define a : T -^ R
by

a(x) = in{{d(x,y)\x + y e L^ H T}.
This function is upper semicontinuous.

LEMMA 1.1. — Let X C T and a? € X. Ifa|X is continuous at x, then
there exists e > 0 such tAat the e-neighborhood ofx in X meets each leaf
ofy at most once.

Proof. — Since L^ is proper, a(x) > 0. By continuity, find e > 0 such
that y e X and d(x,y) < e imply that a(y) > 0. D

DEFINITION. — IfY C M is an ^-saturated subset and L CY is a
leaf, then L has locally trivial holonomy pseudogroup relative to Y if, for
each x € L n T, there exists a neighborhood ofxinYnT that meets each
leaf at most once.

COROLLARY 1.2. — Let Y C M be a closed, ^-saturated set. Then
the union of leaves having locally trivial holonomy pseudogroup relative to
Y is relatively open and dense in Y.

Proof. — The set of points of continuity of the upper semicontinuous
function a\(Yr\T) is dense in the locally compact, second countable metric
space Y H T (in fact, it contains a dense Gg [F, p. 39, Lemma 1.28]). Now
apply (1.1). n

THEOREM 1.3 (Millett). — There is a unique countable ordinal
7 = 7(M, .F) and a unique nitration

0 = Mo C Mi C . . . C Ma C . . . C My = M

by open, ^-saturated subsets, order-isomorphic to the ordinals 0 < a < 7,
sucA that

(1) Ma is dense in M, 0 < a < 7;

(2) if a is a limit ordinal, then Ma = !7o</?<aA^;

(3) MQ+I\MQ ^ 0 and is the union of all leaves that have locally
trivial holonomy pseudogroup relative to M\MQ, 0 < a < 7.
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Proof. — The conditions dictate the transfinite inductive construc-
tion. Indeed, MQ = 0 is given and, if M^ has been defined, 0 < f3 < a,
then either a is a limit ordinal and Ma is defined by (2) or a = /3 -h 1 and
Ma\Mff = M(3^\Mft is defined by (3). By (1.2), M^\M^ is open and
dense in M\M^, hence M^+i = Ma will be open and dense in M.

Define 7 = 7(M, F} to be the least ordinal for which M^ = M. Then
7 is least such that My = My+i. Let {(/J^i be an enumeration of a
countable base for the topology of M. For 0 < a < 7, let i(a) be the least
integer such that Ui(a) c Af^+i, but Ui(a) 2 Ma. Then 0 < a < f3 < 7
implies that i(a) / i(/?), so 7 is countable, n

-RemarJc. — IfM and all leaves off are compact, this filtration ofM
coincides with the Epstein filtration [E], [E.M.S].

DEFINITION. — Let Y C M be an J='-saturated subset, L C Y a
leaf. Then L is stable relative to Y if, given x € L H T, there exists a
neighborhood K of x in Y H T and an imbedding i : V^ x L -^ M such
that i({y} x L) = Ly, for each y e Vs.

COROLLARY 1.4. —IfM is compact, (M, F} is proper, codim(J') = 1,
and T is tangent to 9M, then the filtration {Ma}o<a<'y has the property
that each leaf of Ma^.i\Ma is stable relative to M\Ma, 0 <: a < 7.

Indeed, for a = 0, this is Inaba^s stability theorem [I]. In general, it
is the essential content of Dippolito's semi-stability theorem (see (2.3)).

DEFINITION. — Let L be a leaf of F. Then 7(L) < 7(M,.F) is the
least ordinal such that L C M^).

LEMMA 1.5. — For each leaf L ofF, 7(L) has an immediate prede-
cessor 7(L) — 1. D

LEMMA 1.6. — Let codim(.F) = 1 and let M be compact. Let L and
L1 be leaves otT with V C ~L\L. Then 7(L) < 7(Z/) ~ 1.

Proof. — Since L is asymptotic to V and L' is stable relative to
M\My(^)_i (1.4), it follows that L C My(^)_i. D
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2. Open, saturated sets in codimension one.

Assume that M is a compact n-manifold, that T is transversely
oriented, that codim^) = 1, and that F is tangent to QM. Let O(^)
denote the family of open, ^-saturated subsets of M. We review basic
facts about the members of 0(^*). Few proofs will be given since details
(modulo notation) are readily available elsewhere [Di], [C.C2], [H.H], [G].

A. The C° case.

We assume that T is integral to a C°(n — l)-plane field and we fix a
choice of one dimensional C°° foliation .F-1-, everywhere transverse to T. In
standard fashion, T1- induces a C°° structure on each leaf of T relative to
which the leaf is C°° -immersed in M. Indeed, let {(7a,a^,a^,... ,a?S}a€a
be a C°° foliation atlas for F1-, so that the change of coordinates on overlaps
is of the form

^^^(^.....^-^.l^Kn-l,

^=^(4--^)-
Thus, the first n — 1 coordinates restrict to define coordinate charts on
leaves of J', the resulting atlas on each leaf of F being C°°. Each leaf
of F1' is oriented by the transverse orientation of .F, hence we can use
interval notation [x,y], [x,y[, etc., for subarcs of leaves of ^'-L, and we do
so wherever convenient. By parametrizing ^7± as a nonsingular, local C°°
flow, we can regard these as actual subintervals of R.

For U € O(^), the metric completion U [Di], [C.C2], [H.H], [G] is a
manifold with boundary, generally noncompact. The inclusion i : U —> M
extends to an immersion i : U —»• M that carries each component of
9U diffeomorphically onto a leaf of F, but may identify some of these
components pairwise.

DEFINITION. — The border ofU is 6U ==?(cM7).

DEFINITION. — The foliation F, tangent to 9U, is thepulback^'1^).
Similarly, T^ = ?-1 (^•-L).

DEFINITION. — The foliated manifold ((7, F) is a foliated product if
there is a homeomorphism U ^ L x [0,1] that identifies the leaves [x, y] of
F1- with the factors {x} x [0,1], a; € L.
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If (U^F) is a foliated product, we say also that U or U is a foliated
product. The most important property of a foliated product is that (U,F)
is completely described by the total holonomy homomorphism y?: 7Ti(L) -+
Homeo-(-[0,1], In particular, if we take into account the C°° structure on L
induced by J7-1-, the following is clear.

LEMMA 2.1. — Let U C 0{F) be a foliated product, U ^ L x [0,1] as
above. Then the foliated manifold (U, F) is C^'-smoothable, 1 < n <, oo,
if and only if there exists h € Homeo-(-[0,1] such that h((p(7r^(L))h~1 C
DifF^O,!].

If U € 0(3^) is connected, but U is not a foliated product, the
structure is somewhat more complicated. There is a decomposition U =
K U V\ U ... U Vr, r > 0, with the following properties :

(1) The "nucleus" K is a compact, connected n-manifold, with corners
if r ^ 1. The corners divide 9K into submanifolds 9rK, to which f is
tangent, and QfrK, to which F is transverse. The corners are "convex"
relative to .77, meaning that the local model is ^oc^x^ootxR71"2 with
leaves {t} x [0, co^xR71"2. Each component of 9rK lies in a component of
9U and the components of these manifolds thereby correspond one-one.
The manifold Q^K is .F-^saturated. Of course, if r = 0, then K = U and
there are no corners, perhaps even no boundary.

(2) Each "arm" Vi is homeomorphic to Bi x [0,1] with Bi x {0}
and B1 x {1} each a complete, noncompact, connected submanifold of 9U.
Again, (V^^l^i) has convex corners. The leaves of F1' are the compact
intervals {x} x [0,1], a: € JB1. If i + j, then Vi H Vj = 0. Finally, 9Bi

is compact and connected, and the components of 9irK are exactly the
manifolds Q^V, = K n V, = (OB1) x [0,1], 1 < i ̂  r.

Thus, when U € 0(^~) is connected, U is a kind of "octopus" with
r arms and 9U has only finitely many components. The induced foliation
J'\Vi is completely described by the total holonomy homomorphism (pi :
TI-I (2?1) —> Homeo+[0,1] and the analogue of (2.1) holds.

DEFINITION. — A decomposition U = K U Vi U ...UVr as above is
called a Dippolito decomposition.

We will find the following fact to be useful [Di, Theorem I], [H.H,
V.3.2.6].

LEMMA 2.2. — If U € O(^), then all but finitely many components
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of U are foliated products.

DEFINITION. — Let U € 0(F) and let L be a component of9U. Let
[x,y[ be a subarc of a leaf of T1- such that x € L. Let Fix(L) = {z €
}x,y[\LzC\}x,y[= {z}}. If, for y sufficiently near x, Fix(L) clusters at x, L
is said to be semistable. Otherwise, L is said to have unbounded holonomy.

This definition of unbounded holonomy is equivalent to that of J.
Plante [P, Lemma 5.1]. The term "semistable" is justified by the following
result of Dippolito which, in fact, is a sharper version of [S.S, Theorem 1].

THEOREM 2.3 [Di, Theorem 3]. — IfL is semistable, then there exists
x € Fix(L) and an imbedding j : L x [x, z] -> U such that

(1)j\(Lx{x})=id^
(2)j|(Mx[rc,^])=id[^];

(3) j({y} x [x,z]) is a subarc of a leaf of J^-, for eacA y € L;

(4) w e Fix{L)iff j(L x {w}) is the leaf of T through w,x <w < z.

A short proof of (2.3) will also be found in [C.C2].

DEFINITION. — IfL is a component of9U and j : L x [x,z] —> U is
an imbedding satisfying (1), (2), (3) of (2.3), along with the property that
j(L x {z}) is the leaf of T through z, then im(j') is a foliated collar ofL.

PROPOSITION 2.4. — Jf the component L of9U has a foliated collar,
it has a maximal one.

Proof. — The foliated collars of L form a linearly ordered set under
inclusion. We can find a possibly infinite sequence of such collars,

L x [x, z^\ C ... C L x [x, Zk\ C ...,

such that each foliated collar is contained in some L x [x,Zk\. There is a
maximal foliated collar if and only if this sequence is finite, so we suppose
it to be infinite.

Let U = K U Yi U ... U Vr, V, = B1 x [0,1], 1 < i < r, be
a Dippolito decomposition and assume, without loss of generality, that
x C 9B1. Thus, [x,Zk\ can be identified as [0,^;], 0 < tk < 1, where
{^}^i is a strictly increasing sequence. Choose the indices i = 1,.. .r so
that L == A U B1 U ... U B5, some s < r, where A = K n L C Q^K.
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Let t^ = limfc-»oo(^) < 1. If we show that the leaf L^ through! t^
bounds a foliated collar, we will have the desired contradiction.

Since tk is fixed by y?i(7Ti(B1), for each k > 1, so is t^. Thus, the
connected component of L* H V\ that meets t* projects homeomorphically
onto B1 along the fibers of F^V^.

Realize 7Ti(A) as 71-1 (A, re). Then each element of 71-1 (A) has holonomy
defined on [0, t^ [ and this holonomy fixes each 4. Thus, T\K has a compact
leaf Ajfc ^ A that meets tjfc, for each k > 1. We need to show that this
foliation has a compact leaf A* meeting t* that is the uniform limit of
{Ajk}^i. After doubling (K,J^\K) along Q^K^ then doubling the resulting
foliated manifold along its (tangential) boundary, one obtains a closed,
foliated manifold and a sequence {2Afc}^ of closed leaves. An application
of [Hae, (3.2)] then yields the desired result.

Finally, the argument given for V\ above can now be used in each V{,
using basepoints xi e 9B^ in place of x, 2 < i < r, to obtain the fact that
the leaf L^ through t^ bounds a foliated collar of L. o

DEFINITION. — Let U € 0(F) be connected. Then the core U^ €
0(F} of U is the complement in U of the union of the maximal foliated
collars of those components of 9U that admit foliated collars.

Remarks. — The core (7+ is empty if and only if U is a foliated
product. Furthermore, U^ is connected and, by (2.3), each component of
QU^ has unbounded holonomy.

DEFINITION. — A connected element U € O(^) is irreducible if no
component of 9U has a foliated collar other than U itself.

Remarks. — If U is not a foliated product, it is irreducible precisely
when U = (7+. In any case, each component of 9U has unbounded holonomy
whenever U is irreducible.

B. The C2 case.

In addition to the properties in part A, we assume that (M,.77) is
smooth of class (72.

THEOREM 2.5 (Hector). — Let U € 0(F) and let L be a leaf of F\U.
Then L H U contains a minimal set of T\0. The union X of all minimal
sets ofF\U is a relatively closed subset ofU.
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COROLLARY 2.6. — Suppose that (M,.F) is proper, U € O(^), and
let L be a leaf of F\U. Then Ln U contains a leaf LQ that is relatively
closed in U. The union X of all leaves that are relatively closed in U is
itself relatively closed in U,

Remarks. — Smoothness of class C2 is essential. A proof of (2.5) will
be found in [C.C2]. This result essentially goes back to Hector's thesis.

Let 0 1=. U € O(^), assume that (M,J') is proper, and set Ua =
U n Ma, 0 < a < 7(M,.F). If 7((7) denotes the least ordinal such that
U^(u) = ^7(10+15 then {Ua}o<a<'y(u)^ ls the Epstein-Millett filtration of
((7,JF|(7).Weset7(0)=-l.

PROPOSITION 2.7. — Let (M,,F) be proper, let 0 ^ U € O(^), and
let X be the union of the leaves of F\L! that are relatively closed in U.
Then each component W ofU\X has ̂ (W) < /y((7).

Proof. — If U == X, then ^/{W) = 7(0) = -1 and we are done. Thus,
assume that W ^ 0 and remark that, by (2.6), W € O(^) and W + U.

Let L C W be a leaf. Then L g X, but there exists a leaf LQ C LH X
(2.6). By (1.6), it follows that 7(L) < 7(1.0) - 1 < 7((7).

But Z/o C 6W. Otherwise, the fact that L is asymptotic to LQ would
force some leaf of 6W to be asymptotic to Lo, contradicting the fact that
6WCXU6U.

Since W is connected, 6W contains only finitely many leaves and
there are only finitely many possibilities for 7(1/0). It follows that there is
an ordinal a < ̂ (U) with 7(L) < a, for each leaf L of J^\W. n

3. The Poincare-Bendixson theory
of totally proper leaves.

Fix the hypotheses that (M,.F) is a compact, C2 -foliated n-manifold
of codimension one, that M is oriented, and that T is transversely oriented
and tangent to QM. Thus, each leaf of T is oriented, as is each leaf of f^.

DEFINITION. — A leafL oiT is totally proper if L is a union of proper
leaves.
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LEMMA 3.1 (A special case of [C.C2, (4.7)].). — IfL is totally proper,
then L is a finite union of totally proper leaves.

By contrast, if L is not totally proper, the results of [C.C2] imply that
L is the union of uncountably many leaves.

By (3.1), the level of a totally proper leaf is an integer k > 0, well
defined as follows.

DEFINITION. — Let L be a totally proper leaf of T. IfL is compact,
then level(L) = 0. If the maximum level of any leaf in L\L is k > 0, then
level(L) = f c + l .

For L totally proper, the Poincare-Bendixson theory of [C.C2,§6] gives
a detailed description of how L winds in on the finitely many leaves of
L\L. We review this carefully since it is crucial for our construction of the
smoothing homeomorphism.

DEFINITION. — Let [ x ' y x ] be a subarc of a leaf of y^ and let L' be
the leaf of T through x ' . If}x',x\ n V = 0, we say that x projects (in the
negative direction) to L' and we write p(x) = x ' . Projection in the positive
direction is defined analogously by using a subarc [x.x'}.

Let L and V be leaves of T and let B C L be a complete, noncompact,
connected submanifold of dimension n — 1, with NQ = 9B compact and
connected. Suppose that each point of B projects to H . Remark that
p : B —>• L' is smooth and locally a diffeomorphism. Let N = p(No).

The following generalizes the usual Poincare-Bendixson picture of a
flow line in R2 winding in on a periodic orbit.

DEFINITION. — The projection p : B —> L' in the negative direction
(respectively, in the positive direction), as above, is a spiral on the positive
side (respectively, on the negative side) ofL' if

00 f

(a) B = U Bi, where each Bi is a complete, connected, (n — 1)-i=o
manifold;

(b) Bi n JE^+i = IVi-n is a common boundary component of Bi and
Bi+i, for each i > 0, No = 9B is a component ofQBo, and j> 2 implies
that Bi n Bi+j = 0, for each i > 0;

(c) p\Ni carries Ni diffeomorphically onto N, for each i > 0;
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(d) y € L' implies that p"^) H (B,\̂ +i) is a singleton {^}, for
eacA i ^ 0;

(e) for eacA ?/ € L', p"1^) = {yj^o converges monotonicaUy to y
in [V^yo] (respectively, in [yo,y}).

As an example, take V to be the toral boundary leaf in the Reeb
foliation of S1 x D2. If L is one of the planar leaves, then B ^ S1 x [0, oo[
is the complement of an open disk in L and spirals on L7. One can take N
to be a meridian circle {z} x QD2 on L' and each Ni to be S1 x {i}. The
projection p : B -> V carries Bi = S1 x [i,i + 1] onto V\ identifying both
boundary components to N.

For a picture in which I/ is not a compact leaf, see [C.C2, p. 201].

DEFINITION. — TAe manifold N C L' is called the juncture of the
spiral p : B —^ L ' .

Remark that the juncture is a compact, connected, oriented, non-
separating submanifold of L' of codimension one and that each Bi is
diffeomorphic, via p, to the manifold obtained by cutting L' along the
juncture.

The juncture N is Poincare dual to a class (pjq € -ff^(I/;Z). If a is
a loop on L' based at y , the holonomy ha is defined on [y, yk] with image
in [i/,2/o], k sufficiently large, and M%) = VJ^N^ for each j > k. In
particular, we can fix a loop TO on L' that crosses N just once and such
that TO lifts to a path on B starting at yo. Hence, hro ; [y,yo] —> [y, Yo] is
defined and hro(yj) = i/j+i, for each j > 0.

Compactness of the juncture will be essential. We remark that there
is a C1 foliation of T3 having a totally proper leaf diffeomorphic to R2 that
"spirals" on a leaf diifeomorphic to S1 x R, but with noncompact juncture
N = {z} x R C S1 x R [C.C1, pp. 248-249]. In this case, the Poincare dual
<pN € H1^1 x R; Z) is not compactly supported. Such behavior is excluded
by our definitions, hence the following result requires the C2 hypothesis.

PROPOSITION 3.2 [C.C2, (6.3)]. — Let L be a totally proper leaf at
level k > 1, X C L a compact subset. Then there exists a decomposition
L = A U B1 U ... U ̂ r, where A is a compact, connected (n — l)-manifoid,
X C int(A), eaci B3 is a complete, noncompact, connected (n—l)-manifold
with compact, connected boundary and

(a) A n B3; = QB3 is a component ofQA, I <, j <, r;
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(b) there is a spiral p1 : B3; -^ U'\ where L3 is a leaf in Z\L, 1 <, j <, r;
(c) for at least one value ofj, level^) = k — 1.

COROLLARY 3.3 [C.C2,§6]. — Let L be a totally proper leaf at level
fc. Then L has exactly polynomial growth of degree k.

Our only interest in 3.3 will be in §5, where we use (3.3) to show that
certain proper foliations are not C^-smoothable. On the other hand, (3.2)
itself is fundamental to the proof of the Main Theorem. The following is
proven in [C.C2,§6] in the course of proving (3.2).

PROPOSITION 3.4. — If L and L' are proper leaves of F and L
approaches L' from (say) the positive side, then there exists a spiral
p : B —»• L' on the positive side ofL'.

Let p : B —^ L' be a spiral on (say) the positive side of Lf'. If
x € BQ\N^, then B H \p{x},x\ = {xi}^Q, each Xi € Bi\N^ and XQ = re.
Let

7T : Bi\Ni^ -^ Bz+lW+2

be the diffeomorphism defined by Tr(a^) = a^-n. Then TT : B —» B is a
C°° imbedding with 7r(B) = U J3i. Here, as always, we are using the (7°°

i>l
structures on the leaves of T that are induced by .7 .̂

We obtain a "collar" C of V in M by setting C = U \p(x),x\.x^Bo\Ni
This is a manifold with corners, the connected components of the corners
being No and M. Projection p : C —^ L' is well defined and can be viewed
as a "fibering" of C over L'. The fiber p~l(y) is the leaf of F^C that
meets y. The induced foliation T\C decomposes QC into QrC = BQ U V
and 9trC = U [7r(a;),rc]. The corner No is convex and the corner N]_ isx^Noconcave.

DEFINITION. — The foliated manifold (C^F\C) with corners, together
with p : C —^ L ' , is called a spiral collar of the leafL'.

Loops a on Z/, based at y^ define holonomy hy on subarcs [ y , z ] C
P"1^)- Generally, the maximal such subarc depends on the loop a, so the
situation is less comfortable than in the case of an honest foliated bundle.
With care, however, one can mimic much of the theory of foliated products.

DEFINITION. — Let L be a connected, oriented manifold and let
N C L be a (possibly empty) compact, connected, oriented, nonseparating
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submanifold of codimension one. Let y € L\N. A collection G of oriented
loops {ri}i>o on L, based at y , is a generating system for 71-1 (£,y) that
respects N if

(1) G is a system of generators for 7Ti(L,y) ;
(2) ifN ^ 0, TO meets N exactly once and has homological intersec-

tion number TQ * N = 1;
(3) Ti lies in L\N, for each i > 1.

PROPOSITION 3.5. — Let [C,F\C) be a spiral collar of the leaf L'
and let N C V be the juncture of the spiral p : B -^ I/. Let y € L'\N
and let G = {r^i^o be a generating system for 71-1 (I/, y) that respects
N. Then hr, : P~l(y) -^ P~l(y) is defined, for each i > 0, faro is a
C2 contraction of p~l(y) to y , and fa-r. e Diff^p"1^)), for each i > 1.
TAe spiral collar is completely determined (up to a C2 diffeomorphism
that preserves all relevant structure) by {Ar.}»>o- The foliated manifold
(C,y\C) is C^-smoothabie, 2 < r < oo, if and only if there exists
h € Homeo-i^p""1^)) and a C7' contraction / of p~l(y) to y such that,
for each i > 1, hhr,h~~1 € Diff^p-1^/)) and hh^ = fh.

The proof, which is completely analogous to that of the corresponding
theorem about foliated bundles, is left to the reader.

DEFINITION. — Let p : B —»• L' be a spiral with juncture N, y €
L'\N, p"1^) = [y,yo], and let G = {r^i^o be a generating system for
Ti-i (I/, y) that respects N. The p-lift of G is the generating system G(B)
for 71-1 (B,yo) consisting of the p-lifts r^k of the loops r^TiT^ to loops on
B at yo, i >. 1, fe > 0.

Let W € 0(^F\C) be the .F|C'-saturation of the open arc }yi,yo[=
M2/o), 2/o [. Then W ^ B x [yi,yo] and?:jy -^ C carries W onto C\L'. If
a? € B, then, relative to the identification W = B x [3/1, yo], ^(^, 2/o) = ^ and
i(a:, 3/1) = 7r(a:). If a is a loop on B based at yo, view a as a loop on B x {yo}
based at (2/0,2/0), and let fa^ € Diff^.[2/i,2/o] denote the corresponding total
holonomy for W.

LEMMA 3.6. — If there exists h € Homeo+b/i, yo} such that hhyh is
an element ofDiff^b/i,^] and is C^-Qat at y\ and VQ, for each a € G(B),
then h defines a C'00-smoothing of(C'\Z/,.F|(Cr\Z/)).

Proof. — By (2.1), h defines a C^-smoothing of (W,:F\W) so that
the smoothed foliation is C°°-flat at QrW. By the above remarks, C\L'



232 J. CANTWELL, L. CONLON

is obtained by gluing B x {y^} to 7r(B) x {yo} via the diffeomorphism
that takes (a?, y^) to (7r(x),yo), for each a; € B. The C700 structure on the
resulting manifold is provided by [W,(2.2)]. D

PROPOSITION 3.7. — In order that (C,J^\C) be C00-smoothable so
that the smoothed foUation is C°°-nat at 9r(C), it is sufficient that, for
suitably chosen functions e : G(B) —»]0,oo[ and v : G(B) —> Z'1", there
exists a smoothing homeomorphism h € Homeo-i-[^i, i/o]? as ln f3.6^, with
the property that hhyh and its first i/(a) derivatives are e(a)-close to
the identity and the corresponding derivatives of the identity, uniformly
on [2/1,2/0]? for each a € G(B). This extends the smoothing induced on
(G\£',JF|(C\r)) by h, as in (3.6).

Proof. — Let / be an orientation preserving C°° diffeomorphism of
[y,yo] onto [y,yi\, C°°-nat at y and such that f(z) < z for y < z <, yo.
For arbitrary e, ^, h as in the hypothesis, define h € Homeo+^yo] by
h\[yk+i,yk\ == /^^To ' t01" eac^ k >0, and h(y) = y. Then hhro = fh on
[y,yo]. If we set y^ = fk(yo), then fa^+i,^] = [3/fc+i,2/A;]-

Let i >, 1 and let /i^ = hh^h"1 € Homeo+^^/o]- Then the element
^Ill/fc+i,^] = fk(^r^~l)f~k € Diff^[2/^i,]/J is C^-fiat at 2/^1 and
2/^. Thus, hi is (7°° on ]y,2/o]- So far, this amounts to a smoothing of the
foliated manifold {C\V'^[(C^I/)), diffeomorphic to the one defined as in
(3.6) by this same h.

We can now specify how the functions £, v are to be "suitably chosen".
The choices should be such that /^|[i/^i,t/J is (l/fc)-close to the identity
in the C^-topology on Diffy[^.^,|/jJ, for each k > 0, for each i > 1. Then
hi € Diff^° [y, yo] and this deformation is C'°°-flat at y and yo, for each
i > 1. Now apply (3.5). n

The vagueness about "suitably chosen" in the statement of (3.7) will
cause no logical problems. The proof of the Main Theorem, by induction
on Epstein-Millett hierarchies, will have an inductive hypothesis that h can
be chosen as in (3.7) for each arbitrary choice of £:, v. A concept needed for
the appropriate formulation of this inductive hypothesis is the following.

DEFINITION. — Let L be a totally proper leaf at level k and let
N c L be a (possibly empty) compact, connected, oriented, nonseparating
submanifold of codimension one. Let XQ 6 L\N and let L = AU.B^U. . .\JBT

be as in (3.2), with N U {xo} C int(A). An admissible generating system
G(L) for7Ti(L,a:o), respecting N and the decomposition ofL, is defined by
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induction on k as follows :

(1) J f f c = 0 , then L = A and G'(£) is any finite generating system
respecting the submanifold N.

(2) If k - 1 > 0 and level (L) = k, let Nj be the juncture of
pi : B3 -^ L3, as in (3.2), 1 < j < r. Since level(Z^) > k - 1, we choose an
admissible generating system G(L3) for ̂ (L3^3) that respects both N3

and any appropriate decomposition ofL3. Let G(B3-) be the p1-lift ofG(L3),
based at x^ € B^, and let aj be a path on L\N from XQ to x^, 1 < j < r.
Let G(A) be a finite generating system for 7Ti(A, XQ) that respects N. Then
set

G(L) = G(A) U a^G{B1)^ U ... U a^G^Or.

LEMMA 3.8. — Let G(L) be an admissible generating system for 7Ti(L,a?o)
respecting the decomposition L = AUB1 U.. •UB7'. Let X C L be compact.
Then G(L) also respects a decomposition L = A^ U B\ U ... U Bl, as in
(3.2), such that X C int(A^).

The proof of (3.8) is a straightforward induction on level(L). The
inductive hypothesis is applied to the compact sets ^(X H B3) C L3,1 <,
J < r .

If ((7, F\C) is a spiral collar of L', and p : B —^ V is the spiral, then
the general leaf of F\C need not itself be a spiral on Z/. Those that are
spirals must be parallel to B in a fairly obvious sense. These parallel spirals
exactly correspond to the fixed points in [3/1, yo\ of the total holonomy group
of the arm (W,r\W).

LEMMA 3.9. — Let (M, F) be proper. Let U € 0(.F) be connected
and irreducible, V a component of 9U. Then L' has a spiral collar C C U
with associated spiral p : B —> L'. If L is a leafof F\U that is closed in U,
then L H C is a finite union of spirals parallel to B.

Proof. — Existence of the spiral collar is by (3.4). If L n C + 0, then
L meets [2/1,2/0] in a finite set of points. This is because L is closed in U.
It follows that each component of L H C meets [2/1,3/0] in points fixed by
the total holonomy group of (IV, ̂ [IV). Such points correspond one-one to
spirals parallel to B, so each component of L H C is such a spiral, a

DEFINITION. — A Dippolito decomposition U = K U V\ U ... U Vm
is admissible if, for each j € {1,... ,m}, ^(9r(Vj)) consists of one or two
parallel spirals. If fP : B3 —> L3 is one of these spirals with juncture N3,
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then G{Vj) denotes the pf-lift G(Bj) of a generating system G(L3) for
71-1(1 )̂ that respects N3.

Applying (3.2) to the components of 6U, one easily proves the
following.

LEMMA 3.10. — If the leaves of6U are totally proper, then U has an
admissible Dippolito decomposition.

LEMMA 3.11. — Let (M, F) be proper and let U e 0(F) be connected
and irreducible. Let U = K U V i U ...UVm be an admissible Dippolito
decomposition. Let X denote the union of the leaves of 7\U that are
closed in U and let Y be a component ofU\X. Then there is an admissible
Dippolito decomposition Y = Q U V i U ... U Yg such that each arm Yj is of
one of the following two types :

(1) for some i(j) € {1,..., m}, V^j) ̂  B^ x [a, b] and Yj is of the
formB^ x[a,&] C Y .̂) ;

(2) for some component V of 9U, there is a spiral collar C ofL' with
p : B —> V the corresponding spiral, Yj C C, and 9r(Yj) consists of spirals
parallel to B.

Proof. — Clearly 6Y C X U 6U. We view components of 9Y as leaves
in 6Y. If such a component clusters on a component L' of 9U, then (3.9)
implies the existence of finitely many arms of Y satisfying (2). If Vi is an
arm of U and Vi H I/ ^ 0, V a component of 9U, then each component of
6Y H Vi must either be part of a spiral onto L', as above, or it must border
an arm Y ;̂ of Y as in (1). Evidently, Y contains only finitely many arms
of these two types and, since 6Y C X U 6U, these arms exhaust all but a
bounded portion Qo of Y. The closure Q of QQ is the desired nucleus, n

/
When L' is the boundary leaf of a foliated product, all of the above

simplifies considerably.

DEFINITION. — Let L and V be totally proper leaves and suppose
that L projects toZ/ . J fL= U Bi in such a way that p\ U Bi is a spiral

i6Z i>n
onto L', for each n e Z, we say that p : L —> V is a doubly infinite spiral.

In particular, a doubly infinite spiral p : L —> V is an infinite cyclic
covering.
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LEMMA 3.12. — Let U e O(^) be a foliated product and let L' be a
component of QU. IfU is irreducible and ifL is a leafofy\U that is closed
in U, then projection along the leaves ofF^ defines a doubly infinite spiral
p : L -> L' and all leaves ofy\U that are closed in U are parallel to this
doubly infinite spiral.

This is an easy consequence of (3.9). In fact, one can see that every
doubly infinite spiral arises in this way.

DEFINITION. — Let U be an irreducible foliated product, L' a com-
ponent of9U, and p : U -^ V projection along the leaves of F1-. Let L
be a leaf of F\U that is closed in U. Let N C V be the juncture of the
doubly infinite spiral p : L —> I/, iet y € L'\N, and iet yo € p"1^) H L. If
G = {ri}i>o is a generating system for ̂ (L^y) that respects N, then the
p-lift ofG to yo is the set of lifts r^k ofr^TiT^ to loops on L at yo, for
each i > 1, for each k € Z.

LEMMA 3.13. — Let 17, p : L ̂  L ' , and N be as above. IfG(L1) is an
admissible generating system for -K^L'y) that respects N, then the p-lift
of G(L') is an admissible generating system G(L) for 7Ti(L,2/o)-

Proof. — Index L = U Bi so that yo € int(^o). Let G(L') respect
a decomposition L' = A' U B1 U ... U B9 with N C mi(A'). Denote by A
the manifold obtained by cutting A' along N and note that p determines
a natural identification Bo = A U B1 U ... U B9. Let B^ = U Bi and

i>l
B^2 = U_ Bi. Then L = A U B1 U ... U J^+1 U B^2 is an in (3.2) and,
clearly, G(L) is admissible, respecting this decomposition. D

4. Construction of the smoothing homeomorphism.

Fix the hypotheses of the Main Theorem.

A. Smoothing foliated products.

Let U be a foliated product and let L' be a component of 9U. Let
G(I/) be an admissible generating system for 7Ti(I/,a:o) and let [a:o»^o]
be the leaf of T 1 ' issuing from the basepoint XQ- We view [a?o,^o] as a
subinterval of R via a parametrization of T1' as a local C°° flow on M.

For each r € G(L'), the total holonomy hr € Diff^_[a:o,^o] is defined.
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Finally, let e : G(L1) -^]0,oo[ and v : G(Z/) -> Z+ be arbitrary.

PROPOSITION 4.1. — For each choice of the functions c, i/, there exists
h € Homeo+[a;o,^o] such that, for each r € <?(!/),

(1) hr = hhrh~1 € DifF^°[a;o,^o] a12^ is C°°-S.at at XQ and XQ ;

(2) hr and its first i/(r) derivatives are e(r)-close to the identity and
its first i/{r) derivatives respectively, uniformly on [xo^xo}.

Proof. — (1) If the assertions have been proven for the case in which U
is irreducible, they follow in general. Indeed, let 0 / Z = Fix(L') C]a;o,^o[-
The ^-saturation of Z is the union X of all leaves of J^\U that are closed
in U. If X = (7, then T is the product foliation and all assertions hold
trivially. Assume that X ^ U and let {Wa}ae.A be the set of components
of U\X. By second countability, we can take A C Z4'. Each Wa is a
foliated product and is irreducible, with total holonomy group defined on
[aa,&ct] = [^05^0] H Wa' Via the projection p : U —> L' along the leaves
of .F^, the admissible generating system G{L') lifts one-one to admissible
generating systems on the components of QWa, for each a € A Identify
these with G(I/). Choose Ca : G{L') -^]0,oo[ so that ea(r) < e(r) and,
if A is infinite, linia-^oo^aM = O? tor each r € (?(!/). Similarly, choose
I/a ^ G'(Z/) —^ Z"1" so that z/^(r) > i/(r) and lima-^oo^aO') = oo (if ^4
is infinite). If a € ^4, apply the assertions to Wai using the functions £a
and z/cn to produce the smoothing homeomorphism ha € Homeo+Iaa,^].
Define /i|(Z U {xQ.Xo}) to be the identity and A|[aa,&a] to be ha, for each
aC A.

(2) If U is irreducible, let X denote the union of the leaves of ^{U
that are closed in U. By (2.6), X is closed in U and is nonempty. The
leaves L C X are mutually parallel, doubly infinite spirals p : L —> t!
(3.12). Let N C L' be the common juncture of these spirals. Since only the
homology class of N really matters, we assume, without loss of generality,
that XQ € L^N.

By (3.8), G(L') respects a decomposition L' = A U B1 U . . . U B7' such
that N C int(A). If (?(!/) = G(A)Ua^lG(Bl)a^U...Ua^lG(Br)ar, then,
by a different choice of the finite generating set G(A) and of o-i,... ,0-7.,
we obtain an admissible generating system {Ti}i>o that respects N. The
assertions to be proven hold relative to the one system and arbitrary
choices of e and v if and only if they hold relative to the other system
and arbitrary choices of e and i/. Thus, without loss of generality, assume
that G(I/) == {rjix) respects N. In particular, hro € Diff^_[a;o,^o] is a
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contraction of [rro,^o[ to XQ. By (3.13), the p-lifts of G(L') to leaves L C X
are admissible generating systems G(L).

We will prove the assertions by induction on "y((7).

(3) Let U be irreducible and ^(U) = 1. Then hr, = id, for each i > I.
But hro is topologically conjugate to every / € Homeo+[a:o,^o] that is a
contraction of [a;o,^o[ to ^o» so all assertions follow.

(4) Let U be irreducible and 7((7) = a > 1. Assume, inductively, that
the proposition holds whenever 7((7) < a.

Let L C X be a leaf. Let W = U\L € O(J') and remark that TV is a
foliated product, irreducible if and only if L = X. If W is irreducible, then
7(WQ < 7((7) by (2.7). Alternatively, let V be any component of W\X and
use (2.7) to get -/(V) < ̂ (W) < 7(t7).

If W is irreducible, we apply the inductive hypothesis so as to suitably
smooth (TV, :F\W).

If W is not irreducible, we apply the hypothesis to each component
V of W\X and argue as in step (1), again suitably smoothing (VF.^jW).

Since F\W is now C^-flat at 9W, we obtain a C°° smoothing of
(Uy^U) by the argument in (3.6). To complete the inductive step, we
must extend the smoothing to ((7,.F). But the choice of e and v has been
arbitrary, so we choose e smaller, if necessary, and v larger, if necessary, so
as to apply (3.7) to spiral neighborhoods C of each component L' of 9U.
Since the smoothing induced on C\L' = C H U by the smoothing of C is
diffeomorphic to the one induced from (7, these smoothed collars can be
attached to U via C°° diffeomorphisms, achieving the desired smoothing
of(C7,.F). D

B. Smoothing the general U.

Let U € O(^) be connected and choose an admissible Dippolito
•^ -^ 771

decomposition U = K U Vi U ... U Vm (3.10). Let G(U) = U G(Vj) and

let e : G(U) -+](), oo[, v : G(U) -» Z4" be arbitrary. Let Ij denote the leaf
of ^'-L, a fiber of Vj, on which the total holonomy ha is defined, for each
a € G(Vj), 1 <, j <, m. As usual, we have an identification of Ij as a
compact subinterval of R.

PROPOSITION 4.2. — TAe C2-foliated manifold (17, .F) is Aomeomor-
pAic to a C°° -foliated manifold (U^F) such that
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(1) J-is C00-flat at 9(7;

(2) tie smoothing homeomorphism h : U —^ U carries Ij onto itself,
1 < J] < f, so let hj = h\Ij € Homeo+(J^) ;

(3) tie total holonomy ^ = hjhahj1^ Diff^(^)) and its first
^(cr) derivatives are e(a)-close to the identity and its first y(a) derivatives
respectively, uniformly on Ij, for each a € G(Vj), 1 < j< m.

Proof. — (1) By (4.1) and (2.4), we can assume that U is irreducible.
In particular, each component of 9U has a spiral collar in U (3.9).

(2) Suppose that ^(U) = 1. That is, F\U is without holonomy. If
U = M = £/ and 9M = 0, then JT fibers M over 51 (Reeb stability)
and C'°°-smoothability is trivial. If 9U ^ 0, the parallel spirals onto
any component of 9U can be used to construct, in standard fashion, a
closed transversal E to F\U that meets each leaf at most once. The T-
saturation of S, being open and closed in [7, is exactly U. The natural
projection TT : U —^ S is a locally trivial fibration, hence (U,y\U) is C°°-
smoothable. Since the holonomy of each component of 9U is generated by
the single contraction producing the spirals, an easy application of (3.7)
produces the desired C'°°-smoothing of (U,J^). Since ha = idj^,, for each
a € G(Vj), 1 <: j <: m, properties (1), (2), and (3) are trivial.

(3) Inductively, let ^/(U) = a and assume the assertions for all
W € O(^), connected and irreducible, with 7(W) < a. Let X C U be
the union of all leaves of F\U that are closed in U. Since X is closed in
E/, each component of U\X belongs to O(^) and at most finitely many of
these, E/i,...,(7g, fail to be foliated products (2.2). It is clear that Uk is
irreducible, 1 < k < q.

Let X ' = U H U 6(Uk), a closed subset of X . A component of 6(Uk)
fails to lie in X' if and only if it is also a component of 6(U), 1 < k < q. By
an easy application of (2.4), we see that the components of U\X' consist of
[/i,..., Uq, together with foliated products Uq^-i,..., E/r- These latter are
generally not irreducible.

By (2.7), 7(!7fc) < ̂  1 <: k < q, so the inductive hypothesis applies.
The assertions of the proposition also hold for t7g+i,..., Ur by (4.1).

If Li,.. . , Ls are the components of 9U not approached by any leaf
in X, then the manifolds U U Iq U ... U Ls = Uo C U is obtained from the
disjoint union U Uk by pairwise identifications of some boundary compo-

nents. Since F\Uk is C^-flat at the boundary, this gives a C^-smoothing
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of (Uo,:F\Uo) by [W,(2,2)]. By the previous paragraph, the hypotheses of
(3.7) are guaranteed at each component of 9U\9UQ, hence we obtain a
G°°-smoothing ((7,.F) of (U,F) that is G°°-flat at the boundary. Also, by
the previous paragraph and (3.11), it is easy to guarantee properties (2)
and (3). D

C. Completion of the proof of the Main Theorem.

If 9M + 0, apply (4.2) to U = int(M), U = M. If 9M = 0, then
the hypotheses that (M, F) is proper and M is compact imply that there
is a compact leaf L of T. By cutting M along L, we produce a compact,
G^foliated manifold, with one or two components, and we apply (4.2) to
these components. The C^-smoothed foliation is C'°°-flat at the boundary,
so we can reglue along the two copies of L to obtain a C'°°-smoothing of
(M,^). D

5. Examples.

We illustrate one or another aspect of the Main Theorem. The
examples will be of the form (Es x S'1,^/,^)), where £3 is the 2-holed
torus, f,g € Diff^fi'1), 0 < r < oo, and ^(f,g) is obtained by suspension.
With this understood, set M = S2 x 51.

A. Nonsmoothable, proper foliations.

We show the necessity of assuming C^-smoothness.

Realize S1 as [-1,!]/{-! == 1} and let

G = {h e Homeo+[-l,l]|/i(-l) = -l,/i(l) = 1},
a subgroup ofHomeo+(5'1).

Let / € G, f(x) > x, -1 < x < 1, and set Xp = ^(0), for
each p G Z. Let c : Z —> Z be any map such that c(0) = 1. Let
go € Homeo+[^o^iL 9o(x) > x, XQ < x < x^, and define gc € G by
requiring that gc\[xp,Xp^} = fpg^(p)f~p, for each p € Z, and ^c(=t=l) = ±1.
Let^=^(/,^c).

Then, (M,^c) is a proper, G0—foliated manifold. There is one com-
pact leaf, there is one proper leaf at level 1 (corresponding to {^p}pez)?
and the remaining leaves are at level 2, mutually homeomorphic, and with
a common growth type 7c-
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PROPOSITION 5.1. — Let c(k) = 0, for each k < 0, and c(0) = 1. If
c(k) is nondecreasing and c(k 4- l)/c(k) is a bounded function of k > 0,
then 7c = sr(k2c(k)), tie growth type offc2^*).

Proof. — (1) Let rr(0,0) e]a;o,rci[ and let .W(:r(0,0)) = x(p,q), for
each p,g € Z. Clearly, the G-orbit ofa;(0,0) is G(a;(0,0)) = {x(p,q)}p^z.

(2) Let 7(fc) denote the number of distinct points of the form x(p, q) =
w(a;(0,0)), where w is a reduced word in / and g of length at most Jb. For
such points, it is elementary that -k < p < fc, -fcc(fc) < q < jfcc(fc),
these being very generous estimates. Thus, ̂ (k) < (2k + 1)(1 + 2fcc(Jb)), so
7c < gi^cW).

(3) Choose N € Z^~ such that c(k + l)/c(fc) ^ ̂ , for each k >, 0. Let

Pk = ^c(j)- By an elementary induction on fc, every integer from 0 to
j=o

k
NPk can be written as ̂ e(j)c(j), 0 < e(j) < N.

j=0

(4) Consider the reduced words w = /^(^/^^-i) ././^(o),
£(j) € {0,1,...,AT}, 0 < j < 2fc, 1 < m < fc 4- 1. These words are of

2K
length at most (2^+3)*; and w(a?(0,0)) = x(m+2k,^e{j)c(j)). By step

j=o
(3), it follows that

7((2^+3)fc)>(fc+l)^P2fc
>fcJv(c(A;+l)+. . .+c(2AT))
^ kN(kc(k)) > Jk2c(fc).

That is, 7c >: g^(fc2c(fc)). , a

In this way, uncountably many distinct growth types % can be
obtained. Since % is a topological invariant of (M,^;)? (5.1) and (3.3)
imply the following.

COROLLARY 5.2. — There are uncountably many topologically dis-
tinct foliations of Sa x S1 (of codimension one) that are proper but not
C^-smoothable.

Uncountably many of the growth types % are subexponential, in the
sense that

lim(l/fc)log(fc2c(fc))=0
k—^oo
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(this is also called quasi-polynomial growth in much of the literature). For
instance, take c(k) to be the greatest integer in Jk^Jk > 1. Uncountably
many others fail to be subexponential, but are nonexponential, in the sense
that

lim inf (l/^log^2^)) = 0.
k—^oo

Finally, by taking c(k) = 2^, we produce exponential growth.

If Fc is interpreted as a foliation of Es x [-1,1], we can also prove
the following.

PROPOSITION 5.3. —If c'.l-^l is as in (5.1), then (Ea x [-1, l],Jc)
is C^-smoothable so as to be C^-Hat at the boundary if and only if^c is
subexponential.

Thus, if (M,^c) is modified by thickening the compact leaf to a
continuum of compact leaves, (M,^c) will be C^-smoothable for c : Z -> Z
as in (5.1), if and only if 7^ is subexponential.

COROLLARY 5.4. — There are uncountably many topologically dis-
tinct foliations of^ x Si that are proper but not C1-smoothable.

B. Obstructions to higher order smoothing.

There are examples of compact, C^-foliated manifolds of codimension
one that are not proper and not C'714"1-smoothable, 2 <_ n < oo. Our
examples were written up in an earlier preprint (unpublished) but, in the
meantime, T. Tsuboi has found easier ones [T]. Nonetheless, we will sketch
ours here, without proof, since they have further potentially interesting
features.

Let S1 and G be as above. Let Gn = G H Diff^(5'1), 1 <, n <, oo. Let
/ € Goo,f(x) < x,—l < x < 1. For technical reasons, we also require that
/ imbed in a C°° flow on S1 that is C^-trivial at ±1.

Fix s €]2, oo [ and write s = 2 + (1/r). There is an integer q >, 1 such
that 2^ > q and p71^4-1)] > [2^], for each k ^ q. Here, [a] denotes the
greatest integer < a. Set Ns(k) = [2^], for each k > q. For 0 < k < q, set
Ns{k) = k - 1. Let c(fc) = 21-A;, for each k >: 1.

Set Xp = ^(0), for each p € Z. Let ^ be a C°° flow on [-1,1],
supported on [:ri,a;oL wltn ^(^ < x, x\ < x < XQ. For Xp^ < x <, Xp
and for N,(k - 1) < p < N,(k), k > 1, set g,(x) = f^^f-W. For
0 < x < 1 and x = -1, let gs(x) = x. Thus, Qs € G.



242 J. CANTWELL, L. CONLON

Set TS = ^(f^s)' Then (M,^) has a continuum of compact leaves,
each homeomorphic to Es, one proper leaf at level 1 (corresponding to
{xp}p^z, and the remaining leaves are locally dense without holonomy.
These leaves are mutually quasi-isometric with common growth type de-
noted 7s.

PROPOSITION 5.5. — The growth type 75 is gr^).

This is proven by the estimates in [C.C3,§7]. We can also prove the
following.

THEOREM 5.6. — Let n > 1 and s €]n 4- l,n + 2]. Then the above
construction can be carried out so that (M, Fs) is of class C71, but it cannot
be carried out so that (M,^) is ^^-smoothable.

Again, the growth type 7 5 , n + l < 5 < 7 i + 2 , parametrizes
uncountably many topologically distinct examples. It is not true, however,
that "fractional growth", by itself, obstructs C°° smoothness [C.C4]. It
seems reasonable to conjecture that, i f n + l < 5 ^ n - h 2 , then the quasi-
isometry type of the nonproper leaves of Ts cannot be realized in any
compact, C71^'1 -foliated 3-manifold.

C. Examples of Epstein-Millett hierarchies.

When M is compact, 7(M,^) cannot be a limit ordinal (easy). This
is the only restriction, as we now show.

PROPOSITION 5.7. — Let a > 0 be a countable ordinal. Then there
exists a proper, C°°-foliated manifold (M, J^a) such that 7(M, J^a) == a+1.

Proof. — (1) First we agree on a notational convention. If (M, .F(/, g))
has been constructed, the leaf corresponding to a; € [—1,1] will be denoted
Lx. If J C] - 1,1[ is a closed interval, then U L^ € 0(^(/, g)) will be

a;€int(J)

denoted [//, so Uj = U L^.
xCJ

(2) For a = 0 , take the product foliation. For a = 1, let /i 6
Goo, fi{x) < x, -1 < x < 1. Let gi = id and take T\ = ^(/i,^i).
Then Mi = M\(Li U L-i) and 7(1/1) = 7(^-1) = 2. Thus, 7(^,^1) = 2.

(3) Inductively, assume for 1 <, /3 < a that there exists //?,%? € Goo?
as close to the identity as desired, uniformly on [—1,1], in as (finitely) many
derivatives as desired, such that T^ = ^(//?, g / s ) satisfies the condition that
7(M, Tft) = /? 4-1. We also assume that fo(x) < x, -1 < x < 1.
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Choose fa € Goo such that fa(x) < x for -1 < x < 1. Set Xp = /^(O),
for each p € Z. Let {Jr}r>o be a family of disjoint, nondegenerate, closed
subintervals ot}x^,xo[. Then Ir = /aW defines a similar family in }x^ x^ [.
Fix orientation preserving, C°° diffeomorphisms hr : Jr -^ [-1,1], for each
r >0.

(4) Suppose that a = /? 4- 1. Let ga\Jo = h^f^o and ^|Jo =
fah^gfshofa1^. Elsewhere, 5^ = id. Since fo and g^ are as C^-close
to the identity as desired, so is ga. Let UQ = Uj^ = ̂  and observe that
Mi, the union of the stable leaves, contains M\(UQ U Li U L-i). By the
inductive hypothesis, it is easy to check that 7(Uo,^a) = /3 + 1 = a. Since
Uo spirals on Li and L-i, we conclude that 7(£i) = 7(£-i) = a + 1 and
7(M,J^)=a+l.

(5) Suppose that a is a limit ordinal and choose a sequence {o;r}r>o
such that o.r T Oi strictly, this being possible by the countability of a. Define
9a\Jr = h^fa^hr and ga\Ir = fah^Qa^rfa^r' Elsewhere, ga = id.
Since each fa^ and each g^ can be taken as close to the identity as
desired in as large a (finite) number of derivatives as desired, we can
arrange that ga € Goo and that ga be as (7°°-close to the identity as
desired. Set Ur = Uj^ = Ui^r >, 0. Then Mi contains the subset
M\(Li U -L-i U Uo U Ui U ...) and 7(^r,^) = Or + 1. Consequently,
M\(Li U Ls) C Ma and a ̂  7(M,^a) ^ a + 1. But 7(M,^a) cannot be
a limit ordinal, n
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