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CONNECTIONS WITH PRESCRIBED
CURVATURE

by D. DETURCK (1) and J. TALVACCHIA

Introduction.

Geometry has served as a rich source of interesting (and difficult)
problems in partial differential equations. Conversely, the study of such
equations often leads to new geometrical insight. In this note, we
consider some aspects of the problem of prescribing the curvature tensor
of the connection on a principal bundle. This problem is easily cast as
a nonlinear system of first-order differential equations (see (1.1)), and
we are particularly interested in knowing when the system does (or
does not) have local solutions. While this problem has much in common
with other problems of prescribing curvature tensors (see e.g., [5], [6]),
there are several new wrinkles here which have yet to be completely
ironed out. They seem to stem from the interaction of the various
groups which arise naturally in the problem : the structure group of
the bundle and the diffeomorphism group of the base manifold. As one
expects in such a problem, the equivariance of curvature under changes
of gauge and coordinates yields the Bianchi identities, and these must
be taken into account in any existence proof. However, some nonlinear
identities also arise as obstructions to solvability when the structure
group is semisimple — we give a simple derivation of these identities
(of course, once one knows that an identity is there, it is always easy
to derive it), and conjecture (perhaps naively) that we have found all
of the obstructions to generic local solvability in the semisimple case.

(1) Supported by the Sloan Foundation, NSF Grant MCS 85-03302 and NATO
Subvention 0153/87.

Key-words : Connections - Curvature - Vector bundles - Cartan-Kahler theorem.
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We give the proof of this conjecture for the group SU (2) (we also
have the proof for other simple groups of low rank, see [14]). We note
that the case of SU (2) had been done independently by S. Tsarev
(without the new identity, or any indication of how to proceed for
other groups) and R. Bryant (private communication). Also, A. Asada [15]
has considered the problem for GL(n), and has expressed solvability
conditions in terms of an infinite sequence of equalities which must be
satisfied by the curvature candidate. Our results here show that generically
there is local solvability over three-dimensional base manifolds, (perhaps
modulo finitely many equations in the semisimple but not simple case),
so that Asada's conditions cannot all be independent in dimension 3.

In this paper section 2 introduces the problem of prescribing the
curvature of a connection on a principal bundle, and makes precise
our notation. Section 3 is devoted to the case where the structure group
of the bundle is nilpotent; in particular, a complete proof of local
solvability is given for the Heisenberg group. We thank J. R. Vanstone
for instigating the results of this section. In section 4, we turn to the
case of (semi)simple structure groups, prove the new identities, prove
generic local solvability for bundles with structure group SU (2), and
indicate how to proceed for simple structure groups of higher rank. In
the appendix, we review some basic techniques used to prove local
solvability of systems of partial differential equations, and give a sketch
of how the techniques work for the problem of prescribing Ricci
curvature (a case where everything goes right).

We thank the referee for his thoughtful suggestions.

1. Connections on principal bundles.

We begin our discussion of the equation Curv(r) = F by making
precise our notation and deriving a few general facts. To start, let G
be a Lie group with Lie algebra 9, and let P be a principal G-bundle
over some manifold M. For any linear representation p : G-^GL(V),
there is a vector bundle Ep (whose fibers are isomorphic to the vector
space V) associated to P, and a connection on P gives rise to a
connection on Ep in a canonical way. Conversely, if p, is a faithful
representation of 9, then a connection on Ep gives rise to a unique
connection on P. We will freely pass among the various Ep associated



CONNECTIONS WITH PRESCRIBED CURVATURE 31

to a given P; the p we consider most often are the fundamental
representation of G and, in the case of semisimpleG, the adjoint
representation.

To be totally explicit, we work over a local coordinate chart on M
with coordinates x1, i = l , . . . , n , and consider the vector bundle E
associated to the fundamental representation p of G. Let e^, A = 1, . . . , r
be a basis (over C°°(M)) of local sections of E, so that any local
sections of E can be expressed as vA(x)e^ (we are using the summation
convention). For any connection V on E, Vv should be a section of
T* g) E, and to achieve this we set

Vv = (8^ + (r.O;))̂  dx1 (x) ̂
\ox )

for some choice of Ffep,(g) (we abuse the notation and often write
r, 6 g). We will not worry about how various objects transform under
changes of coordinates on the manifold or basis in the bundle (gauge)
since our point of view will be purely local.

The connection gives rise to exterior-differential-type operators d^
by tensoring with the deRham complex of M : If a is any p-form with
coefficients in E (i.e., a is a section of A^T* ® E), then the p 4- 1-form
cToL is given by

^a = rfa + r A a

= (8^ + (F^a,))^ (dx1 A ^A) ® ̂\ox j

where A is a multiindex of length p . In particular, for a 1-form a,

dva = (̂  ~ ̂  + (^i(^))A ~ (^^a^A) (dxi A dxj^ ® ^A.

The curvature F of the connection measures the failure of d^ to give
rise to a complex, i.e.,

rf^a = F A a

for any p-form a, where F is the g-valued two-form given by

(u) ''-(^-i'?^1'-1^'^'
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It is equation (1.1) that we will try to solve for r, once a section F of
A2"? ® 9 is prescribed in advance. In other words, we will think of
(1.1) as a system of partial differential equations with the r, (we
emphasize that each r, is a matrix) as unknown functions. Note that
if n = dim M and d = d i m g , then there are (^equations for nd
unknown functions (the entries of the r\). Thus for n == 2, this is an
underdetermined system (more unknowns than equations; in fact, the
system is elliptic in this case : every cotangent direction is noncharacteristic
for the system). If n = 3 there are just as many unknowns as equations
(although there are no noncharacteristic directions), and if n ^ 4 the
system is overdetermined.

For n ^ 3, there is a well-known condition which F (and F) must
satisfy, namely the Bianchi identity. This identity states that d^¥ = 0,
where this time d^ comes from the connection induced by V on the
vector bundle associated to the adjoint representation of 9. Somewhat
more explicitly,

(1.2) 0 = ^F = d¥ + r A F
_ (^jk . 8¥ki . OF,, \
~ [W + &7 + ~Q^ + [rh¥jk] + [rp¥ki] + [ r k 9 ¥ i J ])

dx1 A dx3 A dx11.

One sees that the Bianchi identity is a real obstruction to local
solvability of the equation Curv(r) = F by considering two-forms F of
the form

F = (Fij^dx1 A dx3

in a neighborhood of the origin, where F,,̂  + F,^, + Fj^, + 0 for
some choice of f , 7, and k. It is then clear that no choice of F can
satisfy (1.2) at the origin, where F = 0 but d¥ ^ 0. Of course, the
condition d F = 0 is the obvious necessary (and sufficient!) condition
when the group G is abelian — we are going to consider the successively
more interesting cases of nilpotent and semisimple G. A first observation
is that in order for F to be the curvature of some connection, it must
be true that d¥ (taken with respect to any connection) takes its values
in the derived subalgebra [9,9] of 9. Of course, this is no condition at
all for semisimple G, but is quite a strong restriction on the curvature
tensors of bundles with nilpotent and solvable G.

In the next two sections, we consider the problem of prescribing
the curvature on a bundle with first nilpotent, and then semisimple
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structure group over a three-dimensional base manifold. We ignore two-
dimensional bases since the problem then is elliptic (and hence trivially
locally solvable) and we also ignore dimensions higher than three since
then the Bianchi identity places so many algebraic conditions on the
connection as to give nonexistence or determine a unique connection
(which may or may not be the solution of (1.1), and one simply checks
the unique candidate by plugging it into this equation. In any case,
the problem is reduced in general to an algebraic computation). These
considerations are explained more fully in [14]. We therefore consider
only three-dimensional base manifolds for the rest of the paper.

2. Nilpotent structure groups.

In this section, we consider the problem of prescribing the curvature
of a connection which takes its values in a nilpotent Lie algebra. For
the sake of brevity, we restrict our attention to the case where the
algebra is ^3, the three-dimensional Heisenberg algebra. Recall that this
Lie algebra can be described as the span of {X,Y,Z}, where
[X,Z] = [Y,Z] = 0, and [X,Y] = Z. For the purposes of studying
equation (1.1) for the Heisenberg algebra, it will be advantageous to
consider the connection F and the curvature F to be elements of the
Lie algebra whose coefficients are differential forms rather than the
other way around. Thus, we will think of the form

F = aX -h PY 4- yZ

as being prescribed in advance, where a, P and y are ordinary scalar-
valued two-forms, and we will search for our connection F in the form

F == pX + ^Y 4- rZ,

where p, q and r are ordinary scalar-valued one-forms.

The derived subalgebra of 1)3 is the one-dimensional algebra spanned
by Z alone, and so the «first observation» made at the end of the
previous section tells us that d¥ must be a (three-form) multiple of Z
in order to even have a chance to be the curvature of a connection.
We can see this even more vividly if we compute the curvature of the
connection F :

(2.1) Curv(F) = dV + [F.F]
= dpX + dq\ + (dr 4- p A q)Z.
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Thus, p , q and r must satisfy the differential system

dp = a
(2.2) dq = P

dr + p A ^ == Y.

This immediately implies that da = d p = 0 is a necessary condition for
solvability. If this condition is satisfied, then p and q are determined
to within adding the differential of a scalar function to each. We now
take the exterior derivative of the third of equations (2.2), keeping the
other two in mind, to find

(2.3) a A q - p A P = riy.

If we can choose p and q so that (2.3) is satisfied, then it will be
possible to use the Poincane lemma to solve for r. But recall that we
have determined p = po 4- df and q = q^ + dg, where we are still free
to choose / and g . If the base manifold is three-dimensional, then (2.3)
becomes an underdetermined system of one linear equation for the two
unknown functions / and g . This equation is easily seen to have local
solutions, provided a and P are not both zero at the same point. This
proves:

PROPOSITION 2.4. — On an ^ybundle over a three-dimensional base
manifold, the equation Curv(r) = F is generically locally solvable provided
d F is a « center of ^3 »-valued three-form.

It might be an amusing exercise for the reader to work out the
situation for the In + 1-dimensional Heisenberg group, or for an
arbitrary two-step nilpotent Lie group. Solvable groups are somewhat
harder (see [14]).

3. Semisimple structure groups.

It is for semisimple structure groups that we first encounter the new
identities alluded to in the introduction. To understand how they arise,
we consider the problem of constructing a (formal) power series solution
of the system consisting of equations (1.1) and (1.2), that is:

(3.1) Curv(r) = ^ r - h r A r = F
d F + r A F ^ 0.
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We remind the reader that we are working on a bundle over a three-
dimensional base space. We also remark that the first of these equations
is first-order in r and the second is only zeroth-order in r. Thus, to
begin constructing the power series solution of (3.1), we need to consider
the second equation when choosing even the constant terms in the
series for r. When the structure group is semisimple, and F is « generic »,
it is always possible to choose the constant terms so that the second
equation is satisfied at the origin. This is a consequence of the following.

LEMMA 3.2. — Let 9 he a simple Lie algebra. For the generic ^-valued
two-form F, the map

4): A^g ® 9 -> A3^ (x) g

given by (|)(r) = F A F is surjective.

Proof. — The set of regular elements of 9 is open and dense in 9
(see section 103 of [16]), so the generic F (considered as a map from
A2^ to 9) has a regular element X in its image. Furthermore, it is
generic to assume that another element Y in the image of F has a
nonzero projection on each root vector Eg. for some basis {aj of the
root space of 9 (with respect to the Cartan subalgebra I) generated
by X). By a linear change of coordinates in To, we can thus assume
that

F = Xdx2 A dx3 + YAx3 A dx1 + Zdx1 A dx2.

If r = F,dx1 4- Fix2 + V^dx\ note that

(KF) - ([X,FJ + [Y.F^] + [Z,r,])dx1 A dx2 A dx3.

To see that ((> is surjective, note first that the image of adx is precisely
the space of root vectors and that its kernel is 1). Also, the image of
ady projects onto 1) (since [E^.E-J = oc-H for each root a).

We now move on to the first-order terms. These terms must be
chosen so that the first of equations (3.1) is satisfied at the origin, and
also so that the first derivative of the second of equations (3.1) is
satisfied at the origin. Again, provided F is generic, this can be done
(we omit the algebraic details). This actually fulfills the first half of
condition (1) of the Cartan-Kahler theorem (see the Appendix) for the
system (3.1) to be involutive. It is also possible to check that conditions (2)
and (3) are also satisfied, i.e., that the nonlinear map on the jet bundle
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corresponding to (3.1) has constant rank, and that there exists a
quasiregular basis at the origin. In fact, the basis chosen for F in the
proof of Lemma 3.2 is quasiregular. Next, the fact that the Bianchi
identity is satisfied to zeroth order at the origin guarantees that we
may choose quadratic terms for F so that the first of equations (3.1)
is satisfied to first order. The problem comes when one tries to choose
the quadratic terms in the power series for F so that the second
derivatives of the Bianchi identity are satisfied at the origin. The reason
for this is that the linear equations which the second derivatives of r
must satisfy, namely the second prolongation of the symbol of the
Bianchi identity, are not surjective, and there is nothing to force the
right-hand side of the equations to lie in the image of the left. In other
words, it is impossible to verify the second half of condition (1) for
involutivity. The failure of the system to be involutive due to this
condition indicates that there are more identities present which must
be satisfied by the lower-order terms, in order that the linear polynomials
we find as first-order formal solutions may all be prolonged to quadratic
formal solutions. To discover the identities, we need to differentiate the
equations and search for hidden relations. We proceed to do this.

We begin with the Bianchi identity. Since we are working locally,
we abuse the right to take partial derivatives and pretend that they are
well-defined (we could make this more «geometric» by defining a
background connection on the tensor product of the tangent bundle
with the various other bundles we are considering, but for now, we'll
just write Vo for the componentwise partial derivatives of whatever
object we apply it to). Thus, we have :

0 == Vo(^F + F A F)

= V(^F+ r A VoF + VoF A F.

The quantity on the right-hand side of this equation is T* ® A^* ® 9-
valued. We can therefore wedge the T* part of the object with a two-
form. We choose to do this with F (a g-valued two-form), but instead
of applying the Lie bracket to the coefficients of the form, we apply
the Killing form of the Lie algebra to them (recall that the Killing
form K(A, B) is tr(AB)). We denote this new kind of wedge product by

K

/\, i.e., for two g-valued one-forms a and p, we have
K

a/\P = Z tr(a,P,)rfx1 A dx3.
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K

The result of /\-ing F with the derivative of the Bianchi identity is
K K K

(3.3) o = F A V o ^ F + F A r A V o F + F /\ VoF A F.

The «business term» of this expression is the third term, since it
involves first derivatives ofF. This term is a sort of «triple scalar
product» between a g-valued two form, a g-valued section of T* ® T*,
and another 9-valued two-form. The key observation that enters here
is that we can replace the derivatives of F in this term with the values
of F as a consequence of the following.

LEMMA 3.4. — Let FeA^* ® 9 and Qe S2^ ® 9. Then
K

F A Q A F = 0.

Proof. — This is a computation (which might help elucidate the

meaning of /\). Let F = ¥,dx2 A dx3 + F^dx3 A dx1 + F^dx1 A dx2,
and Q == £^.Q,^x100 dx\ where F, and Q^, are elements of 9. Then

3

Q A F = ^ [Q.,,F,]^c1 ® ^c1 A dx2 A ^c3,
j = i

and so
K 3

FA Q A F = ^ K(F,[Q,,,F,])Ac1 A dx2 A dx3 ® dx1 A dx2 A ^c3.
t,j '=i

The coefficient is

E K(F, [Q,,, F,]) = ^ tr(F,Q^- F,F,Q,,)
l'̂ ' i j

=Etr(F,Q,,F,-F,Q,,F,)

which is clearly zero if Q is symmetric in ( and j .

The upshot of Lemma 3.4 is that we may replace V()F by d.Y in
the third term of (3.3), since the symmetric part of the derivative of
F is killed by the triple scalar product operation. But then we can
express dY in terms of F and F by using the definition of curvature
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(i.e., the first of equations (3.1)). Thus, equation (3.3) becomes
K

(3.5) 0 = F /\ (Vo^F + F A VoF + (F - r A F) A F).

This is a scalar-valued identity (actually, it is a A^* ® A^-valued
identity) which is zeroth order in F. It will be necessary to adjoin (3.5)
to (3.1) if we hope to obtain an involutive system. The advantage of
this is that if (3.5) is satisfied to zeroth order, then the right-hand side
of the second prolongation of the Bianchi identity will necessarily be
in the image of its symbol.

As a preliminary experiment, we consider the combined system (3.1)
and (3.5) for the simplest simple structure group, namely SL(2) (or
SU(2), i.e., the Lie algebra should be a real form of type A^ in Cartan's
classification). Since these groups are three-dimensional, we consider a
9-valued two form F to be generic if at each point F is a linear
isomorphism from A^ onto 9. In this case, it is easily verified that all
the conditions for involutivity are satisfied for the system consisting
of (3.1) and (3.5), and we conclude.

PROPOSITION 3.6. — For a generic analytic SL(2)-valued two-form F,
there exists locally a connection F with Curv(F) = F.

The next (real) simple Lie algebra to consider is that of typeD^,
namely S0(3,l) % SO(3,C). The situation here is similar to that for
AI algebras, except this time, we find two identities of the form (3.5)^
namely the real and imaginary parts of the SO(3,C) version of (3.5).
By similar computations, a statement analogous to Proposition 3.6 is
true for S0(3,l)-bundles.

More interesting is the case of A2, i.e., Lie algebras of the type of
SL(3) or SU(3). In this case, we find again that we cannot prolong a
solution of order one to a solution of order two, even if we include (3.5)
in our system. The reason for this is that there is yet another identity
in force here, which arises from the second derivative of the Bianchi
identity. Using Vo as our partial derivative symbol again, we write

0 == VoVo(^F + F A F)

= VoVo^F + F A VoVoF + 2VoF A VoF + VoVoF A F.

To get the identity, we need to replace the second derivatives of F in
the last term with lower derivatives. As before, we can wedge with F,
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but this time with a pair of F^, and instead of using the Killing form,
we use the cubic Ad-invariant polynomial (trX3) on 9 to get another
scalar-valued identity (which involves first derivatives of F rather than
second ones because we may replace VoVoF by Vo^F as before and
then use the curvature equation). Adjoining this new identity to (3.1)
and (3.5) results in an involutive system. This proves

PROPOSITION 3.7. — For a generic analytic SL(3)-valued two-form F,
there exists locally a connection F with Curv(r) = F.

For more details on the proof of this see [14]. Extrapolating from these
examples, it is easy to prove that there is a new independent identity
which r and F must satisfy for each independent Ad-invariant polynomial
on 9. Recall that the number of such polynomials is equal to the rank
of g, and the degrees of the polynomials are known for all of the
simple Lie groups (see section 125 of [16], for example). We conjecture
that for any simple Lie structure group G, it is sufficient to adjoin the
identities so obtained to (3.1) and (3.5) in order to obtain an involutive
system, and prove results akin to Propositions 3.6 and 3.7 for each
simple group. Then, to treat semisimple groups is no problem because
equations (3.1) and (3.5) decompose by direct sum the same way the
structure group does, as may easily be verified.

Appendix.

The Cartan-Kahler theorem for systems
of nonlinear partial differential equations.

One of the most powerful methods for proving local solvability for
real analytic, nonlinear systems of partial differential equations is the
so-called Cartan-Kahler theory of involutive differential systems. We
shall use the form of the theory developed by Kuranishi [12] and
Goldschmidt[9], [10]. See also Chapters? and 10 of the forthcoming
book [3].

Consider a system of differential equations of order m for the
unknown function u that takes its values in a vector space V :

(A.I) yWu,)^Q

where ^ is an analytic W-valued function for some vector space W, a
runs over all multiindices of weight ^ m and i == 1, . . . , dim V. We
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can consider ^ to be a mapping from the jet bundle J^V) over R"
to J°(W). In this sense, the left side of the equation Curv(r) - F = 0
is a map from ^O^Og) to J^A2^ ® 9). We are interested in
finding a convergent power series solution of (A.I) in a neighborhood
of some point (say, the origin) of R".

If / > 0, we say that a V-valued function UQ defined in a neighborhood
of O e R " is an infinitesimal solution of (A.I) of order I at 0 if

D^x.D^o))!^^

for all multiindices P with |p| ^ / . Clearly, the condition for UQ to be
an infinitesimal solution of order / at 0 only restricts its Taylor
coefficients at 0 up to order m 4- L With this in mind, we define a
formal solution of order m + / at 0 to be a polynominal of degree
m + / which is an infinitesimal solution of order/ at 0. We let R^+i
denote the set of all formal solutions of (A.I) of order m 4- / , and we
establish the convention that if I < 0, then Rni+i consists of all V-valued
polynomials of degree m + / . Note that over each point, R^+j can be
identified with a subset of the fiber of the jet bundle Jni+i. The union
of all the R^+/s over all the points of R" then fibers in the obvious
way over R". Certainly the easiest case to study (and the one we are
always going to consider) is the case when this union is a submanifold
of the jet bundle, and also when each R^+, is a submanifold of the
jet bundle fiber of the same dimension over each point. This is the
reason for all of the assumptions of « constant rank » in what follows.

We will say that a formal solution p of order m + k is a prolongation
of a formal solution q of order m + I if k ^ ( and all the terms of
order up to and including m 4- ( of p and q agree. This notion gives
rise to natural projections

71 : Rm+k ~^ ^m+f

for k ^ f , where n(p) is the unique formal solution of order m 4- I of
which p is a prolongation.

The aim of the Cartan-Kahler-Kuranishi-Goldschmidt theory is to
provide formal sufficient conditions which guarantee that a polynomial
infinitesimal solution can be prolonged to an analytic series solution.
One such condition is formal integrability : With n defined as above,
the surjectivity of the restriction

71: ^ w + f + i "̂  ^w+f
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for all / ^ 0 implies that a convergent series solution exists (in other
words, if every formal solution of degree m 4- I can be prolonged to
a formal solution of degree m 4- / 4- 1, then a series solution exists).
This condition is also called strong prolongability, see the Appendix
of [13] for a proof of convergence. To directly prove formal integrability
is generally tedious and difficult (as it is an infinitude of conditions to
check).

To give a more computable criterion for solvability, we need the
notion of the symbol of ^ and of its prolongations. The use of the
word «symbol» in this context is slightly different from the general
usage in the theory of partial differential equations. Let UQ be any
function. The usual definition of the symbol of ^ at UQ is the map

7\<y
(A.2) a(^)= ^ ._p-(0,D^o^VeW

131 =m ̂ u w

for ^GT^R" (so that ^=^i1^2 . . . ^n) and VG\. Note that o is linear
in V and is a homogeneous polynomial of degree m in ^. Our definition
of the symbol of ^F at UQ is the linear map naturally associated to the
one above which is symmetric and multilinear of degree m on T$R".
In other words, our symbol will be a map

^(^)uo'- S^T* (x )V-^W.

If UQ is a formal solution of order w, then the kernel gm,uo °! °(^)uo
parametrizes the tangent space of the set of formal solutions in R^
which agree with UQ to order m - 1 (if in fact this set is a manifold).
Sometimes, g^^ is itself called the symbol of ^ at UQ.

In a similar manner, we define the first prolongation of the symbol

^i(^)uo : S^T* ® V -. T* ® W

to be the linear map associated to

<^(^)= Z ^^^^o^fZ ^W^T^W.ipi^^u^1^ \j=i /
We let g^+1^ = ker c^ (^ )UQ . Higher-order prolongations of the symbol
are defined analogously.

Cartan ([12], see also [4]) advanced the notion of involutivity of
differential systems as a sufficient condition for formal integrability. This
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notion has the advantage (as shown by Kuranishi) of involving only a
finite (albeit undetermined) number of conditions to check. Later, it
was shown [9] that involutivity is tantamount to the vanishing of all
of the Spencer cohomology groups H^''^). Goldschmidt showed
that, in fact, the obstructions to prolongation are contained only in
certain specific cohomology groups, and proved that « 2-acyclicity» is
a sufficient condition for formal integrability.

On the other hand, it is often the case that dealing with the Spencer
cohomology groups is not required. In fact, one of the most useful
conditions for determining that a system is involutive involves the
following notion, given by Serre (cf. [11]):

A basis { d x ^ , .. .,dx^} of T^ is called quasiregular for g^ if
n-l

d™^n+l,uo = d™^n,uo + E dim gmJ,UQ
J'=l

where
8m,j,UQ Sm,UQ ^ ̂  ^j

and Z, is the subspace of T^ generated by dxj+^ . . . ,dx^. In other
words, quasiregularity involves the behavior of the symbol mapping
and its first prolongation when restricted to homogeneous polynomials
that do not involve jq, . . . ,x,.

THEOREM (CARTAN-KAHLER). — To prove existence of local analytic
solutions of a system (A.I) of analytic partial differential equations, it is
sufficient to check that the following conditions hold :

1. For all x in a neighborhood of 0, there exist formal solutions of
order m at x, and every solution of order m at x can be prolonged to
a solution of order m 4- 1.

2. For some specific formal solution p at 0, the derivative of the
mapping ^ with respect to the variables (x.D^) for 0 ^ ]a| ^ k has
constant rank in a neighborhood of (0,0°?).

3. For all q e R^ in a neighborhood of p, the rank of the linear
mapping a^(^\ is independent of q , and there is a quasiregular basis
of^forg^p.

If the conditions of the theorem are satisfied, then the system of
partial differential equations is involutive. Note that the surjectivity of
71 need only be checked for I = 0, and not for all I . See Theorems 8.1
and 9.1 of [7], or [10] for more detail.
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For our applications, the issue of constant rank and existence of
prolongations in neighborhoods is moot, since the ranks of all of our
operators and symbols are the maximum possible.

One easy consequence of this theorem is the existence of local
solutions to problems for which there exist noncharacteristic covectors
with respect to an infinitesimal solution UQ (i.e., covectors ^ for which
the linear map o(^,'): V -> W of (A.2) is surjective). This is essentially
the Cauchy-Kovalevska theorem, but see [8], Lemma 1 for a proof
using the ideas discussed above. In fact, for such a system, it turns
out that any basis of T* with ^ as the last covector is quasiregular.

To give an application of the above theory, we briefly discuss the
problem of prescribing the Ricci curvature of a pseudo-Riemannian
metric (for more detail, see [2] or Chapter 5 of [5]). The expression for
the Ricci curvature involves second derivatives of the metric, so the
equation

(A.3) Ricte) == R

for the unknown metric g when the tensor R is given, is a second-
order system of equations. Since both g and R are symmetric covariant
tensors of rank two, the map ^ (g) = Ric(g) - R maps J^S^*) to
J^S^*). As is well-known, the Ricci tensor and the metric must satisfy
the Bianchi identity, which is a first-order expression in both the Ricci
tensor and the metric tensor. The Bianchi identity proves to be an
obstruction to prolonging a second-order infinitesimal solution of (A.3)
to a third-order one. However, if we adjoin (the 1-jet of) the Bianchi
identity to the system (A.3) to get an overdetermined system, it turns
out that, in the case when the prescribed tensor R is invertible (as a
map from T^M to T^M), this enlarged, overdetermined system is in
fact involutive and hence equation (A.3) is generically locally solvable
(this proof is carried out in somewhat agonizing detail in [5]). On the
other hand, as indicated in [2], one can take advantage of the
equivariance of equation (A.3) under the action of the diffeomorphism
group (i.e., that ())*Ric(^) = Ric(())*^) for any difleormorphism (()) to
prove the same result. The trick is to replace equation (A.3) by the
equation

(A.4) Ric(^)=(()*R,

where the unknowns are now g and ()). In contrast to the previous
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method, where more equations were added to the system making it
overdetermined, we have this time added more unknowns to the system,
making it underdetermined. For this system, it turns out that, if R is
invertible, then any non-null covector (with respect to the value of g
that one chooses at the initial point, recall that we are dealing with
pseudo-Riemannian metrics) is noncharacteristic. Thus the Cartan-Kahler
theorem applies to prove local existence of g and ()> satisfying (A.4),
and so ^>~l*g satisfies (A. 3) (this is explained more fully in Chapter 5
of [2]).
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