KRYSTYNA BUGAJSKA

Structure of a leaf of some codimension one riemannian foliation

Annales de l'institut Fourier, tome 38, nº 1 (1988), p. 169-174 <http://www.numdam.org/item?id=AIF 1988 38 1 169 0>

© Annales de l'institut Fourier, 1988, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 38, 1 (1988), 169-174

STRUCTURE OF A LEAF OF SOME CODIMENSION ONE RIEMANNIAN FOLIATION

par Krystyna BUGAJSKA

1. Introduction.

Let M be a smooth, connected, open manifold of dimension nand let \mathcal{F} be a smooth codimension-one complete Riemannian (that is (M, \mathcal{F}) admits a bundle like metric g in the sense of [6]) foliation of M. Let $E \subset TM$ be the tangent bundle of \mathcal{F} and let $\mathcal{D} \subset TM$ be the distribution orthogonal to E i.e. $\mathcal{D} = E^{\perp}$ and $TM = E \oplus \mathcal{D}$. Let all leaves of \mathcal{F} be open, orientable manifolds and let M be also orientable. Then there exists a normal field of unit vectors n(x) and all leaves of \mathcal{F} have trivial holonomy ([6] cor. 4 p. 130). For a vector $v \in T_x M$ and for a real number e let g(x, v, c,) denote the geodesic arc issuing from x whose length is |c| and whose initial vector is v or -v according as c > 0 or < 0. By (x, v, c) we will denote its terminal point. Let \mathcal{F} be a totally geodesic foliation. Now, since \mathcal{D} is integrable, every leaf of \mathcal{F} meets every leaf of the horizontal foliation \mathcal{H} determined by $\mathcal{D}([3], \text{ lemme (1.9) p. 230})$. Let $\mathcal{L}(x)$ and $\mathcal{H}(x)$ be the leaves through $x \in M$ of \mathcal{F} and \mathcal{H} respectively. Let I(x) denote the set $\mathcal{L}(x) \cap \mathcal{H}(x)$.

DEFINITION 1. — Let $x_0 \in \mathcal{L}(x)$ and let $N(x_0)$ denote the set of all positive numbers s such that at least one of two points

Key-words : Riemannian foliation - Open leaf - Non-positive curvature.

 $(x, \pm n(x), s)$ belongs to $\mathcal{L}(x)$. If $N(x_0)$ is non-empty we denote the greatest lower bound of $N(x_0)$ by $\rho(x_0)$. If $N(x_0)$ is empty we put $\rho(x_0) = \infty$. So $0 \le \rho(x_0) \le \infty$.

DEFINITION 2. — If $I(x) - x_0$ is non-empty then the greatest lower bound of $d_{\mathcal{L}}(x_0, x)$ for $x \in I(x_0) - x_0$ is called the range of x_0 and is denoted by $e_{\mathcal{L}}(x_0)$. Here $d_{\mathcal{L}}(x_0, x)$ denotes the length of a minimazing geodesic joining x_0 to x in the \mathcal{L} -submanifold.

If $0 < \rho(x) < \infty$ then lemma (4.3) of [4] asserts that at least one of two points $(x_0, \pm n(x), \rho)$ belongs to $\mathcal{L}(x_0)$. Also for each $x \in \mathcal{L}(x_0), \ \rho(x) = \rho(x_0)$ (lemma (3.2) of [4]). Hence we denote $\rho(x_0)$ by $\rho(\mathcal{L}(x_0))$ and call it the distance of \mathcal{L} . As a matter of fact for any leaves $\mathcal{L}, \mathcal{L}_1$ of $\mathcal{F}, \ \rho(\mathcal{L}) = \rho(\mathcal{L}_1)$ ([4] p. 136). Although $e_{\mathcal{L}}(x)$ has no such property we can show the following :

PROPOSITION 1. — Let $e_{\mathcal{L}}(x_0)$ be a finite non-equal to zero number. Then

a) there exists an element $x \in I(x_0)$ such that $d_{\mathcal{L}}(x_0, x) = e_{\mathcal{L}}(x_0)$

b) for every $x \in I(x_0)$, $e_{\mathcal{L}}(x) = e_{\mathcal{L}}(x_0)$ i.e. the ranges of \mathcal{H} -equivalent points of \mathcal{L} are the same.

PROPOSITION 2. — Let \mathcal{L} be a map $f : \mathcal{L} \to \mathcal{L}$ given by $f(x) = (x, n(x), m\rho)$. If for some $m \in \mathbb{Z}^+$ and for some $x_0 \in \mathcal{L}, d_{\mathcal{L}}(x_0, f(x_0)) = e_{\mathcal{L}}(x_0)$ then for every $x \in \mathcal{L}$ we have $d_{\mathcal{L}}(x, f(x)) = e_{\mathcal{L}}(x)$.

COROLLARY 1. — There exists a vector field v on \mathcal{L} such that $f(x) = \exp_x e_{\mathcal{L}}(x)v(x)$. So, to any point $x \in \mathcal{L}$ we can relate a piece of the geodesic $g(x, v(x), e_{\mathcal{L}}(x))$.

Since the elements of a holonomy along a horizontal curve are local isometries of the induced Riemannian metrics of the leaves of \mathcal{F} ([1] p. 383) the map f determines the partition of \mathcal{L} onto mutually isometric subspaces. COROLLARY 2. — \mathcal{L} is of fibred type over a complete Riemannian manifold N with boundary. A fiber contains a countable number of elements and projection is a local isometry. If \mathcal{C}_x is a maximal, open subset of \mathcal{L} containing x and such that $\mathcal{C}_x \cap f(\mathcal{C}_x) = \emptyset$ then $N \cong \mathcal{C}_x \cup (\overline{\mathcal{C}}_x \cap f(\overline{\mathcal{C}}_x))$.

Let us assume that the vector field v which determined by f is a parallel one. Then we have

COROLLARY 3. — Leaf \mathcal{L} is diffeomorphic to $\mathcal{L}' \times \mathbf{R}$ and has non-positive curvature.

I would like to thank the referee for indicating me my error.

2. Proofs.

It is easy to see that for each $x' \in \mathcal{H}(x_0) \cap \mathcal{L}(x_0)$, $d_{\mathcal{H}}(x_0, x') = m\rho$ for some $m \in \mathbb{Z}$. Now let us suppose that a point $x \in I(x_0)$ such that $e_{\mathcal{L}}(x_0) = d_{\mathcal{L}}(x_0, x)$ does not exist. However we can find a sequence of points $\{y_{\lambda}; \lambda = 1, 2, ...\}$ belonging to $I(x_0)$ such that $\lim_{\lambda \to \infty} d_{\mathcal{L}}(x_0, y_{\lambda}) = e_{\mathcal{L}}(x_0)$. Since \mathcal{L} is a complete Riemannian manifold, an accumulation point y of $\{y_{\lambda}\}$ belongs to \mathcal{L} . Let $[y_{\lambda}, y]$ denote the geodesic arc in \mathcal{L} . Let us displace parallelly $g(y_{\lambda}, n(y_{\lambda}), s_{\lambda, \lambda+1})$ along $[y_{\lambda}, y]$. Here $s_{\lambda, \lambda+1}$ denotes a parameter on the $\mathcal{H}(x_0)$ geodesic such that $(y_{\lambda}, n(y_{\lambda}), s_{\lambda, \lambda+1}) = y_{\lambda+1}$; $s_{\lambda, \lambda+1} = m(\lambda)\rho$. We obtain the geodesic arcs $g(y, n(y), m(\lambda)\rho)$ with y'_{λ} as their terminal points. So we see that y is an accumulation point of $y'_{\lambda} \in I(y)$ relative to \mathcal{L} . However if $e_{\mathcal{L}}(x_0) > 0$ then $e_{\mathcal{L}}(x) > 0$ for each $x \in \mathcal{L}$ ([4], lemma (4.1)). So we come to a contradiction which proves (a) of proposition 1.

For (b) let $y_0 \in I(x_0)$ have the property that $d_{\mathcal{L}}(x_0, y_0) = e_{\mathcal{L}}(x_0)$. Let $y_0 = (x_0, n(x_0), m\rho)$. Since \mathcal{L} is complete there exists a minimal \mathcal{L} -geodesic $g(x_0, n_0, e_{\mathcal{L}}(x_0))$ which joins x_0 and y_0 . Let us express $\mathcal{H}(x_0)$ by $z(s), -\infty < s < \infty$, where $z(0) = x_0$ and s denotes the arclength. Let us displace U_0 parallelly along the curve z(x). Then corresponding to each s we get a vector n(s) at z(s)

KRYSTYNA BUGAJSKA

tangent to the leaf $\mathcal{L}(z(s))$ with $g(z(s), n(s), e_{\mathcal{L}}(x_0)) \subset \mathcal{L}(z(s))$. Let $y_0 = z(s_0)$. Taking a finite system of coordinate neighborhoods of z(s) for $0 \leq s \leq s_0$, we see that the point $(z(s_0), n(s_0), e_{\mathcal{L}}(x_0)) \in \mathcal{L}$ also belongs to $\mathcal{H}(x_0)$. Let us denote this point by y_1 . We have $d_{\mathcal{L}}(x_0, y_0) = d_{\mathcal{L}}(y_0, y_1)$. Let us suppose that $d_{\mathcal{L}}(y_0, y_1) \neq e_{\mathcal{L}}(y_0)$. By definition $e_{\mathcal{L}}(y_0) < d_{\mathcal{L}}(y_0, y_1)$. By (a) there exists $y_2 \in I(x_0)$ such that $d_{\mathcal{L}}(y_0, y_2) = e_{\mathcal{L}}(y_0)$. Let us displace parallelly a minimal geodesic $[y_0, y_2]$ along z(s). For $z(0) = x_0$ we obtain some point $x \in I(x_0)$ which satisfies $d_{\mathcal{L}}(x_0, x) < d_{\mathcal{L}}(y_0, y_1) = e_{\mathcal{L}}(x_0)$. So we come to a contradiction, hence $e_{\mathcal{L}}(x_0) = e_{\mathcal{L}}(y_0)$. However this implies that $e_{\mathcal{L}}(x) = e_{\mathcal{L}}(x_0)$ for each $x \in I(x_0)$ and completes the proof of (b).

For the horizontal curve z(s) there exists a family of diffeomorphisms $\phi_s: U_0 \to U_s$; $s \in (-\infty, \infty)$, such that

 $1 - U_s$ is a neighborhood of z(s) in the leaf $\mathcal{L}(z(s))$ for all $s \in (-\infty, \infty)$

$$2 - \phi_s(z(0)) = z(s)$$
 for all $s \in (-\infty, \infty)$

3 - for $x \in U_0$, the curve $s \to \phi_s(x)$ is horizontal

 $4 - \phi_0$ is the identity map of U_0 ,

i.e. z(s) uniquely determines germs of local diffeomorphisms from one leaf to another. According to [5] we call this family of diffeomorphisms an element of holonomy along z(s). However in our case of totally geodesic foliation \mathcal{F} these local diffeomorphisms are local isometries. Moreover we can extend them to *a*-neighborhoods $U_{\mathcal{L}}(z(s), a)$, where $a < \frac{1}{2}e_{\mathcal{L}}(y)$ for all $y \in U_{\mathcal{L}}(z(s), a)$; $s \in (-\infty, \infty)$.

Let us consider a map $d: U_{\mathcal{L}}(x_0, a) \to R$ given by $d(x) = d_{\mathcal{L}}(x, f(x))$. Since d is continuous we have $\forall \varepsilon > 0, \exists \delta \text{ s.t. } | (d(x) - d(y) | < \varepsilon$ if $d_{\mathcal{L}}(x, y) < \delta; x, y \in U_{\mathcal{L}}(x_0, a)$. Let $\delta < \frac{1}{2}a$ i.e. the ball $U_{\mathcal{L}}(x_0, 2\delta) \subset U_{\mathcal{L}}(x_0, a)$. Let $d(x_0) = e_{\mathcal{L}}(x_0)$. Suppose that for some $x \in U_{\mathcal{L}}(x_0, \delta), d(x) \neq e_{\mathcal{L}}(x)$. Then we have $d(x) = e_{\mathcal{L}}(x) + b$ with b > 0. By (a) of proposition 1 there exists $x' \in I(x)$ such that $d_{\mathcal{L}}(x, x') = e_{\mathcal{L}}(x), x' = (x, n(x), m'\rho)$ with $m' \neq m$. Let $f': \mathcal{L} \to \mathcal{L}$ be given as $f'(x) = (x, n(x), m'\rho)$ and let d' be analogous to d map with f' instead of f. We have $d'(x_0) = d(x_0) + \tau, \tau > 0$. (If $\tau = 0$,

the property $U_{\mathcal{L}}(x_0, 2\delta) \subset U_{\mathcal{L}}(x_0, a)$ allows us to interchange the role of the maps f and f' as well as x_0 and x. For this it is enough to consider the case with $\tau > 0$). Now, for each $x \in U_{\mathcal{L}}(x_0, \delta)$ we have $d(x_0) = d(x) \pm \mathcal{H}$; $d'(x_0) = d'(x) \pm \mathcal{H}'$ with $\mathcal{H}, \mathcal{H}' < \varepsilon$. So $d'(x) = d(x_0) + \tau \mp \mathcal{H}'$. For $\varepsilon < \frac{1}{2}\tau$ we come to a contradiction since $d'(x) \stackrel{df}{=} e_{\mathcal{L}}(x) > d(x)$. Hence for all $x \in U_{\mathcal{L}}(x_0, \delta)$, $d(x) = e_{\mathcal{L}}(x)$. Now, let y be an element of \mathcal{L} and $[x_0, y]$ a minimal geodesic joining x_0 and y. We can take a finite sequence of points $y_i, i = 0, 1 \dots N$ on $[x_0, y]; y_0 = x_0, y_N = y$ and $U_{\mathcal{L}}(y_i, \delta_i) \cap [x_0, y] \cap U_{\mathcal{L}}(y_{i+1}, \delta_{i+1}) \neq \emptyset$ for all $i \in (O \dots N)$. We repeat the above consideration for each $U_{\mathcal{L}}(u_i, \delta_i)$. This completes the proof of proposition 2.

Let $\tilde{C}_x = \bar{C}_x - C_x$. Then any element $x' \in C_x$ cannot be \mathcal{H} equivalent to any element $y \in \tilde{C}_x$. For this let $z_i \in C_x$ be a sequence of elements such that $\lim_{\mathcal{L}} z_i = y$. Let us suppose that $y' \in C_x$ is \mathcal{H} -equivalent to y. Then there exists a sequence of elements $z'_i \notin e_x$, \mathcal{H} -equivalent to z_i , for each i, with $\lim_{\mathcal{L}} z'_i = y'$. This is a contradiction since C_x is open in \mathcal{L} . Similarly we can see that for each $y \in \tilde{C}_x$ there exists an \mathcal{H} -equivalent point $y' \in \tilde{C}_x$. By proposition 2 we can define $W_x = f(\tilde{C}_x) \cap \tilde{C}_x$ which is the border of N.

We can define the action of Z on \mathcal{L} by isometries : $m(x) = f^m(x), m \in \mathbb{Z}$. This action is free and properly discontinuous. It implies that the quotient space $\frac{\mathcal{L}}{Z}$ has a structure of differentiable manifold and the projection $\mathcal{L} \to \frac{\mathcal{L}}{Z}$ is differentiable. When \mathcal{L} is simply connected then the isometry group of $\frac{\mathcal{L}}{Z}$ is isomorphic to $\frac{N(\mathbb{Z})}{\mathbb{Z}}$ [5] where $N(\mathbb{Z})$ is the normaliser of Z in the group of isometries of \mathcal{L} .

If we assume that the vector field v is a parallel one then it has to be a complete Killing vector field. Welsh [7] has proven that if a Riemannian manifold admits a complete parallel vector field then either \mathcal{L} is diffeomorphic to the product of an Euclidean space with some other manifold \mathcal{L}' or else there is a circle action on \mathcal{L} whose orbits are not real homologous to zero. In our case the oneparameter subgroup of isometries generated by v cannot induce an S^1 action (in this case its orbits are closed geodesics) so the latter possibility is excluded. (It is in agreement to Yau result [8] that the identity component of the isometry group of an open Riemannian manifold X is compact if X is not diffeomorphic to the product of an Euclidean space with some other manifold.) On the other hand we have Gromoll and Meyer result [2] that the isometry group of a complete open manifold with positive curvature is compact and that a Killing vector field cannot have non-closed geodesic orbits. In this way the corollary 3 is proven.

BIBLIOGRAPHIE

- R.A. BLUMENTHAL, J.J. HEBDA. Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliation, Quart. J. Math. Oxford, (2) 35 (1984), 383-392.
- [2] D. GROMOLL, W. MEYER. On complete open manifolds of positive curvature, Ann. Math., 90 (1969), 75-90.
- [3] D.I. JONSON, L.B. WHITT. Totally geodesic foliations, J. Diff. Geom., 15 (1980), 225-235.
- [4] S. KASHIWABARA. The structure of a Riemannian manifold admitting a parallel field of one dimensional tangent vector subspaces, Tohoku Math. J., 11 (1959), 119-132.
- [5] S. KOBAYASHI, K. NOMIZU. Foundations of differential geometry, vol. I, Interscience, New York, 1967.
- B.L. REINHART. Foliated manifolds with bundle like metrics, Annals of Math., 69 (1959), 119-132.
- [7] D.J. WELSH. On the existence of complete parallel vector fields, Proc. Am. Math. Soc., 97 (1986), 311-314.
- [8] S.T. YAU. Remarks on the group of isometries of a Riemannian manifold, Topology, 16 (1977), 239-247.

Manuscrit reçu le 12 mai 1987 révisé le 29 juin 1987.

Krystyna BUGAJSKA, Institüt für theoretische Physik der technischen Universität Clausthal 3392 CLAUSTHAL-ZELLERFELD (RFA).

174