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SUPER BOSON-FERMION CORRESPONDENCE (*)

by V. G. KAC and J. W. van de LEUR

0. Introduction.

Since the pioneering work of Skyrme [20], the boson-fermion
correspondence has been playing an increasingly important role in
2-dimensional quantum field theory. More recently, it has become an
important ingredient in the work of the Kyoto school on the KJP
hierarchy of solit'oit equations [16], [I], [2], [4] (see also [13]).

In the present paper we establish a super boson-fermion correspon-
dence, having in mind its applications to super KP hierarchies.

Let us first recall the discrete counterpart of the Skyrme construction
(see e.g. [13]). Consider the Clifford algebra on generators v|/, and vl^v
i e Z, called free fermiom, with defining relations :

(OJ) ^ + ̂  == 8^, ^ + ̂  - 0,

W + W ==0, i, j € Z,

and its spin representation with vacuum vector |0) satisfying :

(0.2) \|̂ |0> = 0 for i ^ 0, v|/*|0> = 0 for i> &.

The besonization procedure consists of introducing bosms

(0.3) oc, = ^ : v|̂ : , k e Z,
J e Z

where : v|/f\|/^ : = v)/,^* if J > 0 and = - vl/^vl/. if j ^ 0. They are

(*) Partially supported by the NSF grant DMS 8508953.

Key-words : Superbosons - Superfermions - Super oscillator algebra - Super vertex
operators - SKP hierarchy - Spin module - Oscillator module.
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operators on the spin representation space and they form an oscillator
algebra :

(°-4) GW - a^ = m8,,-^

Under the oscillator algebra the spin representation breaks into direct
sum of irreducible representations, according to the charge number
denned by charge (v(^) = - charge (v[/*) = 1, with vacuum vectors |m>,
m e Z, defined by :

|m> = ̂ , ... v|/JO> if m ̂  0,

|m> = ̂  ... v|/$|0> if m < 0.

Introducing the generating series (fields)

(0.5) a(z)= ^ cx,z-^ ( zeC- ) ,
J 'eZ

(0.6) v|/(z) = ^ vl/ '̂, v|/*(z) = ^ ^z-^ (zeC- ) ,
J e Z j e Z

we can rewrite (0.3) in a more compact form :

(0.5a) oc(z) = :v|/(z)i|/*(z):.

The fermionization procedure consists of reconstructing the fermionic
fields v|/(z) and v|/*(z) in terms of the bosonic field a(z). Since the spin
representation does not remain irreducible under the oscillator algebra,
we need to introduce more operators for that. Let p^ denote the
projection operator on the subspace spanned by elements of charge m,
and let q denote the operator determined by

(0.7) ^|m> == |m + 1 > , .̂. = ̂ /,^, q^ = ̂ ,q.

Let p(z) = ^ p^ (=== Z010); then we have:
j e z

(0.8) ^) = p(z)^r-(z)r^(z),
v|/*(z) = q-lp(zrl^..(z)-l^^z)-\

where r±(z) are defined by

(0.9) r^(z) = e x p - f ^ ^"z™ ( z e C - ) .
»=i ±n
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The operators on the right-hand side of (0.8) are called vertex
operators,

We can proceed now to explain the main construction of the present
paper, the super boson-fermion correspondence. Consider the Clifford

superalgebra on generators |̂/, and v|/*, i e ^ Z, which may be called
free super fermions, with defining relations

(0.10) ̂  + (-l)4^^ = 8^ V|/,Y|/, + (- l)41 .̂ = 0,

^^^(-^^vl/^O, ^e|z,

and its spin representation with vacuum vector |0> satisfying (0.2).
Consider the super fermonic fields

(0.11^) v|/o(z)= ^ ̂  ^00 == Z ^~^
y 6 z 7 6 z

(O.llfc) V|/T(Z)= Z ^\ ^(z)-- Z ^^-7.
7'e^+Z ;6^+Z

The super bosonization procedure consists of introducing the super
bosonic fields :

(OA2a) ^(z):= ^ X(n)z-" = : ̂ (z)^(z) :,
n 6 Z

(0.12fc) n(z):= $: n^z-" = :V|/T(Z)V|/T(Z):,
n e Z

(0.12c) ^ ( z ) : = ^ ^z""^ = :vl/y(z)v|/S(z):,
n e Z

(0.12rf) /(z):= Z/^z""4 = :v(/o(z)v|/T(z):,
n e Z

where the normal ordering is defined by

(0.13) r W — W it 7 > 0 , = - (-l)4^*^ if j < ^ 0 .

The operators ^(?i), 4(1), ^(/i) and/(^) together with the identity form
a Lie superalgebra y , 'k(n) and ^(n) (resp. e(n) and /(n)) being its even
(resp. odd) elements. We call ^ the superoscillator algebra.
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A simple but crucial observation is that ^ is isomorphic to the
affine superalgebra g l ^ ^ , associated to the 4-dimensional Lie superalgebra
g/in(C), defined as follows :

^ni =^iii(C[U~1]) © Cc,
[x(m),y(n)] == [x,y](m-^-n) + m^.^Strxy)c,

where x, y e ̂ ni(C), x(m) stands for t^x, Str stands for the supertrace
and c is the central element Explicitly g can be identified with gl^^
as follows :

(0.14) . - c, M») - [-„•" ;], .(,) - [̂  .B,],0 OJ' ^"/ |_0 - t"

t"") ' -,, r o oo o, - f^ = -t" or
— —' L_ _J

,. fo ("i ' ,.. r o oie^ = [o o.} ^ = [- t" oj

Note that the osciaator algebra is a central extension of the (abelian)
Lie al^bra gl\ (C[r, t~ t ] ) , the loop alg^ra of ^i(C)?.. Fro® this point
of view, the superoscillator algebra is its natural generalization: it is a
central extcmioa of the Lie superalgebra ^iii(C[r,t~1]), the loop algebra
of gt^(C).

Introduce the charge (resp. fermionic charge) by putting charge

(^f) ^ - charge (\^*) == 1 for t e , Z (resp. fermionic char^ (^,) == - fer-

mionic charge (^f) == 1 for f e Z , and = 0 for f € - + Z). Then,

restricted to the superoscillator algebra ^ the spin representation breaks
into a direct sum of irreducible representations according to the charge
number m e Z, with vacuum vectors |m> defined by

(0.15)
[m> = v|^\|/g|0> if m ̂  0,

|w> = ilr^-^IO). if m < 0.

This irreducibility is one of the key results of the paper (Theorem 2).
It is proved by making use of the super fermipnization explained below.

Let P^ denote the projection operator on the subspace spanned by
elements of fermionic charge w, let P(z) = ^ P^(= z^^), and let

m 6 Z



SUPER BOSON-FERMION CORRESPONDENCE 103

Q denote the operator determined by

(0.16^) Q|0>= ^|0>; Qv|//=v|^Q,

Qv|/*=v|^iQ if f e Z ;

(0.16fr) Q^ = - v|/,Q, Qv|/* == - v|/*Q if f e ̂  + Z.

Then we have (Theorem 1) (*):

(0.17a) i|/o(z) = P(z)Qr-(z)r,(z),

(0.176) vj/S = Q-^z)-1^^)-1^)-1,

(0.17c) ^(z) = - P(z)Qr-(z)e(z)r\(z),

(0.17d) vl/?(z) = Q- ̂ (z)-1^. (z)- V^r. (z)-1,

where

(0.18) r , (z)=exp- fM^^.
n= 1 ± n

It is natural to call the right-hand side of (0.1 Ib and c) the super vertex
operators.

Three immediate applications of the super boson-fermion correspon-
dence are these. First, it is an explicit fermionic construction of all
degenerate level 1 irreducible highest weight representations of the Lie
superalgebra ^ / in , and a multiplicative formula for the ^-dimension
and a vertex operator construction of some representations of the Lie
superalgebra glao\ao(C). For this we use some results on Verma modules
over g^in, which is a special case of the theory developed in [12],
[9],[11].

Second, by comparing two expressions for ^-dimensions of represen-
tations of ^ /n i , we derive the following new combinatorial identities.
A partition of k into a sum of black and white positive integers such
that odd parts of each color are distinct is called a super bipartition.
Then, for each m e Z+ == {0,1, . . .} , the number of super bipartitions
of k such that # (white parts) - # (black parts) < m, is equal to the
number of super bipartitions of k such that no black part equals

(*) The operators ^.(n) do not appear explicitly in (0.17). However, they do appear
implicitly since [e(n),f(m)] = 'k(m+n) -+- (A(w+/i) — w§^ „<:•.
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2m -+- 1 . G. Andrews provided us with another, analytic proof of this
result, but no combinatorial proof is known so far. After the work [5]
it has become clear that a whole range of combinatorial identities can
be obtained by computing characters of representations of infinite-
dimensional Lie algebras in two different ways. The above identity is
probably the first where considering a Lie superalgebra representation
is essential.

Third, a series of irreducible highest weight modules of the affine
Lie superalgebra gl^ = gln\n(C[t,t~1]) © Cc is constructed, and
an explicit formula for the ^-dimension is found. Unfortunately, these
representations are not unitarizable, which is not surprizing since one
can show that, in fact, gl^ has no nontrivial unitarizable highest
weight representations. We hope that our construction of the
g/^-modules will give an indication which property in the representation
theory of affine Lie superalgebras will take over the role of unitarity.

Now, recall that the KP hierarchy of equations on / in the fermionic
picture is [4], [13]:

(0.19) ^ ^if8)^?f= 0.
i 6 Z

When translated into the the bosonic picture, it gives the celebrated
KP hierarchy of PDE's[l], [4], [13]. The importance of this hierarchy
of equations stems from the facts that, on the one hand, it is a
« universal » system of soliton equations ([16], [2], [4], [13]) and, on the
other hand, it characterizes the Jacobians of algebraic curves [17], [18],
[19].

A natural « super » analog of (0.19) is

(0.20) ^ (-l)2^/®^?/- 0,
.4z

which we call the super KP hierarchy. Unfortunately, we still do not
know how to interpret (0.20) in the bosonic picture as a system of
«super» soliton equations, or how to relate (0.20) to Jacobians of
supercurves. In particular, its relationship to the super KP of Manin-
Radul and Kupershmidt [15] (cf. [22]) remains unclear.

We also sketch a similar formalism with the Clifford superalgebra
replaced by the Weyl superalgebra.

We would like to thank P. Goddard and D. Olive for discussions
while the work was in progress and G. Andrews for correspondence.
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1. The Clifford superalgebra and its spin module.

We use the notation and conventions of the superalgebra theory
adopted in [6].

The Clifford superalgebra Cl = C/o ® C/i is defined as the associative
superalgebra over C with a unit element on the generators \(/ and

\|/f, j e . Z, and the following defining relations :

W+^-^Wi-S^

(^) YM/, 4- (-l)41^, = 0 ,

W + (-l)4 l Jv^^r=0,

with the Z^-gradation given by

(1.2) v|/,,^eC/o it J 6 Z , v(/,,^e0i if j e j + Z .

The superalgebra C/ carries an antilinear anti-involution co defined
by

(1.3) co(v|/,)=(-l)2^, (o(^)=(-l)^,

The spin module over C/ is the irreducible C/-module V which admits
a non-zero even vector |0>, called the vacuum vector, such that

(1.4) v)/,|0> = 0 for 7 ^ 0 , \|^|0> = 0 for j > 0.

The module V carries a unique Hermitian form <•,•> such that the
square length of the vacuum vector is 1 and the operators a and co(a)
are adjoint, a e Cl.

Elements

(1.5) ^...^'^...vl/^IO)

with
7'r > • • • > h > 0 ^ ? i > ' • • > ;,,

such that /, = 1 (resp. ^=1) if i, (resp.7,)eZ, form a basis of V. These
elements are pairwise orthogonal with respect to <•,•> and the square
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length of the element (1.5) is
Vt'tr— n T fc l L ( / ( i (^ i ) KI . . . . K^ . t j . . . . I, .

Thus, the Q-module V is not unitary, ghosts being elements (1.5) with
odd number of \|/* with half-integral i.

2. ^/ooloo an^ fl oo i oo 5 decomposition of the spin module.

Let ^F = ^PQ © ̂ i = ® Cv|̂  be an (infinite-dimensional) complex
j e ^z

Z2-graded vector space with fixed basic {vj/;} where \|/, e ^Fo if i e Z
1 y 6 2 z

and vl/iG^i if i e Z - h _ . The map ^ c,v|/j^-^ (c,.) ^ identifies ^
2 , /' 6 - z

J 6 ^Z 2

with the space of column vectors whose coordinates are indexed by
- Z, all but a finite number of them being 0.

Introduce the infinite complex matrix Lie algebra

gl^\ao = <^oojoc;6 ® <^oo|oo;l .

where for a e Z^ •== {0,1} :

^loo; a = {(^-) , l^, = ° for i + 7 = a 4- 1 mod 2 ;
''^i7'

all but a finite number of a^ are 0 for i + j = a mod 2}.

The Lie bracket is defined by

[a,b] = ab - (- l)4^ b^ for a 6 gJooia^, & e ^/ac,ia;p-

The Lie superalgebra gl^\^ operates on T via the multiplication of
a matrix and a column vector, viz.,

E^)=^,
where E^ denotes the matrix with the (ij) entry 1 and the rest 0.

Another way to introduce glce\^ is as a contragredient Lie superalgebra
[6] of infinite rank on Chevalley generators

Ci = E^, f, = E^ ^

^ = h^-] = E ,+ E , , , i - e ^ Z ., + - , + - z
2 2
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Its Cartan matrix is
0

- 1 ' 0 1
- 1 0 1

- 1 0 1

Its corresponding Dynkin diagram is the infinite chain

• • • - ® - ® - ® - ' - - .

The standard representation of gl^^ on ^ can also be defined in
terms of the Clifford generators as follows :

(2.1) E,, -. (-l)2^,

. with the action defined by the commutator:

E^-K-l)2^?-^-]

= (-l)2J(v|/^^-(-l)4(•+^^^ = vh.

The antilinear anti-involution o> leaves ^ooioo, embedded via (2.1) in
Cl, invariant and induces its compact anti-involution a -> ta.

Let V be as in § 1. We define a representation n of gl^ on V by

7l(E.,)=(-l)2^^,

by which we mean 7i(Ey)(^|0» == (- ̂ Al^il/IO).

Given m e Z, define |w> e V by

r^|0> for m ^ O

1 ^ > = S .L._, ...^
^r-^IO) for m < 0 .

Putting deg|0> = 0, degv|/. = 1 and deg \)/* == - 1 defines the decom-
position into a direct sum of vector spaces

v- e v,,
m e Z

so that |w> e V^. We call m the charge number.
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If we put deg |0> = 0 and deg vj/^ = 1, deg \|/* == - 1 for

i e Z, deg v|/, = deg v|/* = 0 for f e Z + , (resp. deg v|/; = deg \)/* = 0 for

i € Z, deg v|/. = 1, deg \|/* = - 1 for i e Z + .), we get other decom-
positions of V :

(2.2) V = © V^,,(resp.V= © V ,̂,).
m e Z m € Z

In this case the number m is called the fermionic (resp. bosonic) charge
number.

The subspaces V^ are invariant and irreducible with respect to ^oojoo
(this is not the case for V^^, or V^;^). We denote this representation
by 7i^. Its highest weight vector is |w>, in the sense that

and
7iJE,,)|m> = 0 for i < j

^(E.,)|m> = ^|m>, f e ^ Z .

Using the relations in the Clifford superalgebra, we calculate its
corresponding highest weight (^w)) i :

o o O w + i w o o
_ 3 - l _ j _ 0 1 1 3

2 2 2 2
0 m + \ m 0 0 0 0

- 3 - 1 - ! ° 1 ! 3

2 2 2 2

for m ^ 0.

for m < 0.

Note that the operators 7t^(a) and 7i;^(1^) are adjoint with respect
to the Hermitian form <•,•> on V^. However, n^ is not a unitary
representation (see§ 1). Moreover, one can prove that no highest weight
representation of gloo\^, except the trivial one, is unitary.

We introduce now a Lie superalgebra ^y,!oo containing gl^\w '•
^ooloo === {(^ij) i |fo1' each k the number of non-zero

'J6.Z

a^ with j ^ k and i ^ k is finite}.

It acts on a completion ^P of the space T, where

xp= { E c^,\c^Q for7»ol.
S - e ^ z J
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However, if we try to extend the representation n^ito ihe Lie superalgebra
^oosoc, we encounter an « anomaly », e.g., in

^(diagO,) , ) |m> == (m?4 + ^ (- l)2^,)!^ if m ̂  0,
^^ 2 «o

the right-hand side is in general a divergent series. To remove this
anomaly, we change the representation TC^ as follows. Put:

(2.3^) ^(E,,) = 7c,(E,,) - (-1)21! for ^ 0.

(2.3fc) TlJE,,) = TlJE,,) if i ^ j or i = ; > 0.

Note that (2.3a) simply means that diagonal matrices kill the vacuum |0>.
Extending n^ by linearity, we get a projective representation of the

Lie superalgebra ^ooloo- Equivalently, introduce the central extension
^wico == ^ooi<x ® ̂ c ^h center Cc and bracket

[a,b] = ab - (-\)^ba + C(fl,fo)c,
for

^ e ^oc|<»;a? b € ^oo|oo;p,

where the cocycle C is defined by:
(2.4^) C(E,,,E,,)=-(-l)2<l+J)C(E,,,E,,)=(-l)2• if i^Q<j,

(2Ab) C(Ey,E^) ==0 in all other cases.

Then, extending n^ to ^ooloo by 7fc^(c) =1, we obtain a linear
representation of the Lie superalgebra ^ooloo on the space V^, which
we again denote by n^.

Introduce the principal gradation gl^\w = © ^j by putting
j e Z

deg Ey = 2Q'-0. so that [^,^] = ^+j. By putting deg c = 0, we extend
this gradation to ^oojo. = © ^j- This principal gradation on the Lie

J'eZ

superalgebra induces a principal gradation
(2.5a) V ^ = © V^,

k e Z

which is consistent with the gradation on ^oojoo. i-^

TI, (^W c V^ for fl,e^.

More explicity, the space Vj^ is the linear span of all elements of V^
of the form

(2.5fc) ^(H^)...7i,(E,^)|m>
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with O ' l+^+ ' - ' +O - (/i+72+"-+;r) = 1 ^ .

Note that in (2.5b) we could assume 7, < (( for all 1 ^ t < r (by
the PBW theorem for superalgebras); it follows that V^ = 0 for k < Q,
and V^ = C|w>. .

We can rewrite (2.5h) in terms of the Clifford generators: V^ is
the linear span of all elements

(2.6) ^...^l<r...^l^>

with (j,k,+ .. • +;A) - O'i/i+ • • • +^) = | ^.

Now notice that

(in a) k, (resp. Q = 1 if 7, (resp. 0 e Z ;

furthermore we can order the f, 's and ^ 's in such a way that

(2.7&) ^+1 < (\ and ;,+i >j, .

With these and the following conditions (2.7c,rf), the elements of
the form (2.6) form a basis of Vj^. Assume w ^ O , so that
|w> = vl/^IO). Then we get the following extra conditions for the f, 's

i
and jt 's :

(2.7c) i,^ y / > 0 ,

(2.7 'd) if==- occurs at most m times, and if it occurs then h ^ ^ '

If m < 0, so that |m> = ^"^"'^lO), then the extra conditions are:

(2.70 i,<0, 7 , ^ - 1 -

(2.7d1) jf = - _ occurs at most - m -- 1 times, and if it occurs

then j^ + - -^
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From all these conditions we conclude that dim V^ < oo for all k.
Let Pm(k) == dim V^ ; we may write the formal power series.

(2<8) dim,V,= Epjfe)^,
k^O

called the q-dimension (or the partition function) of V^.

For m > 0, p^(fc) is equal to the number of partitions of k into
integers, where each integer has black or white color, with the following
conditions (cf. (2.7)):

(1) # whites = # blacks,
(2) even parts of each color are distinct,

(2.9) (3) whites > 0, blacks > - 1,
(4) — 1 occurs at most m times,
(5) if - 1 occurs, then white 1 does not occur.

Now adding 1 to all blacks and subtracting 1 off all whites, p^(k)
stays the same, but the conditions (2.9) become the following ones :

(1) # whites - # blacks < w,
(2.9') (2) odd parts of each color are distinct,

(3) all parts are positive integers.

If m < 0 then one can verify .that

(2.10) p,(fe) = p-,-i(k) for k ^ O .

In §7 we shall give another formula for pm(k), which will give an
explicit expression for dim^V^.

3. The principal subalgebra of ^oojoo.

We shall construct a subsuperalgebra ^ of z^oo for which the
modules V^ considered as ^-moduleswill turn out to remain irreducible.

Put
^) = Z E,,,^, U(M) = ^ E,,^,

f c e z k.z4

.(")-J .̂,.., M-^^.
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for n e Z. Then these elements of ^^ together with the central element
c form a basis of a sub(super)algebra ^ of ^^. One easily computes
its commutation relations :

[k(n\e(m)]= - e(m^-n), [^(n)J(n)] =/(m+n),
[^(n), 6?(w)] = e(m 4- n), [u(n),/(n)] = - f(m + n),
[̂ U(w)] == n8^,_^c, [n(n),H(w)] = - n8^ _„€•,

[^(n),H(w)] = 0, [e(n)J(m)] = ^(m+n) 4- ^(w+yi) - n8^_^.

We will call this algebra g the principal subalgebra of ^^. Note that
9 = {(^.j) ® ^e^xxwl^- == ^+n,^+,, for weZ}, and that the principal
gradation of ?L(n), n(n), e(n), f(n) is 2n, 2n, 2n-H, 2n-l, respectively.

We have:

(3.1a) ft^(n))|m> == 0, ^(/(n+l))|w> = 0 for n ̂  0,

(3.1fr) ft,(^(n))|w> = 0, 7Un(n))|m>=0 for n > 0,

(3.1c) TI,(C) = I, M?i(0))|m> = 0,

(3-1^) 7im(H(0))|w> = w|w> if m ̂  0, = (w+l)|w> if w < 0.

We shall give another construction of the subalgebra y . Let
^ = C[r,r~1] be the algebra of Laurent polynomials in the indetermi-
nate (. Let

^mC^)-^ ^|a,fc,c,deA

be the Lie superalgebra with the Z2-gradation

.W) - {(S ;)} and ^,,,W - ̂  S)},

and the usual Lie superbracket:

K a b\ /a pM° ^ /aa-aa-hfry+pc fr8-prf+ap-aft\
c rfy \j 8yJ ^•a-Ya+riy-8c ^8-8^4-cp+yfo/

The subalgebra ^ is an extension by a 1-dimensional center Cc of
gly.iW: ^111 = ^111 (o^) e Cc. The Lie bracket is given by

[x + ^c,3/ + nc] = [x,};]° + Res,=o Strf^^c
\dt )

for -x,^e^,i(^f). Here Str means the supertrace ; for an element

\c S)6^!!^) this is defin^ by Strf0 b} = ^ - J.V "/ \c dy
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The two constructions of y are identified as follows :

^-[l o'} /(")-[-°. S}

-<"'̂  -°.} ^-[r s} -
We put 'k = ^(0) and u = n(0) for short.

In order to perform calculations, it is more convenient to enlarge
the algebra gl^ by adding an even derivation d which operates on

^iii(^) as ( . and kills c. Denote this superalgebra by gl^ ; then

^111 = glmW@Cc@Cd,
and

[d9x] =tTt for xe^m(^), [d,c] = 0.

4. The super boson-fermion correspondence.

In § 3 we have described the elements X(n), [i(n), e(n) and f(n) of
the principal subalgebra in terms of E^-e^^. Using (2.1) and (2.3)
we can describe these elements in terms of v|/,, \|/* e C/. In order to
do this it will be convenient to introduce a normal ordering of the
quadratic expressions v|/^*, which we define to be

.^^.^[W for y > 0 ,
I 1 T J * [-(-l)41^ for j ^O .

Then we have,

MM) == ^ : v|/,v(̂  :, H(n) = -- ^ : v|/̂ ?^ :,
k 6 Z

k e Z+^

^)- Z :^-l^n:, /(/O- - E :VM/* ,:.
i c e Z 2 j k e Z 2

The converse of the above description, i.e., describing the v)/, and
\|/* in terms of the ^), ^(n), ^(n) and/(w), is also possible. This will
give us a super boson-fermion correspondence. We shall give this
description in the rest of this section.
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Let V^ denote the formal completion of V^, (see e.g. [10, § 1.5]), and
put v = n ^ .

m e Z

We introduce generating series of the v|/, and v|/*, which are operators
that mapV into V (zeC^) :

^)= Z ̂ l, v|/SOO = I v|^~1

i e Z i e Z

+i(z)= Z '̂, 'l'?(z)=- Z ^~i•
i 6 Z + ^ i 6 Z + ^

LEMMA 4.1. — The following commutation relations hold :

(X(n), <|/8(z)] = z"v|;o(z), [X(n), ̂ (z)] = - z"\)/§(2),

[H(n), v|/6<z)] = 0, [n(n), ̂ S(z)] = 0,

W,^>i(z)}= z"^i-^z), [p(n),i|/?(z)]= - z"^f(z),

[\(n), <|;i(z)] = 0, [Hn), ̂ 00] = 0,

(e(w), ̂ (z)] = ̂ ^lOO, ^(n), <|»S(z)] = 0,

[An),̂ )] = 0, V(n),^(z)] = - z'-4?00,

[/("),^(z)]=^'"4o(z), [/(n),^?(z)]=0,

[e(n),^i(z)]=0, • [e(n),x^;?(z)]=^"+4S(^)•

Proo/. - Is straightforward.
In order to describe the generating series of the ^, and <|/* explicitly,

we need the fermionic charge decomposition of V defined by (2.2).

Let P^ be the projection on V^;,,, and let

P(z)= Z P^-, P(z)-1 - Z P^-"
w e Z m e Z

be the corresponding generating series.

We also need another operator Q mapping V ,̂,, into V^+i, which
is uniquely defined by the following properties :

(4.1^) Q|0>=v|/JO>,
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(4.1&) Q<|/. = <|/,+,Q, (W=^iQ for ieZ,

(4.1c) Q ,̂ = - <hQ. Q\)/,* = - \|/*Q for i e Z + } - •

It is straightforward to verify the following

LEMMA 4.2. - One has/or n e Z , zeC" :

QP(z) ^z-^Q, QP(z)-1 =zP(z)-lQ;
X(n)P(z)= P(z)l(n), Mn)P(z)-1 = P(z)- ̂ (n);
u<n)P(z) = P(z)n(n), H(n)P(2) -' = P(z) - ̂ (n) ;
e(«)P(z) =zP(z)e(n), e(n)P(z)-1 =z-lP(z)-le(n);
/(n)P(z) = z -' P(z)/(n), /(n)P(z) -' = zP(z) - 7(n) ;
Qe(n) =-e(n+l)Q, Q/-(n) =-/(n-l)Q;
QX(0) =(X(0)-I)Q, QUn) =X(n)Q for n^O;
Qn(n) =H(n)Q.

Define for ze C" :
D

r i \ ( V ^(~ ") n\F_(z)=exp ^ ————2")
\n>0 " /

and

r.(z)=exp(- Z^z-").
\ »>o » /

Their product, i.e., F(z) = r-(z)r+(z) is the well-known vertex operator,
which appears in string theory and goes back to Skyrme [20]. Note that
r(z) maps V into V.

Then (see e.g. [13] or the introduction) we have:

(4.2) ^o(z) = i^Qr-OOr^z)
<|/g(z) = Q-^zr'r^zr'r^z)-1.

Using Lemma 4.1 we deduce :
i i

(4.3) v|/i(z) = [e(0), v|/o(z)]z~2, v|/f(z) = - [/(O), i|/S(z)]z2.

Moreover, it is possible to get a somewhat nicer description of these
operators. For this we need the following lemma:
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LEMMA 4.3. — As equalities of formal power series in z we have :

r^(z)e(m)r\(z)-1 = f; e(m+i)z-',
1=0

I\ (z)/(w)r\ (z)-l = f(m) - f(m+ l)z-1,
^+(z)•-le(m)^+(z) = e(m)- e(m+l)z~1,

^+(z)-l/(m)^^(z) = ^ /(m+i-)z-',
1=0

r- (z)e(m)r_ (z)-1 = e(m) - e(m - l)z,
oo

r-(z)/(m)r-(z)-1 = ^ /(m-iV,

r-(z)-^(m)r-(z) = ^ ^(m-oz1,
i=0

^-(z)-l/(m)^_(z) = /(m)-/(m-l)z.

^roo/. - The exponentials and logarithms in the proof are to be
understood by means of their formal power series expansions. Completely
formally we have the following equality:

exp q(z)a exp (-q(z)) == exp (adq(z))(a),

here q(z) is some formal power series in z. We will prove the lemma
for the formulas which contain r+(z) (the proof of other formulas is
similar).

Define the polynomials q^(x) as follows :

exp E xnz—= Z<?n(^~",- n.n>0

—>
where x = (x^x^, . . .) .

Let y(m) = ^ ® y for short, where y = e or /e^n(C), and
rej^ = C[r,r1]. We have:

[^),:K^)]=(-l)^(m+n),

where § = 0 for y = / and 8 = 1 for y = e.
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^ Let e = 0 or 1 , |t| < |z| < |(|-1 and ^ = (?L(1),X(2),...)
1 = (1,1, . . . ) . We have:

/ - n \

"P (-!)'£ ad \(n)— )y(m)
\ n>0 n )

= £ ^((-1)' ad X)^(m)z-"
n

-Z 9.((-l)"'7)ji(»i+n)!--

-.-^p^-irT;^^®,
.,-(»p((-ir.,o,(^)a,

°0 /A' w
= tm £ (,) ® ^ = I ^(OT+OZ"' if e + 8 is even,>=o W ,=o

= ̂ "'(^y0^" y^) - y(m+\)z~1 if e + 8 is odd. D

Using Lemmas 4.2 and 4.3 we get:

W=[e(0),^(z]z~12

= (e(0)P(z)Qr_ (z)r\ (2) - P(z)QF_ (z)r, (z)e(0))z~ ^
= ( - P(z)Q(e( - l)r- (z)r+ (z)z - P(z)Qr- (z)r+ (z)e(0))z~ 5

=(-P(z)Qr_(z) f e(-i-,v+ir,(^)
i=0

-P(z)Qr-(z) f; ^(Oz-T^^z^
= - P(z)Qr.(z) E^(0z-'4^,(z).

I 6 Z

We can make a similar computation for v|/*(z). Putting

^(z)= ^ eWz'1-^ and /(z) = ^ AO^'^,
1 e z . e Z '

we obtain the central result of this paper.
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THEOREM 1 (The super boson-fermion correspondence). —
v|/o(z) == P(z)Qr_(z)r\(z)
v|^(z) = Q-^POO-1!^)-1]-^)-1

vt/T(z) = - P(z)Qr-(z)^(z)r,(z)
Y|/f(z) = Q-^zr^^zrV'OOr^z)-1. D

Using this theorem, we express the generating series of

7c^(E,j), i Je .Z, in terms of the ^(n), ^(n), ^(") and /(n). This

generating series is given by

nj ^ E.,yz-^=vl/o(^m(z)4-v|/o(3;)v|/?(z)+v|/,^
Yye^z ^

where y , z e C X . Using (2.3), Lemma 4.2 and Lemma 4.3, we get the
following result:

PROPOSITION 4.4. - For \y\ > \z\ \ve have

(-) ^{^ ̂ -) = {^-^[-r^-y+/(z)+ (^e(y)

+(^-l\e(y)f(z)}r^(y,z),

W ^y^-) = ̂ -^{^f^^

.(^-i)^)]r...).(y(,-©^
where

r-(y,z)-exp f s ^^(y"-^)}
\n > 0 n )

and

r,(3/,z) = exp f- E ^-^(y-" - z-")). D
\ n>0 n )

In order to calculate Tt^(E^) or ft^(E^), one can develop

( \ - 1 / \k

^ ~ ~ ] = Z ( ~ ) ' ^ ._(v,z) , r+(^,z), c(^) and f(z) in formal power^/ k^o \y/
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series in y and z and then collect all the coefficients of ^z"^. Then
one obtains a complicated operator of infinite order and in infinite
many variables.

From Proposition 4.4 we can immediately deduce the second key
result of this paper.

THEOREM 2. — The presentation n^ o/^ooioo on Vm remains irreducible
when restricted to the principal subalgebra y .

Proof. - By Proposition 4.4, a ^-invariant subspace of V^ is
€L -invariant. D

oojoo

In § 5 we shall develop a representation theory of ^m, in order
to prove in § 6 a formula for the ^-dimension of the representation
Ttm of ^x,x on V^.

5. Structure of Verma modules over ^/i 1 1 .

In this section we develop a representation theory of the Lie
superalgebra ^ = gl^^ constructed in §3.

Let /?= C X © C H © C C © C ^ be the Carton subalgebra of ^.
Introduce a C-valued bilinear for ( , ) on ^ by:

(x+ac-hpd^+yc-hSd) == ResoO'^tr^)) + a5 4- py
for x,yegl,^), a , P , y , 8 e C .

One easily verifies that this bilinear form is supersymmetric, non-
degenerate and invariant. Moreover, its restriction to /? is non-dege-
nerate.

The Cartan subalgebra A is diagonalizable in ^, so that we have
the root space decomposition :

y == ® ^y, where ^y = {xe^\[h,x] = y(h)x for all /ie^}.
Y € ^

We call 0 ^ y e ̂  a root if ^ + 0. The set of all roots is denoted
by A, which we call the root system. Let a and 8 be the roots
corresponding to the root spaces

^=C^(O),^==O.(I)©CH(I)
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so that we have

- a(?i) == a(^) = 1 , a(c) = a(rf) == 0;
8(?i)=84i)= 8 (c )=0 , 800= 1.

Then we can express A in terms of a and 8:

A = { fe8±a| feeZ}u{^8| fe6Z\0} .

Let AQ = {y € A|^y c: ̂ } and A^ = {y e A|^y c ̂ }, be the sets of even
and odd roots, respectively. Then A is the disjoint union of

Ao = {fe8|feeZ\0} and AI = {fc8=ba |^eZ}.

Since the restriction of ( , ) to ^ is non-degenerate, we can identify ^
with ^, obtaining for A e ̂ * :

(5.1a) (A,a) = - A(?i+^i), (A,8) = A(c),

so that

(5.1fc) ( P , 7 ) = 0 for P , y e A .

Let { a o = 8 — a , a i = a } , be the set of simple roots. We set
L = Zao + Zoci and L+ = Z+ao + Z+ai . The lattice L is called the
root lattice. For y = teo -h tai e L the number ^t(y) = k + / is called
the h^it of y. For any ye A, either y e L + or - y e L + ; y is called
a positive root in the first case. We denote the set of positive roots by
A+ . Then A is a disjoint union of A+ and — A+ .

We consider the subalgebras n- == © ^-y and ^+ = ® ^. This
Y e A+ y e A +

gives us the triangular decomposition :

(5.2) ^ = ^- @ ^ © ^+ .

The antilinear anti-involution co extends to a^yoo by :

©(a) = ^ for a e a^oo, co(c) = c .

The principal subalgebra ^ is invariant under co; we have :

co(^c))=/(-fc), 0)(/(fe))=^(-fe),
co(^)) = M - k), co(^W) = î( - fe), co(c) = c ;

this extends to the whole y by (o(rf) = d .
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U(^) will always denote the universal enveloping superalgebra of
the Lie superalgebra ^. From (5.2), we obtain

U(^) = U(^)(g)cU(^)®cU(^).

The root space decomposition of ^ induces an L-gradation on
U(^):

U(^) = © U(^)p..
p 6 L

Now consider the left ideal /{\, in U(^), generated by ^+ and
the elements h - A (A), A e^. We set

M(A)=U(^)/^).

The left multiplication on U(^) induces a structure of U (^-module on
M(A). We denote the image of 1 in M(A) by U A . We call M(A) the
Verma module with highest weight A.

PROPOSITION 5.1.

(1) ^ + . ^ A = 0; A . C A == A(A)I;A /or he ^.
(2) M(A) (5 a free \3(w-)-modu\e of rank 1 wf(A generator v^.
(3) M(A)=U(^-)^ .
(4) The elements

. . . u( - 2)"2X( - 2rv( - 2)^( - 2)k2^( - iya( -1)"^ -1)^( -1)^/^/^
mrh ^, w, e Z+ flnrf fc,, 1, = 0 or 1, and only a finite number of k^ 1,,
m,, n^ non-zero, form a basis of M(A).

(5) M(A) contains a unique proper maximal ^-submodule I (A), so
that

L(A) = M(A)/I(A)

is an irreducible ^-module.

Proof. — Is standard. D

The L-gradation of U(^_) induces a weight space decomposition
M(A) = © M(A)A-p, where

3e L+

M(A)^-p = U(^)-p(^) = {vcM(A)\h(v) = (A-P)(/i), he^.
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Let P(r|), T| e L, denote the number of partitions of TI into a sum
of positive roots (feS taken with multiplicity 2 and the rest with
multiplicity 1), odd roots appearing at most ones (by definition,
P(0)=l). By Proposition 5.1 (4) we have:

(5.3) P(r|)=dim M(A)^.

A quotient V(A) of M(A) is called a highest weight ^module. It
has the induced weight space decomposition :

V(A)= © V(A)A-p.
P < = L +

As usual, we define its character by:

ch V(A)= ^ (dim VtA^-p)^.
P e L+

Putting V(A)^] = @ V(A)A-p, we obtain the principal gradation
P6L+,/»((P)=J

of V(A). Define the ^-dimension of V(A) by:

dim, V(A)= ^ dim V(A)^.
J 6 Z+

Then, defining the principal specialization F by ¥(e~^) == ^((p), p e L + ,
we have

(5.4) dim, V(A) = F^-^ch V(A)).

In particular, we have by Proposition 5.1 (4) (cf. (5.3)):

(5.5) ch M(A) = ^ ^ P(^)e~^
P e L +

= ^ n (l-^~ k 8 )~ 2 ( l+^~ k 5 + a ) ( l+^ - ( k~ l ) 8 - a ) ,
k^\

(5.6) dim, M(A) = fl (1+<72&- l)2/(l-^k)2.
k^l

We can introduce a Hermitian form F on M(A), called the
contravariantform, which is uniquely defined by the properties:

FO^A) = 1 and ¥(g(v),w) == F(u,co(^)(w)), v, weM(A), ge^.
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We have the following properties :

F(M(A)-^M(A)-e) = 0 if T| + 9 ; Ker F = I(A).

We set F^ = F|M-^. The function (det F^)(A) is a polynomial in
Ae/^* , which is independent of the choice of the basis in M(A)-^ up
to a positive constant factor. Clearly M(A) is irreducible if and only
if det F^ 0 for all r} eL+\0 .

For contragredient Lie superalgebras there exists a formula
for det F^. One can find the correct version in [11] (its proof is the
same as in [12]). This formula also holds for g . Recall that in this
case (y,y) = 0 for all y e A + (see (5 Ah), so that for pe^* such that
(p,a») = -(a,,^), we have (p,y) = 0 for all ye A. Hence we get from

the general formula in [11] (here and further, N = {1, 2, ...}):

PROPOSITION 5.2. — For the representation M(A) of ^ one has

(detp,)(A)= n n (A/^-^ n (A^-^,
Y6^ k 6 N Y6^

where Py denotes the number of partitions not involving the root y. In
particular M(A) is irreducible iff (A,y) ^ 0 for all y e A+ . D

Following [3], we construct the Jantzen filtration

M(A) = M =3 M1 =D M2 =D • • • .

This filtration satisfies the following conditions :

(5.7a) M(A)A-n n M1 = 0 for some i .

(5.8fc) M1 is the kernel of F and M/M1 is an irreducible
^-module isomorphic to L(A).

Now using Proposition 5.2, we can prove as in [3, 12]:

(5.7c) ^ ch M1

i^ i
= Z ^ E Z P(T^-ny^-T1+ E ^ S ^(Tl-y)^
?0 w £ N n e L ' ^o n € L +

= ^ ^ c h M ( A - M y ) + ^ chM,(A-y),
y^ n e N Y 6 A 7 +
(A,y)=0 (A,Y)=O
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where M.y(A—y) is a submodule of M(A) generated by a vector of
weight A — 7.

PROPOSITION 5.3. - Let A eh* be such that A(c) + 0. Then the
^•module M(A) is irreducible except for the following three cases:

(a) (A,a) = 0,
(b) (A,a) = fcA(c) for a positive integer k ,
(c) (A,a) = — fcA(c) for a positive integer k.

In these cases, M(A) contains a unique irreducible submodule L(A—P),
where P = a, k6 - a and fc8 4- a for cases (a), (b) and (c) respectively,
and we have :

(5.8) chL(A) = ( l+^-^chMCA).

Proof. - Follows from the general description of irreducible
subquotients of Verma modules given in [9] (which is deduced from
(5.7c)). The fact that the irreducible subquotient L(A-P) occurs with
multiplicity 1 (this is true in the general setup of [9] for any odd P,
actually) is clear from (5.7c). Q

Remark 5.1. - Replacing y by ^ and ^-modules by graded
^-modules in this section does not change the claims of Proposition 5.3,
since, apart from Cu^, the only other vectors killed by ^+ are in
M(A)A-p (where P is as in Proposition 5.3).

6. The ^-dimension formula for the Ooo loo-module ¥„.

By Theorem 2 we already know that V^ remains irreducible if we
restrict to the principal subalgebra ^. So V^ is an irreducible highest
weight module L(A^) over ^ with highest weight vector |w> (see (3.1))
and the highest weight defined by :

AJc)=(A,,8)==l; (A,,a)=-w if m^0,-(m+l) if m<0.

Define P by :

P = m 6 + a if w ^ O , P = a if m = - l ,
P = - (w+ 1)8 - a if m < - 1.

Then (5.8) gives us

(6.1) ch L(AJ = (1 ̂ -p)-1 ch M(AJ.
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Hence, using (5.6) and the fact that the principal gradation of the
a^ loo-module V^ is consistent with that of the ^-module V^ = L(AJ
we obtain :

(1+^1)-!^ (1-^-2(1 .^-1)2 ^ ^^

k^l(6.2) dim^V^
(1+^-1)-1^(1--^-2(^2*-1)2 if ^o

k^l

As a corollary, we obtain an interesting combinatorial identity. We
shall call a partition of k into a sum of positive integers of white and
black color a super bipartition if odd parts of each color are distinct.

COROLLARY 6.1. - Fix m ^ 0. Then the number of super bipartitions
of k such that the number of \vhite parts minus the number of black parts
is less than or equal to m, is equal to the number of super bipartitions
of k such that no black part equals 2m + 1.

7. The operators S and T.

Introduce the following two operators on V ® V which are adjoint
to each other:

S = Z (-l)21^®^* and T= ^ vl/*®^..
^ ,e,Z

Using the defining relations of C/ it is straightforward to verify the
following lemma :

LEMMA 7.1.

(1) S and T commute mth the action of n (g) TC (^<ooioo)-
(2) S(|w>®|n» = 0 iff m ^ 0 and n ^ 0

T(|m>®|M» = 0 iff m ^ 0 and n ^ 0.

In the Lie algebras case, i.e., gl^, a similar operator S leads to the
definition of the KP and MKP hierarchies. (See [13].) In that case one
can construct Hirota bilinear equations, which are certain « bilinear»
partial differential equations. We had hoped that also in the super case,
^^ ^ /x ix , th}s operator S would lead to some hierarchy of differential
equations with commuting and anticommuting variables. Generalizing
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the definition of the KP hierarchy, a natural definition of the super
KP hierarchy is then given by the following equation

(7.1) S ( F ® F ) = 0 for F e Vo.

Let F = FQ + Fy be the decomposition in even and odd elements of
VQ, then (7.1) is equivalent to

(7.2) ^ v|/..(Fo)®v^/*(Fo+FJ)+(-l)2l^.(FO®v|/*(Fo+Fi) = 0,

and this again is equivalent to the following bilinear identity

(7.3) (J)(^o(^)(F6 + FL>® v|^00(Fo + Fi)

+ vhWo + Fi) ® ̂ W-o + F,)^ = 0.

Unfortunately, it is not clear to us how one can develop this in order
to get « super » Hirota bilinear equations of the Super KP-hierarchy.

In [15], Manin and Radul use even and odd pseudodifferential
operators to define the Super KP (SKP)-hierarchy. The time evolution
in SKP is defined with respect to a non-abelian Lie superalgebra 9 of
flows 9,, i ^ 1, deg 9, = i mod 2 with the commutation relations

[62., e ,̂] == [9^,92,-J = 0, [9^-1,9^-J = 29^ 2.-2.

This Lie superalgebra 9 can be found as a subalgebra in the principal
subalgebra ^. There are two choices for 9, viz,

(1) QIJ = ^O") + H(/), 62,-1 = e(j) + /(/) j > 1, or

(2) 92; = ?i(/) + H(/), 9^-1 = i(e<J) - /(/)) 7 ^ 1 .

This would suggest that there is a relation between the SKP hierarchy
of Manin and Radul and the representation theory of g^\w developed
in this paper. Until now it is unclear, however, how these two theories
are related.
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8. The Weyl superalgebra, its oscillator module
and the boson-fermion correspondence.

In this section we review the theory developed in § 1-§ 7 but now
for the Weyl superalgebra instead of Clifford superalgebra.

The Weyl superalgebra W = W^ ® Wy is defined as the associative
superalgebra over C with a unit element on the generators \|/, and v|/^,

j 6 . Z, and the following defining relations:

W -(-W^i =^

(8J) ^^-(-l)40^ -O.
vlW -(-l)4i^v|/*=0,

with the Zz-grading given by

(8.2) ^-,v|/f6Wo if j e Z , ^,v|/f6W, if J G J + Z .

The antilinear anti-involution co on W is defined by

(8.3) co(vf/,) = - (- l)2^*, o)(v|/f) = - (- l)2^,.

The oscillator module over W is the irreducible W-module U which
admits a non-zero even vacuum vector |0>, such that (1.4) holds. The
Hermitian form <•,•> on U is defined in the same way as on the
Q-module V.

Elements

(8-4) ^-^^•..^lO)

with
7i > • • • > Jr > 0 ^ i, > . . . > i,,

such that /, = 1 (resp. k, == 1) if i, (resp. ;,) e _ + Z form a basis of

U . These elements are pairwise orthogonal with respect to < • . • > and
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the square length of the element (8.4) is

.1^^-Ofc , k U , 7 ,^ 1) t KI I . . . Ky \ l^ \ . . . is 1 .

Let \|/ and g/ooioo be as in §2, we define the standard representation
of glao\w on ^ m terms of the Weyl generators as follows :

(8.5) E,,- -(-l)2^,

the action is again defined by the (super) commutator. The map (8.5)
also defines a representation p of ^ooioo on U. Given n e Z, define

f ^"r^i |0> for n > 0,
|n> = ^

[ \i/r"io> fof M < o.
Putting deg |0> = 0, deg \|/, = 1 and deg \|/* = - 1, we get the following
decomposition into irreducible ^oo^-modules U,, with highest weight
vectors |n> :

u = e n..
n € Z

We denote by ?„ the representation of g/ooioo on the submodule U^.
We calculate the corresponding highest weights (^i^gl^

0 0 0 0 n n - 1 0

_ 3 - 1 _ J I 0 _[ 1 3
~ 2 2 2 2
0 0 n n - 1 0 0 0

_ 3 - 1 _ ] ^ O JI 1 3
2 2 2 2

.. for n > 0.

for n ^ 0.

Comparing the highest weights of U,, with the highest weights of V^,
we conclude

(8.6) d im,U^=d im,V^- , .

As in the case of C7 and V, we can also define the fermionic and
bosonic charge decompositions. Put deg |0> = 0 and deg \|/, = 1,

deg \)/* = - 1 for ( e Z 4- -, deg \|/; = deg v|/* = 0 for i e Z
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(resp. deg \|/, = 1, deg vj/* = - 1 for i e Z, deg \|/, = deg v|/* = 0 for

i e Z + ^), obtaining the fermionic (resp. bosonic) charge decomposition

of U :

(8.7) U = C H^.^(resp. U = ®R U^).
M 6 Z M 6 Z

Again the subspaces D^)^ and U^;,, are not invariant with respect to
8'W | 00 •

In order to avoid « anomalies » in a^-^, we change the representation
p. Define p as follows :

(8.8^) p(E,.) = p(E,,) + (-1)21! for i < 0

(8.8b) p(E,,) = p(E,,) if i ^ j or i == ; > 0.

Then the corresponding cocycle is

C-(E,,E,)=C(E_,^._,^,E^^^?,

where C is defined by (2.4).
Then extending p to ^^100 = ^ooioo ® Cc with cocycle C~, by

p(c) = I, we obtain a linear representation of the Lie algebra ^ooloo
on the space Un, which we denote by p^. One can find a similar cons-
truction of CL^\^ in [22]. •

The elements p(w), X,(m), e(m), f(m) and c of § 3 form a basis of
the principal subalgebra ^ c ^^i,^. Moreover, now they have the
following commutation relations:

[X(n), e{m)} = - e(m + n), [X(n),/(m)j = /(w + n),
[H(n), ̂ (m)] == ^(m + n), [^(n)J(m)] = -/Qn + n),
[Un), ̂ (m)] = - n§^ -^c, [^(n), ̂ (m)] = n8^ -^c,

[X(n), n(7n)] = 0, [e(n)J(m)] = \{m + n) + n(w + n) -h M§^^ _^.

So we have the following identification with gl^^ :

t \ r° ^"1 /•/ ^ r° °1^'[o oj5 ^'^ oj5

\( \ r° °1 / ^ \tn ot^-[o ^J. ^-[o 0} l = c <
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If we replace ^ by p^ the relations (3.1) still hold, hence, when
restricted to ^, we have

w. p..^ft«.
This together with (8.6) proves Theorem 2 in the Weyl superalgebra
case:

THEOREM 2'. - The representation ?„ of a,^ on U, remains
irreducible when restricted to the principal subalgebra y..

Now we describe the boson-fermion correspondence for W.

We introduce a normal ordering:

. ̂ * . = f<W for j > 0
- V ^ . ^(_i)4,^ ^ ^Q

Then p(E.,) = (- l)2^: ̂ * :,

P(^(«)) = - Z :^?+,:, p(H(n)) = ^ :^^»:,
t 6 z t . X + ^

p(e(M))= - ^ :^_,<|/^,:, p(/(n)) = ^ :^,,_l:.
k e Z 2 ne Z 2

Let U be the formal completion of U, and let ^(z) and v)/j(z) be the
same generating series as in §4. The series v|^(z) and v|/*(z) are slightly
different:

)̂ = Z - v|^~1; vk?(^) = ^ v|/*z-1.
l 6 z , e Z 4 - ^

These are operators that map U into U. Then exactly the same
commutation relations hold as in Lemma 4.1.

Let P^ be the projection on U^,,, (see (9.7)) and let

P(z) = £P^4 and P(z)-1 = SP^4

be the corresponding generating series of the projections. Define also
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Q; now it maps L^) „ into U^,,+i ; and this operator is uniquely
defined by the following relations :

Q|0> -vl/ i io),
2

Qv|/, = v|/;+1 Q, Qv|/,* = <|/̂  ,Q for f e Z + !

Q^, = ^,Q. Q<1'* = ,̂*Q for i e Z.
It is easy to verify the following relations:

LEMMA 8.1. For « e Z we have:

QP(z) =2-^(2)0; QP(z)-1 =zP(z)- lQ;
X(n)P(z) = P(z)^(n); ^.(«)P(z)-1 = P(z)-^(/i);
H(n)P(z) = P(z)H(n); ^(n)P(z)-1 = P(z)-le(n);
c(n)P(z) = ^-lP(z)e(?l); e(n)P(z)-1 = ^P(z)-le(n);
/(n)P(z) = zP(z)/(n); /(n)P(z)-1 = z-lP(z)-l/Ol);
Qe(n) =e(n-l)Q; Qf(n) =/(n+l)Q;
QUn) =M«)Q;
QH(O) = (u(0)-I)Q; Q^(n) = ^(n)Q for w ^ 0.

Define

r.(z) = exp ( E ̂  z"), r.(z) = exp f- s H^ A
\n>0 n / \ n>0 n /

then the following relations hold :
LEMMA 8.2.

r\(z)^(m)r+(z)-1 = 6-(m) - e(m+l)z-1 ,

r,(z)/(m)r\(z)-1 = ^/(m+Oz-1,
1=0

r^(z)-^(m)r^(z) = ^ ^(m+o^',
1 = 0

r^zr^^r.Cz) = f(m) -/(m+i)z-1,
c^

r-(z)e(w)r_(z)-1 = ^ e(TO-i)z',
i=0

r_(z)/(m)r-(z)-1 = f(m) -/(w-l)z,
^_(^)-le(ff^)^-(^) = e(m) - e(m-l)z,

r- (z)- '/(w) r- (z) = f; /(m - oz-. D
1 = 0
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Now as before, we have:

'h(z) = P(z)Qr-(z)i\(z), v|/f(z) = Q-'PCzr^zr'r^z)-1.

Using Lemma 4.1 we find

)̂ = LAO), <|/T(z)]z^ and ^(z) = [e(0), ^(z)]z~^.

Applying Lemma 8.2 we find the analog of Theorem 1 in the Weyl
superalgebra case. Let e(z) and /(z) be as in § 4. Then we have :

THEOREM 1' (The super boson-fermion correspondence for W).

<|/o(2) = P(z)Qr.(z)/(z)r^(2),
)̂ = Q^PCzr1^)-1^)!^)-1,

vh(^ = P(z)Qr-(z)r\(z),
^(^ = Q - lP(z) - l^_(z)- l^+(z)- l .

PROPOSITION 8.3. - For \y\ > |z| we have

^"(^^^"^©"^^•^-(^©^
(y \ -1+l;-i)/^)e(2) r,(^z),

w ^^^^^'"^©""^-^^^^^©•^
+ ̂  -iW).(.)tr.(,,z) + ̂ 'Yi - 'n—,v / J \•i) \ y ) ) \ - z/y

where

^ .^z)=expf^ ^ (^ n )(^-z-))
\n>0 n )

and

r^,z) = expf- ^ ^^-"-,-")Y Q
\ ,,>o n )



SUPER BOSON-FERMION CORRESPONDENCE 133

Finally, we introduce the operators S and T in the Weyl superalgebra
case :

^ - Z (-O2 1^®^ and T = ^ vl/* (x) v|/,.
f 6^z i-e^Z

Lemma 7.1 also holds in this case for the representation p instead of
TC . Hence the super KP hierarchy can be defined in a similar way:

S ( F ® F ) = 0 for F e U o .

9. Reduction to glk\k.

In this section we return to the description of gl^ and ^^ and
their highest weight module V^ in terms of the Clifford generators.

Let ^ = C[r,(~1] be the algebra of Laurent polynomials in r ,
previously introduced in §3. Fix two positive integers k and L Denote
by < P i , (p2, . . . , (pk+( the standard basis of C^. We identify the vector
space ^k+l over C with the space K? (see §2) by

^j= t~1^ if f e Z , j = 1, . . . , k ,(9.1)
^i = t-^j it ^ e Z , j =!,...,;.

The Zz-gradation on ^ induces a Zz-gradation on C*^, viz, deg(p^.=0
(resp. deg(p^.=T) if j^k (resp, ;>fe). The identification (9.1)
gives us an imbedding of associative algebras T: Ma4+^) -> ̂ ^,
where the matrix algebra Mat^(J^) acts in the usual way on ^k+l.
Moreover, T also gives rise to the embedding of the corresponding Lie
superalgebras T:^,^)-.^,^. Explicitly

(9.2) T(̂ ,,)

= Z Ek(n-m)+i,kn+j it l . ^ e l , . . . , ^ ,
we yneZ

= E ^-no-^.-^+y if I e f c + l , . . . , f e + / and je l , . . . , / c ,

== Z ^-.o-^-l/n-^-1 if ^ y e f c + l , . . . , f c + / ,
w e Z 2 2

== Z £,(„-.,)+.,/,,-fe+,-l if f e l , . . . , f c and 7 € / c + l , . . . , f c + / ,
neZ 2
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where e^ is the (k-^-l) x (/c-(-/)-matrix with an (i'J)-entry 1 and zeros
elsewhere.

The cocycle C on zy/oc ix- defined by (2.4), induces a cocycle on
glk,A^), which we also denote by C and which can be easily calculated
using (9.2) :

C(A(Q, B(Q) = Res^o ̂ (^ ̂ o)-

Equivalently, this defines a central extension

^=^U^)©<^

where the bracket is defined by (A,B e gl^i(C)):

[^A^B] = ^"[A.B] + m8^-^Str(AB)c.

The superalgebra gJ^ is called the affine superalgebra associated to the
finite-dimensional Lie superalgebra glk\i(C).

Since the principal subalgebra ^ c= ̂ ^ is contained in T(^^),
we get the following simple consequence:

PROPOSITION 9.1. — Vyy, is an irreducible gl^^-module. D

Note that |m> is the highest weight vector of the gl^' Now the Cartan
subalgebra /? of "gl^ has as basis c, ^i, . . . , ^ the elements 2k, 2k.

Using the relations in the Clifford superalgebra, and its action on V^,
we calculate the highest weight of the gl^ ̂ -module V^ :

(9.3d) 7t(c)|m> = |m>,

(9.3fc) n(ea) |m> === 0 for f + k + 1, 1k and m e Z,

(9.3c) 71(^+1,^1) |m> = w |w> if w ^ 0 and = 0 if m < 0,

(9.3rf) n(^,2k) |w> = 0 if m ^ 0 and = (m+1) |m> if m < 0.

Notice that since V^ is not unitary as an ̂  ̂ -module, the same is
true for V^ as a ^ ̂ -module. Unitarity and integrability, which play
an important role in the representation theory of affine Lie algebras [10],
seem to play a minor role in the representation theory of affine Lie
superalgebras. Some support for this statement is given by the following.
In [14], the contragredient Lie superalgebras (introduced in [6]) of finite
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growth with symmetrizable Cartan matrix were classified. They all turned
out to be non-twisted and twisted affine superalgebras. Only for a few
of those superalgebras, viz., ^(O.n), A^O^n-l), C^^n+l) and
A^O^n), there exist non-trivial integrable highest weight representations
(see [7]). In all other cases (resp. in all cases) one can prove, using the
methods of [8], that there are no integrable (resp. unitary) highest weight
representations except the 1-dimensional. We hope that our construction
of the ^ifc-modules V^ will give an indication which « new » conditions
will take over the role of unitary and integrability in the representation
theory of affine superalgebras.

The principal gradation of /7xia> (see (2.5)) induces a gradation on
§lk\k ''

deg (t^) = 2(km+j-i) if i,j e .... k or f , j e f e + l , . . . , 2 f e

= 2 f / c ( m + l ) + 7 - f + -

if i e k + 1, . . . , 2k and j E 1, . . . , k

=2[k(m-l)+j-i-^

if i e 1, . . ., k and j e k + 1 , . . . , 2k.

This gives a principal gradation on the gl^ ̂ -module V^ which is exactly
the same as its principal gradation as ^oo, ̂ -module. Hence the
g-dimension of the ^,^-module V^ is given by formula (6.2).

Added in proof. We have constructed recently a super boson-fermion
correspondence for the Lie superalgebra h^^. In this case the Clifford
superalgebra is generated by neutral free superfermions (p,, ie 1/2Z, satisfying
relations

<p,(p,+(- l)^<p,(p,-(- l)1'^,-,.

The corresponding SBKP operator is

S = 2 ^ (- l)^p-,®^.
j e 1/2Z
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