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MONODROMY REPRESENTATIONS
OF BRAID GROUPS

AND YANG-BAXTER EQUATIONS

by Toshitake KOHNO

INTRODUCTION

The purpose of this paper is to give a description of the monodromy
of integrable connections over the configuration space arising from
classical Yang-Baxter equations. These monodromy representations define
a series of linear representations of the braid groups 9 : B,, -> End (W®")
with one parameter, associated to any finite dimensional complex simple
Lie algebra 9 and its finite dimensional irreducible representations
p : 9 -» End (W). By means of trigonometric solutions of the quantum
Yang-Baxter equations due to Jimbo ([10] and [11]), we give an explicit
form of of these representations in the case of a non-exceptional simple
Lie algebra and its vector representation (Theorem 1.2.8) and in the
case of sI(2,C) and its arbitrary finite dimensional irreducible represen-
tations (Theorem 2.2.4).

Our monodromy representation 9 commutes with the diagonal action
of the ^-analogue of the universal enveloping algebra of g in the sense
of Jimbo [9], which was discussed as quantum groups by DrinfeFd [7].
In particular, in the case 9 = sl(m,C), the representation 9 gives Hecke
algebra representations of B,, appearing in a recent work of Jones [14].

The study of these monodromy representations is motivated by a
recent development of two dimensional conformal field theory initiated
by Belavin, Polyakov and Zamolodchikov [5]. The importance of the
two dimensional conformal field theory with gauge symmetry was

Key-words : Braid group - Yang-Baxter equation - Simple Lie algebra - Integrable
connection.
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pointed out by Knizhnik and Zamolodchikov [18]. They showed that
the total differential equations defined by our connections are satisfied
by n-pomt functions in these cases.

Recently Tsuchiya and Kanie [22] developed an operator formalism
of two dimensional conformal field theory on P1 using the Kac-Moody
Lie algebra of type A^. It turns out that in the case of the vector
representation of $I(2,C), the monodromy of n-point functions gives a
linear representation of the braid group B^ factoring through the Jones

algebra of index 4 c o s 2 , — — , for a positive integer £ (see [13]). In
{/ i ^

particular this representation is unitarizable. We shall extend this
unitarity result to higher representations of sI(2,C). A neat description
of the monodromy of n-point functions in the case of simple Lie
algebras of other types might be pursued from a viewpoint of Brauer's
centralizer algebras, which will be discussed in the forthcoming paper.

This paper is organized in the following way. In Sect. 1.1, we explain
a process to define an integrable connection associated with a simple
Lie algebra and its irreducible representation. We give an explicit
description of the monodromy in Sect. 1.2 and 1.3. Sect. 2.1 is devoted
to a review of two dimensional conformal field theory due to Tsuchiya
and Kanie [22]. We discuss the case of higher representations of sl(2,C)
in Sect. 2.2 and 2.3.

Acknowledgement: The author would like to thank M.Jimbo and
T. Miwa for drawing his attention to the linear representations of the
braid groups arising from solutions of Yang-Baxter equations. He would
also like to thank A. Tsuchiya for valuable comments from a viewpoint
of the conformal filed theory.

The following notations are of frequent use:

Bn : braid group on n strings with generators a,;, 1 ^ i ^ n — 1,
represented by a braid interchanging strings i and i 4- 1 (see [2]).

» i + l

Fig. l.
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P,, : pure braid group on n strings.

X, = {(^...^eC"; z^zp if a^p}

Q : a simple finite dimensional complex Lie algebra.
{ I ^ , { : orthonormal basis of 9 with respect to the Cartan-Killing form.

t = £,I, ® I, e g ® 9.

For a finite dimensional vector space V , we let a 6 End (V ® V) the
transposition defined by o(x(Sy) = y ® x . For X e End (V®V) we put
X = aX .

C{^} : ring of the convergent power series.

1. MONODROMY OF INTEGRABLE CONNECTIONS ARISING
FROM CLASSICAL YANG-BAXTER EQUATIONS

1.1. Construction of connections.

Let Q be a simple finite dimensional complex Lie algebra and let
{I^,} be an orthonormal basis of 9 with respect to the Cartan-Killing
form. We put

t = £,I, ® I,

which may also be expressed as

( = ^(AQ-0(8)1-1®Q).

Here Q is the Casimir operator I^Ip.Ip in the universal enveloping
algebra U(Q) and A : U((0 -^ U(g) ® U(g) stands for the comultiplication
as a Hopf algebra.

Associated with a simple Lie algebra 9 and its finite dimensional
irreducible representations pa: c\ -> End (WJ, 1 < a ^ n, we consider
the total differential equations with a parameter X

( I . I . I ) ^<D = Z^^p^^/log(z,-Zp).(D, ?ieC

defined over
X^ = { ( z , , . . . , z « ) e C " ; z^zp if a^P}.
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Here Q,p e End (W^ ® . . . ® W,) are defined by

Q,p = £,pa(I,) ® pp(I,)

where pa stands for the representation pa on the a-th factor acting as
the identity on the other factors.

The matrix valued 1-form

(1.1.3) (D = 2:i^<(K«^p^log (^-zp), ^ e C

is considered to be a connection of the trivial vector bundle over X^
with fiber W^ ® • • • ® W^. The integrability condition for co

^o) + co A co = 0

is satisfied in our case since we have the following relations among
",p:

(1.1.4) [QapAy+^py] == [0.p+0.,,QpJ ==0 for o c < P < y

[^p,^] == 0 for distinct a, P, y, 8.

In fact the above relations are derived from the fact that the Casimir
operator Q lies in the center of U(Q). We shall call (1.1.4) the
infinitesimal pure braid relations. These relations are relevant to the
classical Yang-Baxter equation in the following sense.

Let us recall that the classical Yang-Baxter equation is a functional
equation for a q ® q-valued meromorphic function r(u), u e C , given
by

(1 .1 .5) [r^(u-v), r^(u)]-^[r^(u-v),r^(v)]+[r^(u)^r^(v)]==0.

Here the above triangular equality is considered in Q ® 9 (X) g and r^
signifies the r on the i-th and 7-th factors acting as the identity on the
other factor. Solutions of the classical Yang-Baxter equation are classified
by Belavin and DrinfeFd (see [3] for a precise statement). In particular,
they discovered a rational solution r(u) = t / u . The infinitesimal pure
braid relations are obtained from the fact that t/u satisfies the classical
Yang-Baxter equation.

As the monodromy of the connection co we obtain a linear
representation of the pure braid group

0: P,-. End ( W i ® . - . ® W J
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depending on the parameter ' k . Let us now suppose that the representations
p,, 1 ^ a ^ n, are the same. In this case the connection co defined in
the above way is invariant by the diagonal action of the symmetric
group S,, on X,, x (W^® • • • ®W,,), hence it defines a local system
over the quotient space ¥„ = X,,/S,,. Considering X as a parameter we
obtain a linear representation of the braid group on n strings

6: B^End (W0")®^}.

Here C{k} denotes the ring of the convergent power series. Our main
object is to give a description of this monodromy representation.

The total differential equations of the above type appear in the two
dimensional conformal field theory with gauge symmetry due to Knizhnik
and Zamolodchikov[18]. Although in their situation the parameter X is
given by (/+^)~1 where f is a positive integer and g is the corresponding
dual Coxeter number, we shall deal with the monodromy by considering
\ as a parameter.

1.2. Description of the monodromy by means
of solutions of quantum Yang-Baxter equations.

Let W be a finite dimensional complex vector space. By the quantum
Yang-Baxter equation written in a multiplicative form we mean the
following functional equation for a meromorphic function R(x) with
values in End(W®W):

(1.2.1) R^WRuto^OO = R23(y)Ri3(^)Ri2W.
Here the equality is considered in End (W(g)W(x)W) and the notation
R,j is standard as is explained in the previous section. Let us consider
the case where R(x) contains an extra parameter q so that R(x,q) has
an expansion around q = 1 :

(1.2.2) R(x,^)= 1 + (^-l)r(x)+ . . .

In this situation we verify that r(x) is a solution of the multiplicative
classical Yang-Baxter equation

[rii(x),r^(xy)] + [r^(x).r^(y)] + [r^(xy)^(y)] = 0.

We call r(x) the classical limit of R(x.q). The following typical solutions
of the above classical Yang-Baxter equation was discovered by Bclavin
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and DrinfeFd [3] (see also [10]). Let Q be a finite dimensional complex
simple Lie algebra and let A be the set of roots of 9. For a root a,
we denote by Xa the root vector normalized by (Xa,X-,) = 1 with
respect to the Cartan-Killing form. Putting r = Z ^ g A S g n a . X a ® X - a ,
we define a 9 ® (^-valued function r(x) by

2(
(1.2.3) r(x) = r - t -4- x - 1

where t is defined in the previous section. These solutions are called
trigonometric in the sense that they are rational functions of x = e " .

The quantization problem of the above solutions was treated by
Jimbo. In a series of papers [9],' [10] and [II], he constructed a matrix
R(x,q) whose expansion around q = 1 is given by

(1.2.4) R(x^q) = /(.v){l+^-l)((p®p)r(x)+x(x)l)+ . . . }
with some C-valued functions f(x) and x(x),

for the following simple Lie algebras 9 and their representations
p :0 - .End(W)

(1.2.5) g is non-exceptional and p is the vector representation,
(1.2.6) 9 is sI(2,C) and p is an arbitrary finite dimensional irreducible

representation.

In this section we discuss the case 1.2.5. Our matrices R(x,q) are given
by formulae 3.5 and 3.6 in [10] by putting /< == q. In the formula
1.2.4, f(x) is given by Oc—1) if 9 is of type A and by (x—\)2 if 9 is
of type B, C or D.

We put R == aR where aeEnd(W®W) is the transposition defined
by a(x(S)y) = y ® x . One of the important properties of the matrix
R(x.q) is that it commutes with the diagonal action of U (9). Here
U (9) denotes the ^-analogue of the corresponding Lie algebra 9 due
to Jimbo [9], which is also denoted by L^(g) with q = e^ by DrinfeFd [7].
Instead of giving the complete definition we recall the case c\ = sI(2,C),
which is originally due to Kulish and Reshetikhin (see the references
of [7]). We define U (9) to be the C-algebra generated by the symbols
e , /, qh and q~h with relations

q^eq-^^ qe, q^fq-^2 = q-1^ [e,f] = qh ~~ crh^
q - <T
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We define the comultiplication A : LT(9) -^ LT(9) ® U^(g) by the algebra
homomorphism characterized by

A(q±hl2)=q±h/2®q±h/2^(X)=X®q~hl2•^ q'12®^ for X = e, f.

With respect to the comultiplications A and A = aA, U (9) has a
structure of a non-commutative Hopf algebra which is considered to
be a deformation of the universal enveloping algebra of sl(2,C) (see
DrinfeFd [7] and Verdier [23] for a more extensive treatment).

Let us go back to the situation of the previous section. Associated
with a non-exceptional simple Lie algebra 9 and its vector representation,
we consider the connection

0) = I^<p^.XQ^log(z^-Zp).

As the monodromy of co we get a one parameter family of linear
representation 9 : B^ -> End (W®") ® C{X}. To describe 9 we introduce
the matrix T(q) by

(1.2.7) T(q) == lim x~<iR(x,q)
;c-»x

where d is the degree of the corresponding R(x,q) with respect to x,
which is given by d = 1 in the case 9 is of type A and by d = 2 in

the other cases. We put v = ——— if 9 = sl(m,C) and v = - otherwise.2m L
Our main theorem in this section is the following :

THEOREM 1.2.8. — Lei 9 be a non-exceptional complex simple Lie
algebra and let p : 9 -> End (W) be its vector representation. As the
monodromy of the associated connection

co = Ei^<p^^p.</log(z^-zp)

we get a linear representation Q : B^ -> End (W0") 00 C{X} given by

O(CT,) = ^{Kg). . -®!®^)®!®.. .®!}, 1 < i ^ n - 1.

Here q = exp (~u^/~ 1^-) and T(q) is situated on the i-th and (i-^-\)-st
factors. Moreover this representation commutes with the diagonal action
ofU^(Q) on W®".

The action of LT(cO is defined by the multi-diagonal map in the
sense of [9] and [12]. In the case 9 = sl(m,C), the monodromy
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representation obtained above is known as the higher order Pimsner-
Popa-Temperley-Lieb representation (see [17]). In fact the matrix T(^)
is given by

(1.2.9) T(g)=£E^®E^+^pE,p®Ep,+(l -g^pE^Epp

where E^p signify m x m matrix units. In this case the matrix T(^)
defines a linear representation of the braid group factoring through the
Iwahori's Hecke algebra of the symmetric group.

1.3. Proof of Theorem 1.2.8.

Let us start with an integrable connection (o over X^ of the form
(o = Zi^<^Jv[^log(Za--Zp), M^6nl(w,C). The monodromy of o
is expressed by an infinite sum using Chen's iterated integrals [6].

+^+[J y J Y

(1.3.1) e(-y) == 1 + o) + oo)+ . . .
J y J Y

for y € P,,. Here we have used the following standard notation for the
Chen's iterated integrals.

Let X be a smooth manifold and let co,, 1 ^ i ^ M , be matrix
valued 1-forms on X . For a path y : [0,1] --» X , we define the iterated

f
integral 0)10)2 . . . o,, by

J Y

A, (rQA^) ... A,(Q^t^t^ ... A.
J A

where 7*0), = A,.((;)^ and A = {( t i , . . . , ( „ ) ; 0 ^ (i < • • • ̂  („ ̂  1}.

Let C<X^^> denote the ring of non-commutative formal power
series with indeterminates X^p, 1 ^ a < (3 ^ n, and let J be its two
sided ideal generated by the following infinitesimal pure braid relations
among X^p : .

3 1} [x^ ̂ ^ P^^ x^ a < P < T
v ' / [Xo(p,X^] for distinct a,P,y,5.

We denote by A the quotient algebra C<X,p^>/J. As a universal
expression of 1.3.1, we obtain a homomorphism 6 : P^-» A defined by
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r ~ r"9 (y) = 1 + co + coco 4- • • . with
J Y J 7

6 = ^Ko^p^Ap 00^1og(z,-zp).

Let C[P,,f denote the completion of the group ring C[PJ with
respect to the powers of the augmentation ideal and let j: P^-> C[P,.f
denote the natural homomorphism. We have the following assertions :

PROPOSITION 1.3.3. - ((') We have an isomorphism of complete Hopf
algebras C[PJ ^ A such that the following diagram is commutative.

^ C[Pn] ^

^n 1

(U) The universal expression of the monodromy Q : P,, -> A is injective.

The assertion (i) has been discussed by several authors in a more
general situation (see [I], [8] and [16]). The primitive part of A is the
Malcev Lie algebra of P^, which is the dual of the Sullivan's 1-minimal
model of X^ (see [21], [19] and [16]). The assertion (ii) is proved in
[17] by the induction with respect to n by using the fibration
7i :X, ,+i -> X,,. The essential points are that the monodromy of the
fibration n is trivial on the homology and that the natural homomorphism
j is injective in the case of free groups. By using the assertion (ii) we
have shown in [17] the following theorem:

THEOREM 1.3.4 ([17]). - Let Yap, 1 < a < P ^ n , be a system of
generators of P,, given by

(1.3.5) y^p = a^-n .. . <7p-iajiap-\ ... a,"1.

If Q: P,,-^GL(w,C) is a linear representation such that | |9(yap)—l|| is
sufficiently small for each 1 ^ a < P < n, then there exist constant
matrices M^p, 1 ^ a < P ^ n, close to 0, satisfying the infinitesimal pure
braid relations, such that the monodromy of the connection
co = Si^<p^,M,,p //log(Za-zJ is equivalent to 6.

To deduce Theorem 1.3.4 from Propositon 1.3.3 we used an argument
due to Hain [8].

Now let us go back to the situation of Theorem 1.2.8.
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LEMMA 1.3.6. - We put 'k= -OT^/^T)"1 \ogq, -n^Im \ogq<n.
The matrix T(q)2 has an expansion with respect to \ of the form

J(q)2 = 1 4- 27c^:~^M(P®P)(0-2v.l} + ^(X2).

Here p 15 the vector representation as in Sect. 1.2.

Proof of Lemma 1.3.6. - Let us recall that T(q) is defined as the
leading coefficient of the matrix R(x,q) with respect to x . By means
of the expansion 1.2.4 and the definition of r(x) (see 1.2.3), we have

(1.3.7) T(l) == a .{(p®p)(r-0+2v. l} .

Here we have used 2v = lim x(.x), which is verified by a direct
A--»00

computation. Let us now observe that T(l) is equal to the transposition
a. By using

(1.3.8) a.(p®p)(0.a = (p®p)(0
a.(p®p)(r).G = - (p®p)(r)

we obtain the formula

T(1)T(1) + T(1)T(1) == - 2(p®p)(r) + 4v.l .

Our Lemma follows immediately.

It follows from the definition of the Yang-Baxter equation 1.2.1
that the matrix R(x,q) satisfies

(1.3.9) Ri2WR23(^)Rl200 = R23(y)Rl2(^)R23W.

This shows that the correspondence

(1.3.10) CT, -^ 1 (g) • . • ® T(q) ® • • • ® 1

appearing in the statement of Theorem 1.2.8 actually defines a linear
representation of the braid group. In the following we denote this
representation by (p.

If |X| is sufficiently small, then we may apply Theorem 1.3.4. Hence
in this situation we have a matrix M (X) e End (W ® W) close to 0 and
analytic with respect to ^,, so that the monodromy of the connection
^i^a<p<wM,,p(X)^/log (z^—Zp) expressed by the iterated integrals 1.3.1 is
equal to (p restricted to P,,.
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Let M(?i) = Z^ 4- Z^2 + • • • be an expansion of M(X) around
^ == 0. By means of the expression of the monodromy using iterated
integrals and Lemma 1.3.6 we have

Zi = (P®p)(0 - 2v . l .

In the following, we denote the above matrix by fi.'.

LEMMA 1.3.11. — If \\\ is sufficiently small, there exists a matrix
PW e End (W0") with lim P(X) = 1 such that

?.-»o

P(^-lM,p(^P(^= ^p.

Proof of Lemma 1.3.11. — Let H^p denote the hyperplane in C"
defined by z^ = Zp . Let u : X -> C" be a blowing up with exceptional
divisors Ej^, 3 < k ^ n, such that u(E^) == Hi^oKp^Hap. We denote
by E^ the proper transform of H^. Then the residue of the connection
H*co along the divisor Ej^ is expressed as £i^<p^Map(^). Let us observe
that a normal loop around Ej^ is given by y^ = (c?i . . . cr^-i)* which
lies in the center of B^. For a generic value ^ e C , the matrix (p(Yk)
is diagonalizable, which implies that the residue £i^<p^Map(^) is
diagonalizable. Moreover, by means of the infinitesimal pure braid
relations for M^p(^) we conclude that the residues S^a<p^Map(^),
k == 2, 3, . . . are diagonalized simultaneously. We have a matrix
QW = Qo + Qi^ + Qi^2 + " • such that for 2 ^ k ^ n

(1.3.12) Q(^)-l(Sl^<p^M,pW)Q(X)

is diagonal. It can be shown by using the explicit form of T(q) that
the eigenvalues of (p(yjk) is of the form q"' with some integer m. This
implies that the matrix 1.3.12 is linear with respect to \. Hence it is
written as Qo^i^p^^OQo- Putting P(k) = Q(^). Qo1 , we
obtain a desired matrix. This proves Lemma.

The proof of Theorem 1.2.8 is completed in the following way. We
put co' = Z^jQ^pY/ log (Zy — zp). By Lemma 1.3.11 the expression

(1.3.13) 1 4- [ c o 7 + [o/o/ + • • •
Jy Jy

is equal to P^)"1^^.)?^) if |^| is sufficiently small. We observe that
P(k) is analytically continued to a meromorphic function of X on the
whole complex plane. Since the expression 1.3.13 is an entire function
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of 'k we conclude by an analytic continuation that 1.3.13 is expressed
as PCkV^WPW in End (W®") (x) CW. Thus we have shown the
statement of Theorem 1.2.8 on the pure braid group P,,. To extend this
to the full braid group B,, it suffices to observe that both 9(a,) and
(p(a,) are the transposition of the f-th factor and (i+l)-st factors if
^ = 0 and that they are holomorphic with respect to X . This shows
the first assertion of Theorem 1.2.8. The second assertion is derived
from the fact that R(x,q) commutes with the diagonal action of U^(g).
This completes the proof of Theorem 1.2.8.

(1.3.14) Remark. — For a complex number ^ e C , the above proof
implies that the correspondence described in Theorem 1.2.8 holds true
^ ^(Yfc)? 2 < k ^ n, are diagonalizable. This condition is satisfied if (p
is completely reducible.

2. MONODROMY OF /i-POINT FUNCTIONS
IN TWO DIMENSIONAL CONFORMAL FIELD THEORY

2.1. Review of A(^) model due to Tsuchiya and Kanie.

In this section we recall briefly the operator formalism of the two
dimensional conformal field theory on P1 with gauge symmetry of type
A^ following a recent work of Tsuchiya and Kanie [22].

Integrable highest weight modules. — Let 9 = $I(2,C) and let g be
the affine Lie algebra of type A^ which is defined by the canonical
central extension of the loop algebra 9®C[( , r~ 1 ] (see [15]). Putting
9J(± = I.^i^® t±fl. ^ ls decomposed into

13 = Wl, © 9 © Cc © W-.

where c is the central element. For a positive integer / and a half
integer / such that 0 ^ 7 ' ^ /</2 it is known by Kac[15] that there exists
a unique irreducible left g-module ^,(/0 with a non zero vector |^J>
such that

( 2 .1 .1 ) WJ^J> = E|<fJ> = 0, H|^J> = 2/K./>,

c|^J> = W>.
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In the same way, we have a unique irreducible right g -module JfjQO
with </,/ | such that

(2.1.2) </,^- - O'^IF = 0, <j^|H = 2/<;y[,
</^k = ^0,^1.

Here H, E and F stand for the usual Chevalley basis of 9. In the
following we fix /f and we write ̂  instead of Jf,(<f). There exists a
unique bilinear form .^fj x ̂  -> C such that <C/,^|^J) = 1 and
<M^|r ) == (u\av) for any a e g , M G ^ J and re^f , .

Operation of the Virasoro Lie algebra. — For X e g , we put
X[«] = X ® (" and X(z) = S^^Nz"""1 with zeC\{0}. The Segal'
Sugawara form T(z) is defined to be

(2.1.3) T(z )=_———{E, : I , ( z ) I , ( z ) :} .
Z (2 -r € )

Here {1^} denotes an orthonormal basis of c\ and :: stands for the
usual normal order product defined by

X[w]Y[n]) if m < n

: X[m]\[n]: = } {X[w]Y[M] + Y[n]X[m]} if m = n

Y[M]X[w] if m > n.

We define L^, meZ as the coefficients of the expansion

(2.1.4) T(z)=^^L^-fn-2.

We may also express L^ as

(2.1.5) L-=2(21+ :7)Efc6z£p : V-^^^^) :

These L^, w e Z, satisfy the fundamental relations of the Virasoro Lie
algebra:

(2.1.6) [L,,LJ = (m-n)L^, + m-^m^^c'.

3^
Here c ' == -——^ id, which we shall call the central charge. With respect

to the operation of Lo, e^T, is decomposed into finite dimensional
subspaces

(2.1.7) jf,= e ̂
d^O
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,2 ^_ .
where Jf^ is the eigenspace with the eigenvalue ——- + d . In

c i ^
particular, Jf^o is identified with the spin j representation of 9, which
is denoted by Vy.

Definition of primary fields. - We are interested in operators on the
//2

space ^ = © j^.. The basic operators are so called primary fields.
j=o

A primary field of spin j is defined to be a bilinear form ^{u,z}:
^ x ^f -> C parametrized by u e \j and z e C\{0} in such a way that

(i) (()(«, z) is linear with respect to M
(ii) <i;|(j)(^,z)|w> is a multivalued holomorphic function of z for

any v e ̂  and w e J^',

satisfying the following conditions :

(2.1.8) [X ® ̂ , (()(M,Z)] = z'cKX^z) (gauge condition)

(2.1.9) [L,,(t)(«,z)] == z4z^ + (m+ l)A,L(i.,z)

^ + Jwhere A^ == » which we shall call the conformal dimension of (().

Existence of vertex operators. - Given a primary field of spin j,
we associate to the triple v = ( j i J J ^ ) the (/iJz) component of (|)(u,z)
with respect to the decomposition 2.1.7, which we denote by (j)y(M,z).
This operator is called a vertex operator of type v. We have a Laurent
series expansion (|)y(M,z) == £„<= z^nO^)2""^ with A = A^ 4-A^- - A .̂
([22] Prop. 2.1.). This gives a 9 invariant trilinear form (p:
V^ ® V^ ® V^ -> C defined by (p(M,y,w) = <M|( t )o(^) [w>, which we shall
call the initial form.

THEOREM 2.1.10 ([22] Th. 2.2.). - (i) A non trivial vertex operator
°f ^P^ v exists if and only if the following conditions are satisfied :

(2.1.11) |7i -j^\ ^ j ^ 71 + j^, ji -h j + 72 eZ (Clehsch-Gordan
condition)

(2.1.12) ;, + 7 +7, ̂

(ii) Under the above conditions, a vertex operator of type v is unique up
to scalar and is determined by its initial form.
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Differential equation of n-point functions. - For an operator A on
^f, we denote by < A > its vacuum expectation defined by
<vac|A|vac> = <(V|A K0>. Our purpose is to give a description of
n-point functions <(|)i(«i^i) . • . <M^,z,,)> for primary fields ((),. A main
tool to deduce differential equations satisfied by M-point functions is the
following operator product expansions

(2.1.13) X(i;)(()(u,z) = ———(()(Xu,z) + (regular terms)

(2.1.14) T(O(()(M,Z) = (—^ + r^^z)^^ + (regular terms)

for a primary field <)) of spin j. Here the meaning of the compositions
of operators is justified by the use of the decomposition 2.1.7 (see [22]
for a precise definition). Following [18], we define the operation of 9
on vertex operators by

(2.1.15) [X[mW(u,z) = _——— f ^-^(O^M.Z)2n>y~ i Jc
(2.1.16) [L^(H(M,Z) = ^——= f ^-zr^T^^z)

2n^/- 1 J c

for a positively oriented small contour C around z. Combining with
the operator product expansions, we obtain

(2.1.17) [X[O](()](U,Z)=())(XM,Z),
[X[fn]<^](u,z) = 0 for m > 0

(2.1.18) [L.^](u,z) = -^ ())(K,Z), [Lo(f)](M,z) = A,(|)(K,Z),

[L^](u,z) = 0 for w > 0 .

Starting from a primary field ^ of spin 7, we get new operators by
the iterations of the operations of X[m] and L^, m ^ 0, of type 2.1.15
and 16. They are classified into the levels by the eigenvalues of the
operator Lo, e.g., L-^L-^ . . . L_^()) has an eigenvalue £5=1^ + A,
with respect to the operation of Lo. This is the whole spectrum of our
operators. From the operator product expansions, we deduce the
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following local Ward identities :

(2.1.19) <X(0(j>i(zi)...^^)>

= ̂ , ——— <<Mzi) • • • [X[0]()),](z,) ... ^(2j>
S ^a

(2.1.20) <T(0<|),(2,)...<t>.(z.)>

-S-.((^)i+^^)<*.^...*.h)>.

Here ((^ is supposed to be a primary field of spin jg,.

THEOREM 2.1.21 (Knizhnik and Zamolodchikov [18]). - The n-point
function <D = <())i(zi) . . . 4>n(ZJ> satisfies the total differential equation

^0 = Ii^<p^ Q^log (z^-Zp).(D.

Here <^y is a primary field of spin jy, and QapG End (Vj ® • • • ®V,) 15
determined by 1.1.2 yia spin jy, representations o/sl(2,C).

Proo/'. — Let <t)(M,z) be a primary field. By the expression of Lo
given in 2.1.5 and the identities 2.1.17 and 18 we have

(^2)j-^(u,z) = [£,!,[-l]I,[0](|)](u,z).

The RHS turns out to be the constant term of the operator product
expansion of 2:^(0((>[I^,zj. This implies that

(^^(K^z) = lim [WQW,u,z] -———^u,z]]
07. ^-»2 C, Z

where Q denotes the Casimir operator. Combining with the local Ward
identity 2.1.19 we have

(^^(^^-^(I)
8z^ z, - zp

which proves our Theorem.
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2.2. Monodromy associated with higher representations
of^I(2,C).

For a half integer j ^ 0, we denote by V, the irreducible left sl(2,C)
module of spin / , which is an irreducible representation of dimension
2/4- 1 . We now proceed to discuss the monodromy representation
9: B^ -> End (Vf") of the connection associated with the spin j
representation of sI(2,C) in the sense of Sect. 1.1. For this purpose we
first recall a « fusion » process for solutions of Yang-Baxter equations
due to Jimbo[ll]. Let us start with the matrix T(^) given in 1.2.9 with
m = 2. We put

R(x^)==xq-^(q)- x-lqT(q)-l.

The matrix R(x,q) = aR(x,^) is a solution of the quantum Yang-
Baxter equation. We have an expansion of the form

(2.2.1) R ( x ^ ) = ( x - x - l ) { l + r ( x ) ( ^ - l ) + . . . }

with its classical limit r(x). We put

RfcOc,^) == Rfc,2mMRjL2m-l(^^) . • • I^.m+lW"1^)

which is considered to be an element of End (V^^V^). Here R^.p
stands for the matrix R acting on the a-th and (3-th factors and
V = C2. We now define R^^x.q) as

R<W)M = R,(x^q)R,(xq,q)...R^(xqm-l,q).

Let us regard V as a LT(sI(2,C)) module and we denote by V^ the
irreducible U^(sI(2,C)) module of spin j considered as a subspace of
V0 2 7 . This is denoted by L^ in [9] Sect. 3. The matrix R^OC,^) defined
above determines an endomorphism of Vj ® V, with j = m/2. Let
us define the matrix T^^q) by

(2.2.2) T )̂ = lim x-^2 R^Qc,^).
x-»x

This matrix is also expressed explicitly as

(2.2.3) T^(g) = ̂ Ujn.-! . • . T,)(T,^T, .. .T^) ...

• • • (^2m-1^2w-2 - • - ^m)

where T, denotes the matrix T(^) on the f-th and (f+l)-st factors.
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THEOREM 2.2.4. — As the monodromy of the connection associated
with the spin j = m/2 representation o/5l(2,C), we get a one parameter
family of linear representations 9 : B^ -> End (W®") ® C;^-} wi'^/i W =
Vy defined by

G(G.) == ^ -^{l®-- .®^^)®. . .®!}, 1 < ̂  n -1,

w/ier^ <:y = exp (-TI^/'^TX) and ^(q) is on the i-th and (i-^-\)-st
factors.

Let i : B^ -> B^ be a homomorphism defined by

(2.2.5) t(a,) = ((j^+^a^+^-i • • •a^+i) .(<j^^+ia^^ • • • 0^2) • • •
• • • ( a a+2w-l a a+2w-2 • • • aa+m)

with a = = ( f — l ) m . This «parallel» embedding is illustrated in the
following picture :

CT, m m

Fig. 2.

By means of this homomorphism our monodromy representation 6
is also expressed in the following manner:

COROLLARY 2.2.6. - Let < p : B^ -^ End (V®^) ® C{\} be the
Pimsner-Popa-Temperley-Lieb representation defined by (p(o,) =
1 ® . . . ® T(^) ® . • • ® 1 (see 1.2.9.). Then the composition (p o i :
B^ -> End (V07"") ® C{^} ^0^5 invariant the subplace (V®") and ^e
monodromy representation Q is given by

9(0,.) = ^"^"^(pot^,), 1 ^ i ^ n - 1 .

It turns out that our monodromy representation is the same as that
studied by Murakami [20] up to a scalar representation.
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Proof of Theorem 2.2.4. - We put m = 2 j . It follows from the fact
that R""(x,^) is a solution of the Yang-Baxter equation ([11] Th. 2)
that the correspondence in the statement of Theorem 2 2 4 actually
defines a linear representation of B,,. Let p denote the spin /
representation of s((2,C). By using the classical limit r(x) of R(x q)
we have an expansion

(2.2.6) R^(x,q) = (x-x-1)"-2^ + (p®p)(r(x))(<?- 1)+ . . . } .

By the definition of V"\q) and the above formula we have

^T<'"^)=(p®p)(',-(-^y

Here r and t are defined in Sect. 1.2. As a consequence we have

^'"Wl^i =(p(g)p)(-2;-l).

This implies that T'""^)2 has an expansion

1 + 27t^——i^(p®p)(f) + 'll + g^2)

with X = - (n^~l)-1 log q, - TC < Im log <? < ir. Let us observe that
the eigenvalues of (p(v,), l ^ k ^ n - 1, are of the form ^ with some
integer a. Hence the same argument as in the proof of Theorem 1.2.8
can be applied to our Theorem.

2.3. Unitarity of the monodromy of /i-point functions.

Let us now apply the fusion process introduced in the previous
section to a description of the monodromy of n-point functions when
<k, 1 ^ a ^ n, are vertex operators of spin j . For a pair of half
integers (/,(), we denote by r{,_, the set defined by

p".. = {(Po, Pi,. -.,?„); P.e^Z^o such that py = 0, /?„ = ( and each

triple p, = (p;-i, /",/?,) satisfies the conditions 2 . 1 . 1 1 and 12} .
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We fix a positive integer /'. To each element of r/,/ we associate the
composition of vertex operators of type y,, 1 ^ i ^ n. This defines the
/i-point function

^v.-.-vS2^ • -^n)^ <Vac|(() (Z^) . ..(() (Z,,)|l;>

for v e V y . It is shown in [22] that this is a holomorphic function in
the region Zi | > • • • > |zJ and is analytically continued to a multi-
valued holomorphic function on X,,. Moreover, they showed that the
monodromy of the M-point functions associated with F^ defines a linear
representation of the braid group B^, which we denote by 9:
B,, -> End(W/,,). Our main object is to describe this representation.

Let us remark that the above composition of vertex operators is
illustrated by the lattice obtained from the decomposition of
V .̂ (x) • • • ® \j into simple $1(2,C) modules. Here are some examples.

« = 2

n == 3

n == 4

(u)7= \ . t - ^

spin 1/2 1 3/2
Fig. 3.

We denote by <a,P> the atom corresponding to n = a and spin P.
The composition of'vertex operators defined by (po. • • • • -»Pn) e ̂ ,r ls

represented by the path connecting < l,pi > , . . . , <"- l^n-i) • ^Y rneans
of an explicit computation of the 4-point functions Tsuchiya and Kanie
showed that in the case ; = 1/2 the monodromy 9: B,. -> End (W,^2)

factors through the Jones algebra with index T ~ 1 = 4 cos2 (see

[13]) and is equivalent to an irreducible unitarizable representation of
B,, obtained by Wenzl [24]. Here we may identify the lattice illustrated
in Fig. 3 (i) to the Bratteli diagram of the corresponding Jones algebra
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(see [22] Th. 5.2). Our result is as follows :

THEOREM 2.3.1. — For any positive half integer j, the monodromy of
n-point functions 6 : B^ -> End (W^,) is unitarizable.

Outline of Proof. — Let us first recall the differential equation
satisfied by the n-point functions (Th. 2.1.21). Let i : B^ -> B^ be the
homomorphism defined by 2.2.5 with m = 2j. Let 9o: B^ ->
End (Wi^) be the monodromy of 2/n-point functions with spin 1/2. It
follows, from [22] Th. 5.2 that 60 is unitarizable. In particular, the
matrices

(9o0t)(ai ...Ofc-i) ', 1 ^ k ̂  n,

are diagonalizable. Hence we may apply an argument of the proof of
Theorem 2.2.5 and Corollary 2.2.6 to our situation (see also
Remark 1.3.14). This implies that the monodromy representation
9 : B,, -» End (W/,,) is equivalent to a subrepresentation of the represen-
tation given by the correspondence

a, -> q^Qo o i(a.)

with some constant p.. Combining with the fact that Go is unitarizable
we obtain our Theorem.
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