GENEVIÈVE POURCIN Deformations of coherent foliations on a compact normal space

Annales de l'institut Fourier, tome 37, nº 2 (1987), p. 33-48 <http://www.numdam.org/item?id=AIF 1987 37 2 33 0>

© Annales de l'institut Fourier, 1987, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 37, 2 (1987), 33-48.

DEFORMATIONS OF COHERENT FOLIATIONS ON A COMPACT NORMAL SPACE

by Geneviève POURCIN

Introduction.

Let X be a normal reduced compact analytic space with countable topology. Let Ω_X^1 be the coherent sheaf of holomorphic 1-forms on X and $\Theta_X = \operatorname{Hom}_{O_X}(\Omega_X^1, O_X)$ its dual sheaf. The bracket of holomorphic vector fields on the smooth part of X induces a C-bilinear morphism $m: \Theta_X \times \Theta_X \to \Theta_X$ (section 1); therefore, for any open subset U of X, m defines a map $m_U: \Theta_X(U) \times \Theta_X(U) \to \Theta_X(U)$ which is continuous for the usual topology on $\Theta_X(U)$.

We shall study coherent foliations on X (section 1 definition 2), using the definition given in [2], this notion generalizes the notion of analytic foliations on manifolds introduced by P. Baum ([1]) (see also [8]). A coherent foliation on X defines a quotient O_X -module of Θ_X by a *m*-stable submodule (condition (i) of definition 2), this quotient being a non zero locally free O_X -module outside a rare analytic subset of X (condition (ii) of definition (ii)).

Then the set of the coherent foliations on X is a subset of the universal space H of all the quotient O_X -modules of Θ_X ; the analytic structure of H has been constructed by A. Douady in [4].

The aim of this paper is to prove that the set of the quotient O_x -modules of Θ_x which satisfy conditions (i) and (ii) of definition 2 is an analytic subspace \mathscr{H} of an open set of H and that \mathscr{H} satisfies a universal property (Theorem 2). Any coherent foliation gives a point of \mathscr{H} , any point of \mathscr{H} defines a coherent foliation but two different points of \mathscr{H} can define the same foliation (cf. section 1, remark 3).

Key-words: Singular holomorphic foliations - Deformations.

In section 2 one proves that, in the local situation, *m*-stability is an analytic condition on a suitable Banach analytic space (of infinite dimension).

In section 3 we follow the construction of the universal space of A. Douady and we get the analytic structure of \mathcal{H} .

Notations :

- For any analytic space Y and any analytic space not necessarily of finite dimension Z let us denote $p_Z: Z \times Y \rightarrow Y$ the projection.

- For any $O_{Z \times Y}$ -module \mathscr{F} and any $z \in Z$ let us denote $\mathscr{F}(z)$ the O_{Y} -module which is the restriction to $\{z\} \times Y$ of \mathscr{F} , by definition we have for any $y \in Y$

$$\mathscr{F}(z)_{y} = \mathscr{F}_{(z,y)} \otimes_{\mathcal{O}_{Z,z}} \mathcal{O}_{Z,z}/m_{z}.$$

1. Coherent foliations.

Let X be a reduced connected normal analytic space with countable topology; let Ω_X^1 be the coherent sheaf of holomorphic differential 1-forms on X and

(*)
$$\Theta_{\rm X} = \operatorname{Hom}_{\rm O_{\rm Y}}(\Omega^1_{\rm X}, {\rm O}_{\rm X})$$

 Θ_X is called the tangent sheaf on X. Let S be the singular locus of X, then S is at least of codimension two and the restriction of Θ_X to X – S is the sheaf of holomorphic vector fields on the manifold X – S.

Bracket of two sections of Θ_{X} .

The bracket of two holomorphic vector fields on the manifold X - S is well-defined; recall that, if $z = (z_1, \ldots, z_p)$ denotes the coordinates on \mathbb{C}^p , if U is an open set in \mathbb{C}^p and if a and b are two holomorphic vector fields on U, with

$$a = \sum_{i=1}^{p} a_i(z) \frac{\partial}{\partial z_i}, \qquad b = \sum_{i=1}^{p} b_i(z) \frac{\partial}{\partial z_i}$$

then we have [a,b] = c with

$$c = \sum_{i=1}^{p} c_i \frac{\partial}{\partial z_i}$$
 where $c_i = \sum_{j=1}^{p} \left(a_j \frac{\partial b_i}{\partial z_j} - b_j \frac{\partial a_i}{\partial z_j} \right)$

Let $m_U: O(U)^p \times O(U)^p \to O(U)^p$ be the C-bilinear map which sends $((a_1, \ldots, a_p), (b_1, \ldots, b_p))$ onto (c_1, \ldots, c_p) ; the Cauchy majorations imply the continuity of m_u for the Frechet topology of uniform convergence on compacts of U.

PROPOSITION 1. — For every open subset U of X the restriction homomorphism

$$\rho: H^{0}(U,\Theta_{x}) \rightarrow H^{0}(U-U_{\Omega}S,\Theta_{x})$$

is an isomorphism of Frechet spaces.

Proof. — One knows that p is continuous; by the open mapping theorem it is sufficient to prove that p is bijective.

Now we may suppose that X is an analytic subspace of an open set V in C^n ; let I be the coherent ideal sheaf defining X in V; one has an exact sequence

(1)
$$O \rightarrow \Theta_X \rightarrow O_X^n \xrightarrow{\alpha} Hom_{O_U}(I/I^2, O_X)$$

where the map α is defined by

$$\alpha(a_1,\ldots,a_n)(f) = \sum_{i=1}^n a_i \frac{\partial f}{\partial z_i}\Big|_{\mathbf{x}}$$

 z_1, \ldots, z_n being the coordinates in \mathbb{C}^n .

Because the complex space X is reduced and normal it follows from the second removable singularities theorem two isomorphisms

(2)
$$O_{X}(V) \approx O_{X}(V-S)$$
$$I(V) \approx I(V-S).$$

Then the proposition 1 follows from (1) and (2). As an immediate consequence of proposition 1 we obtain the following corollary:

COROLLARY AND DEFINITION. - It exists a unique homomorphism of sheaves of C-vector spaces

$$m: \Theta_{\mathbf{X}} \times \Theta_{\mathbf{X}} \to \Theta_{\mathbf{X}}$$

extending the bracket defined on X - S. Therefore, for every open subset U

of X, the induced map

$$m_{\rm U}$$
: $\rm H^0(\rm U, \Theta_{\rm X}) \times \rm H^0(\rm U, \Theta_{\rm X}) \rightarrow \rm H^0(\rm U, \Theta_{\rm X})$

is C-bilinear and continuous for the Frechet topology on $H^0(U,\Theta_X)$. We call bracket-map the sheaf morphism $m: \Theta_X \times \Theta_X \to \Theta_X$.

Coherent foliations.

DEFINITION 1. – A coherent O_X -submodule T of Θ_X is said to be maximal if for any open $U \subset X$, any section $s \in \Theta_X(U)$ and any nowhere dense analytic set A in U

$$s \in T(U-A) \Rightarrow s \in T(U)$$

holds.

Because X is reduced and normal, then locally irreducible, T is maximal if and only if Θ_x/T has no O_x -torsion.

DEFINITION 2 [2]. – A coherent foliation on X is a coherent O_X -submodule T of Θ_X such that:

(i) Θ_X/T is non zero locally free outside a nowhere dense analytic subset of X;

(ii) T is a subsheaf of Θ_X stable by the bracket-map;

(iii) T is maximal.

Remarks. -1) A coherent foliation induces a classical smooth holomorphic foliation outside a nowhere dense analytic subset of X - S.

2) If T is maximal the stability of T by the bracket-map on X is equivalent to the stability of T on X - A, for any rare analytic subset A.

3) A coherent foliation on a connected reduced normal complex space X is characterized by a quotient module F of Θ_X , without O_X -torsion, such that ker $[\Theta_X \rightarrow F]$ is stable by the bracket-map and which is a non zero locally free O_X -module outside a rare analytic subset of X.

4) Let T be a coherent O_X -submodule of Θ_X satisfying conditions (i) and (ii) of definition 2; then T is included in a maximal coherent sheaf \hat{T} which is equal to T outside a rare analytic subset of X ([7] 2.7); the conditions (i) and (ii) are also fullfilled for \hat{T} , hence one can associate to T a maximal foliation on X. But two different T for which (i) and (ii) hold may give the same maximal sheaf \hat{T} .

We suppose X compact.

The purpose of this paper is to put an analytic structure on the set of all subsheaves of Θ_x satisfying conditions (i) and (ii) of Definition 2 (Theorem 2 below), that gives a versal family of holomorphic singular foliations for which a coherent extension exists.

First we have the following proposition:

PROPOSITION 2. – Let X be an irreducible complex space; let Z be a complex space and F a coherent $O_{Z \times X}$ -module. Let F be Z-flat.

Let Z_1 be the set of points $z \in Z$ such that F(z) is a non-zero locally free O_x -module outside a rare analytic subset of X.

Then Z_1 is an open subset of Z.

Proof. – For every $z \in Z$ let σ_z be the analytic subset of points $x \in X$ where F(z) is not locally free ([3]). Put $z_0 \in Z_1$. The irreducibility of X implies that G_{z_0} is nowhere dense; fix $x_0 \in X - S \cap \sigma_{z_0}$ and denote r > 0 the rank of the O_{X,x_0} -module $F(z_0)$. The Z-flatness of F implies that F is $O_{Z \times X}$ -free of rank r in an open neighborhood V of (z_0, x_0) . Let U be the projection of V on Z. For any point z of the open set U the Z-flatness of F implies that $F(z)_{x_0}$ is O_{X,x_0} -free of rank r; then the support of the sheaf F(z) contains a neighborhood of x_0 ; hence the irreducibility of X implies

support
$$F(z) = X$$

and the proposition.

For any analytic space $S m_S : p_S^* \Theta_X \times p_S^* \Theta_X \to p_S^* \Theta_X$ denotes the pull back of *m* by the projection $p_S : S \times X \to X$ (i.e. the bracket map in the direction of the fibers of the projection $S \times X \to S$). Our aim is the proof of the following theorem :

THEOREM 1. – Let X be a compact connected normal space. There exist an analytic space \tilde{H} and a coherent $O_{\tilde{H} \times x}$ -submodule \tilde{T} of $p_{\tilde{A}}^* \Theta_X$ such that :

(i) $p_{\rm H}^*\Theta_{\rm X}/\tilde{T}$ is \tilde{H} -flat;

(iii) \tilde{T} is a $m_{\rm ff}$ -stable submodule of $p_{\rm ff}^* \Theta_{\rm X}$;

(iii) $(\mathbf{\tilde{H}},\mathbf{\tilde{T}})$ is universal for properties (i) and (ii).

As a corollary of proposition 2 and theorem 1 we obtain :

THEOREM 2. — Let X be a compact connected normal space and r a positive integer. There exist an analytic space \mathscr{H} and a coherent $O_{\mathscr{H} \times X^{-}}$ submodule \mathscr{T} of $p_{\mathscr{H}}^{*} \Theta_{X}$ such that :

(i) $p^*_{\mathscr{H}}\Theta_X/\mathscr{C}$ is \mathscr{H} -flat;

(ii) \mathcal{T} is $m_{\mathscr{K}}$ -stable and for any $h \in \mathscr{H}\Theta_X/\mathcal{T}(h)$ is a locally free O_X -module of rank r outside a rare analytic subset of X;

(iii) $(\mathcal{H}, \mathcal{T})$ is universal, i.e. for any analytic space S and any coherent $O_{S \times X}$ -submodule \mathcal{F} of $p_S^* \Theta_X$ such that

 $- p_{\rm S}^* \Theta_{\rm X} / \mathcal{F}$ is S-flat;

 $- \mathscr{F}$ is m_s -stable and for any $s \in S \Theta_X/\mathscr{F}(s)$ is a locally free O_X -module of rank r outside a rare analytic subset of X then it exists a unique morphism $f: S \to \mathscr{H}$ satisfying

$$(f \times I_{\mathbf{X}})^* (p_{\mathscr{H}}^* \Theta_{\mathbf{X}} / \mathscr{C}) = p_{\mathbf{S}}^* \Theta_{\mathbf{X}} / \mathscr{F}.$$

We shall use the following theorem and Douady ([4]):

THEOREM. – Let X be a compact analytic space and $\mathscr E$ a coherent O_{X^*} module; there exist an analytic space H and a quotient $O_{H \times X^*}$ -module $\mathscr R$ of $p_H^* \mathscr E$ such that :

(i) \mathcal{R} is H-flat;

(ii) for any analytic space S and any quotient $O_{S \times H}$ -module \mathscr{F} of $p_S^* \mathscr{E}$ which is S-flat, it exists a unique morphism $f: S \to H$ satisfying

$$(f \times I_X)^* \mathscr{R} = \mathscr{F}.$$

2. Local deformations.

One uses notations and results of [4]; the notions of infinite dimensional analytic spaces, called Banach analytic spaces, and of anaflatness are defined respectively in ([4] § 3) and in ([4] § 8).

In this section we fix an open subset U of C^n , two compact polycylinders of non-empty interior K and K' satisfying

$$\mathbf{K}' \subset \mathbf{\mathring{K}} \subset \mathbf{K} \subset \mathbf{U}$$

and a reduced normal analytic subspace X of U. Let B(K) be the Banach algebra of those continuous functions on K which are analytic on the interior \mathring{K} of K; one defines B(K') in an analogous way.

For every coherent sheaf \mathscr{F} on U, one knows that it exists finite free resolutions of \mathscr{F} in a neighborhood of K; for such a resolution

(L.) $O \rightarrow L_n \rightarrow L_{n-1} \rightarrow \cdots \rightarrow L_0$

let us consider the complex of Banach spaces

$$\mathbf{B}(\mathbf{K},\mathbf{L}.) = \mathbf{B}(\mathbf{K}) \otimes_{\mathbf{O}(\mathbf{K})} \mathbf{H}^{0}(\mathbf{K},\mathbf{L}.)$$

and the vector space

$$\mathbf{B}(\mathbf{K},\mathscr{F}) = \operatorname{coker} \left[\mathbf{B}(\mathbf{K}; \mathbf{L}_1) \rightarrow \mathbf{B}(\mathbf{K}, \mathbf{L}_0) \right].$$

DEFINITION 1([4] §7, [5]). – K is \mathscr{F} -privileged if and only if it exists a finite free resolution L. of \mathscr{F} on a neighborhood of K such that the complex B(K,L.) is direct exact.

Then this is true for every finite free resolution; therefore $B(K,\mathcal{F})$ is a Banach space which does not depend of the resolution; \mathcal{F} -privileged polycylinders give fundamental systems of neighborhoods at every point of U. For a more geometric definition of privilege, the reader can refer to ([6]).

In the following, we always suppose that the two polycylinders K and K' are Θ_x -privileged, Θ_x being the tangent sheaf defined by 1 - (*).

Let G_K be the Banach analytic space of those B(K)-submodules Y of $B(K,\Theta_X)$ (or equivalently of quotient modules) for which it exists an exact sequence of B(K)-modules

$$O \rightarrow B(K)^{r_n} \rightarrow \cdots \rightarrow B(K)^{r_0} \rightarrow B(K,\Theta_X) \rightarrow B(K,\Theta_X)/Y \rightarrow O$$

which is a direct sequence of Banach vector spaces.

A universal sheaf R_x on $G_x \times K$ is constructed in [4]; R_K satisfies the following proposition :

PROPOSITION 1 ([4] § 8 n° 5). - (i) R_K is G_K -anaflat.

(ii) For every Banach analytic space Z and for every Z-anaflat quotient \mathscr{F} of $p_{T}^{*}\Theta_{X}$ it exists a natural morphism $\varphi: Z \to G_{K}$ such that

$$(\boldsymbol{\varphi} \times \mathbf{I}_{\mathbf{K}})^* \mathbf{R}_{\mathbf{K}} = \mathscr{F}_{\mathbf{S} \times \mathbf{K}}.$$

Recall that the Z-anaflatness generalizes to the infinite dimensional space Z the notion of flatness; pull back preserves anaflatness.

Let $G_{K,K'}$ be the set of the B(K)-submodules E of B(K, Θ_X), element of G_K , such that $E \otimes_{B(K)} B(K')$ gives an element of $G_{K'}$.

PROPOSITION 2. - (i) $G_{K,K'}$ is an open subset of G_K .

(ii) Let \mathscr{R} be the pull back of R_K by the inclusion $G_{K,K'} \hookrightarrow G_K$. Then the map from $G_{K,K'}$ to $G_{K'}$ which maps every B(K)-module E element of $G_{K,K'}$ onto the B(K')-module $E \otimes_{B(K)} B(K')$ is given by a unique morphism

 $\rho_{K,K'} \colon \, G_{K,K'} \, \to \, G_{K'}$

satisfying

$$\rho_{\mathbf{K},\mathbf{K}'}^*\mathbf{R}_{\mathbf{K}'}=\mathscr{R}.$$

Proof. – Proposition 2 follows from ([4] 14 prop. 4).

Let $\rho_1: B(K, \Theta_X) \times B(K, \Theta_X) \to \Theta_X(\mathring{K}) \times \Theta_X(\mathring{K})$ and

 $\rho_2: \Theta_X(\mathring{K}) \rightarrow B(K', \Theta_X)$

be the restriction homomorphisms and

 $m: \Theta_{\mathbf{X}}(\mathbf{\mathring{K}}) \times \Theta_{\mathbf{X}}(\mathbf{\mathring{K}}) \to \Theta_{\mathbf{X}}(\mathbf{\mathring{K}})$

the bracket map.

Let

$$m_{\mathbf{K},\mathbf{K}'}$$
: B(K, $\Theta_{\mathbf{X}}$) × B(K, $\Theta_{\mathbf{X}}$) \rightarrow B(K', $\Theta_{\mathbf{X}}$)

be the continuous C-bilinear map defined by

$$m_{\mathbf{K},\mathbf{K}'}=\rho_2\circ m\circ\rho_1.$$

DEFINITION 2. – A B(K)-submodule Y of B(K, Θ_X) is said to be $m_{K,K'}$ -stable if it verifies :

- (i) Y is an element of $G_{K,K'}$,
- (ii) for every f and g in Y one has

$$m_{\mathbf{K},\mathbf{K}'}(f,g) \in \rho_{\mathbf{K},\mathbf{K}'}(\mathbf{Y})$$
.

Then, if \mathcal{C} is a *m*-stable O_X -submodule of Θ_X such that K and K' are \mathcal{C} -privileged, $B(K,\mathcal{C})$ is $m_{K,K'}$ -stable; the converse is not necessarily true; however we have the following proposition:

PROPOSITION 3. – Let Y be a $m_{K,K}$ -stable B(K)-submodule of B(K, Θ_X); then Y defines in a natural way a coherent O_X -submodule of Θ_X on \mathring{K} , the restriction to \mathring{K}' of which is m-stable (i.e. stable by the bracket-map).

Proof. – Let B_Y be the privileged B_K -module given by Y ([6]); the restriction to \mathring{K} of B_Y is a coherent sheaf; therefore one has ([6] th. 2.3 (ii) and prop. 2.11)

$$Y = \dot{H}(K, B_{Y})$$

and the restriction homomorphism

$$i: Y = H^0(K, B_Y) \rightarrow H^0(K, B_Y)$$

is injective and has dense image; therefore the restriction $B_{Y|\hat{K}}$ is a submodule of Θ_X ([4] § 8 lemme 1(b)), hence $H^0(\mathring{K}', B_Y)$ is a closed subspace of the Frechet space $H^0(\mathring{K}', \Theta_X)$.

Let us show that $m_{K,K'}$ induces a C-bilinear continuous map

$$\mathring{m}$$
: $H^{0}(\mathring{K}, B_{Y}) \times H^{0}(\mathring{K}, B_{Y}) \rightarrow H^{0}(\mathring{K}', B_{Y})$.

Take t_1 , t_2 two elements of $H^0(\mathring{K}, B_Y)$ and (t_1^n) and (t_2^n) two sequences of elements of Y with

$$\lim_{n\to\infty}t_i^n=t_i, \qquad i=1,2.$$

Because the bracket-map $m: H^0(\mathring{K}, \Theta_X) \times H^0(\mathring{K}, \Theta_X) \to H^0(\mathring{K}, \Theta_X)$ is continuous one has

$$\lim_{k \to \infty} m(t_{1|\mathbf{\hat{K}}}^n, t_{2|\mathbf{\hat{K}}}^n) = m(t_1, t_2) \in \mathrm{H}^{0}(\mathbf{\hat{K}}, \Theta_{\mathbf{X}}).$$

Therefore the $m_{K,K}$ -stability of Y implies for every m

$$m_{\mathbf{K},\mathbf{K}'}(t_1^n,t_2^n) \in \mathbf{B}(\mathbf{K}',\mathbf{B}_{\mathbf{Y}}) \subset \mathbf{H}^0(\mathbf{K}',\mathbf{B}_{\mathbf{Y}})$$

then $m(t_1, t_2)|_{\mathbf{K}'} \in \mathrm{H}^0(\mathbf{K}', \mathbf{B}_{\mathbf{Y}})$ follows.

In order to prove the proposition it is sufficient to remark that, for every polycylinder $K'' \subset K'$, the restriction homomorphism

$$H^{0}(\mathring{K}', B_{y}) \rightarrow H^{0}(\mathring{K}'', B_{y})$$

has a dense image. Q.E.D.

Recall some properties of infinite dimensional spaces : let V be an open subset of a Banach C-vector space; let F be a Banach vector space and $f: V \to F$ an analytic map. Let \mathscr{X} the Banach analytic space defined by the equation f = 0; \mathscr{X} is a local model of general Banach analytic space; the morphisms from \mathscr{X} into a Banach vector space G extend locally in analytic maps on open subsets of V; for such a morphism $\varphi : \mathscr{X} \to G$ the equation $\varphi = 0$ defines in a natural way a Banach analytic subspace of \mathscr{X} ; the morphisms from a Banach analytic space \mathscr{Y} into \mathscr{X} are exactly the morphisms $\psi : \mathscr{Y} \to V$ such that $f \circ \psi = 0$.

PROPOSITION 4. – Let $S_{K,K'}$ be the subset of elements of $G_{K,K'}$ which are $m_{K,K'}$ -stable. Then $S_{K,K'}$ is a Banach analytic subspace of $G_{K,K'}$.

Proof. – Let $Y_0 \in S_{K,K'}$ and $Y'_0 = \rho_{K,K'}(Y_0)$; let G_0 (resp. G'_0) a closed C-vector subspace of $B(K,\Theta_X)$ (resp. $B(K',\Theta_X)$) which is a topological supplementary of Y_0 (resp. Y'_0). Let U_0 (resp. U'_0) the set of closed C-vector subspaces of $B(K,\Theta_X)$ (resp. $B(K',\Theta_X)$) which are topological supplementaries of G_0 (resp. G'_0); we identify U_0 and $L(Y_0,G_0)$, hence $U_0 \cap G_K$ is a Banach analytic subspace of $U_0([4] \S 4)$.

For every Y in U_0 one denotes $p_Y : B(K, \Theta_Y) = Y \oplus G_0 \to G_0$ the projection and $j_Y : Y_0 \to Y \subset B(K, \Theta_X)$ the reciprocal map of the restriction to Y of the projection $B(K, \Theta_X) = Y_0 \oplus G_0 \to Y_0$.

Then the two maps

$$p^{K}: G_{K} \rightarrow L(B(K,\Theta_{X}),G_{0})$$

$$j^{K}: G_{K} \rightarrow L(Y_{0},B(K,\Theta_{X}))$$

defined by $p^{K}(Y) = p_{Y}$ and $j^{K}(Y) = j_{Y}$ are induced by morphisms ([4] § 4, n° 1); associated to the polycylinder K' we have in the same way morphisms $p^{K'}$ and $j^{K'}$. Put $W_0 = G_{K,K'} \cap U_0 \cap \rho_{K,K'}^{-1}(U'_0)$; W_0 is an open subset of $G_{K,K'}$. Let be

$$\varphi_1 = p^{\mathbf{K}'} \circ \rho_{\mathbf{K},\mathbf{K}'} \colon \mathbf{W}_0 \to \mathbf{L}(\mathbf{B}(\mathbf{K}',\Theta_{\mathbf{X}}),\mathbf{G}'_0)$$

and $\Delta: G_K \to L(Y_0 \otimes Y_0, B(K', \Theta_X))$ the morphism defined by

$$\Delta(\mathbf{Y}) = m_{\mathbf{K},\mathbf{K}'} \circ (j_{\mathbf{Y}} \times j_{\mathbf{Y}}).$$

Let be $\varphi_2 = \Delta \circ j^K : W_0 \to L(Y_0 \otimes Y_0, B(K', \Theta_X)); \phi_1 \text{ and } \phi_2 \text{ are}$

morphisms; let

$$\phi: W_0 \to L(Y_0 \bigotimes Y_0, G'_0)$$

be the morphism defined by

$$\varphi(\mathbf{Y}) = \varphi_2(\mathbf{Y}) \circ \varphi_1(\mathbf{Y}).$$

We have $W_0 \cap S_{K,K'} = \varphi^{-1}(0)$, hence $S_{K,K'} \cap W_0$ is a Banach analytic subspace of W_0 ; following ([4] § 4, n° 1 (i) and (ii)) one easily proves that the analytic structures obtained in the different charts of G_K and $G_{K'}$ patch together in an analytic structure on $S_{K,K'}$; that proves proposition 4.

Remark 1. — With the previous notations the morphisms of Banach analytic spaces $g: Z \to S_{K,K'} \cap W_0$ are the morphisms $g: Z \to W_0$ satisfying $\phi \circ g = 0$.

Let $i: S_{K,K'} \to G_K$ be the inclusion and $R_{K,K'}$ the pullback of R_K by i; $R_{K,K'}$ is $S_{K,K'}$ -anaflat; by construction $R_{K,K'}$ is a quotient of $p_{S_{K,K'}}^* \Theta_X$, then put

$$\mathbf{R}_{\mathbf{K},\mathbf{K}'} = p_{\mathbf{S}_{\mathbf{K},\mathbf{K}'}}^* \Theta_{\mathbf{X}} / \mathbf{T}_{\mathbf{K},\mathbf{K}'}.$$

By anaflatness one obtains for every $s \in S_{r,k}$ are exact sequence of coherent sheaves on K:

$$O \rightarrow T_{K,K'}(s) \rightarrow \Theta_X \rightarrow R_{K,K'}(s) \rightarrow 0.$$

From the definition of the analytic structure of $S_{K,K'}$ and from proposition 3 one deduces the following theorem :

THEOREM 3. – (i) For every $s \in S_{K,K'}$ the restriction to K' of the coherent subsheaf $T_{K,K'}(s)$ of Θ_X is stable by the bracket-map.

(ii) For every Banach analytic space Z and every quotient $\mathscr{F} = p_Z^* \Theta_X/T$ of $p_Z^* \Theta_X$ by a $O_{Z \times X}$ -submodule T such that

 $- \mathcal{F}$ is Z-anaflat.

- T is m_z -stable and for any $z \in \mathbb{Z}$ the polycylinders K et K' are $\mathscr{F}(z)$ -privileged;

then the unique morphism $g: \mathbb{Z} \to G_K$ satisfying

$$(g \times I_{\mathbf{k}})^* \mathbf{R}_{\mathbf{k}} = \mathscr{F}$$

factorizes through $S_{K,K'}$ (i.e. it exists a unique morphism $f: \mathbb{Z} \to S_{K,K'}$ with $r \circ f = g$).

Remark 2. — We don't know if the restriction of $R_{K,K'}$ to $S_{K,K'} \times K'$ is $m_{S_{K,K'}}$ -stable; but if S is a finite dimensional analytic space then the pull back of $R_{K,K'}$ by any morphism $S \rightarrow S_{K,K'}$ is m_{S} -stable.

3. Proof of theorem 1.

In this section X denotes a compact reduced normal space and Θ_X its tangent sheaf. Let H be the universal space of quotient O_X -modules of Θ_X and \mathscr{R} the H-flat universal sheaf on H × X ([4]). Put $\mathscr{R} = p_H^* \Theta_X / \mathcal{C}$, \mathcal{C} being a coherent submodule of $p_H^* \Theta_X$; for any $h \in H \mathcal{C}(h)$ is a coherent submodule of Θ_X . We shall construct the space \tilde{H} as an analytic subspace of an open subset of H.

1. Refining of a privileged « cuirasse ».

Let M be a Θ_x -privileged « cuirasse »» ([4] § 9, n° 2); M is given by,

(i) a finite family $(\varphi_i)_{i\in I}$ of charts of X, i.e. for every $i \in I \quad \varphi_i$ is an isomorphism from an open set $X_i \subset X$ onto a closed analytic subspace of an open set U_i in \mathbb{C}^{n_i} ,

(ii) for every $i \in I$ a Θ_X -privileged polycylinder $K_i \subset U_i$ (i.e. a $\varphi_{i*}\Theta_X$ -privileged polycylinder) and an open set $V_i \subset X_i$ satisfying

$$\overline{\mathbf{V}}_i \subset \overline{\mathbf{\phi}_i^{-1}}(\mathbf{K}_i) \subset \mathbf{X}_i$$
$$\mathbf{X} = \bigcup_{i \in \mathbf{I}} \mathbf{V}_i$$

(iii) for every $(i,j) \in I \times J$ a chart φ_{ij} defined on $X_i \cap X_j$ with values in an open $U_{ij} \subset C^{n_{ij}}$ and a finite family $(K_{ij_{\alpha}})$ of Θ_X -privileged polycylinders in U_{ij} such that conditions

$$\begin{split} \bar{\nabla}_1 \cap \bar{\nabla}_j &\subset \bigcup_{\alpha} \psi_{ij}^{-1}(\mathbf{K}_{ij\alpha}) \\ \phi_{ij}^{-1}(\mathbf{K}_{ij\alpha}) &\subset \phi_i^{-1}(\mathring{\mathbf{K}}_i) \cap \phi_j^{-1}(\mathring{\mathbf{K}}_j) \end{split}$$

are fullfilled.

As in ([4]) let us denote H_M the open subset of the elements F of H for which M is F-privileged (i.e. all the polycylinders K_i , $K_{ij\alpha}$ are F-privileged); we shall construct \tilde{H} as union of open subsets $\tilde{H} \cap H_M$.

- For any Θ_x -privileged polycylinder K let us denote G_K (§ 2) the Banach analytic space of quotients of B(K, Θ_x) with finite direct resolution.

For every $i \in I$ let G_i be the open subset of G_{K_i} on which, for any α , the restriction homomorphisms $B(K_i) \rightarrow B(K_{ij\alpha})$ induce morphisms $G_i \rightarrow G_{K_{ij\alpha}}$. The Douady construction of H_M gives a natural injective morphism

$$i: H_{M} \rightarrow \prod_{i \in I} G_{i}.$$

DEFINITION 5. – A refining of the « cuirasse » M is given by a family $(K'_i)_{i \in I}$ of polycylinders satisfying :

(i) for every $i \ \varphi_i(\mathbf{V}_i) \subset \mathring{\mathbf{K}}'_i \subset \mathbf{K}'_i \subset \mathring{\mathbf{K}}_i$,

(ii) for every $i, j, \alpha \varphi_{ii}^{-1}(\mathbf{K}_{ii\alpha}) \subset \varphi_i^{-1}(\mathbf{K}'_i) \cap \varphi_i^{-1}(\mathbf{K}'_i)$,

(iii) for every i K'_i is Θ_X -privileged.

We denote by $M((K'_i))$ such a refining; for any coherent sheaf \mathscr{F} on X we shall say that $M((K'_i))$ is \mathscr{F} -privileged if M is \mathscr{F} -privileged and if, for every *i*, K'_i is \mathscr{F} -privileged.

LEMMA 1. – (i) Let \mathcal{F} be a coherent sheaf such that M is \mathcal{F} -privileged; then it exists a \mathcal{F} -privileged refining of M.

(ii) Let $M((K'_i))$ a refining of M; then the set of quotient \mathscr{F} of Θ_X such that $M((K'_i))$ is \mathscr{F} -privileged is open in H_M .

Proof. - (i) follows from ([4] § 7, n° 3 corollary of prop. 6) and (ii) is an immediate consequence of flatness and privilege.

2. Now we fix a Θ_X -privileged « cuirasse » $M = M(I_i(K_i), (V_i), (K_{ij\alpha}))$ and a Θ_X -privileged refining $M((K'_i))$ of M.

LEMMA 2. – Let H'_M be the subset of H_M the points of which are quotients Θ_X/T satisfying :

(i) $M((K'_i))$ is Θ_K/T -privileged,

(ii) T is a subsheaf of Θ_X stable by the bracket-map.

Then H'_M is an analytic subspace of an open subset of H_M .

Proof. – Using notations of section 2 one puts for every $i \in I$

$$\mathbf{G}_i' = \mathbf{G}_{\mathbf{K}_i,\mathbf{K}_i'} \cap \mathbf{G}_i$$

 G'_i is an open subset of G_i and G_{K_i} ; put $S_i = S_{K_i,K'_i} \cap G'_i$.

One knows that the category of Banach analytic spaces has finite products, kernel of double arrows and hence fiber products (for all this notions the reader can refer to ([4] § 3, n° 3). Then $\prod_{i \in I} S_i$ is a Banach analytic subspace of $\prod_{i \in I} G'_i$; since $\prod_{i \in I} G'_i$ is an open subset of $\prod_{i \in I} G_i$ it follows from (§ II Theorem 3)

$$\mathbf{H}'_{\mathbf{M}} = \mathbf{H}_{\mathbf{M}} \times \prod_{\substack{i \in \mathbf{I} \\ i \in \mathbf{I}}} \prod_{\mathbf{G}_i \ i \in \mathbf{I}} \mathbf{S}_i$$

and the lemma is proved.

- Now let \mathbf{R}'_{M} (resp. \mathbf{T}'_{M}) be the pull back of \mathscr{R} (resp. \mathscr{E}) by the inclusion morphism $\mathbf{H}'_{\mathsf{M}} \times \mathbf{X} \to \mathbf{H} \times \mathbf{X}$; \mathbf{R}'_{M} is the quotient of $p_{\mathbf{H}'_{\mathsf{M}}}^{*} \Theta_{\mathsf{X}}$ by \mathbf{T}'_{M} (the sheaves \mathbf{T}'_{M} and ker $[p_{\mathbf{H}'_{\mathsf{M}}}^{*} \Theta_{\mathsf{X}} \to \mathbf{R}'_{\mathsf{M}}]$ are \mathbf{H}'_{M} -flat and equal on the fibers $\{h\} \times \mathbf{X}$).

LEMMA 3. $-T'_{M}$ is a $m_{H'_{M}}$ -stable submodule of $p_{H'_{M}}^{*}\Theta_{X}$.

The proof follows immediatly of the remark 2 of paragraph 2 and of

$$X = \bigcup_{i \in I} V_i = \bigcup_{i \in I} \phi_i^{-1}(\mathring{K}'_i).$$

– Using the universal property of H_M , Theorem 3 § 2 and the commutative diagram

$$\begin{array}{cccc} \mathbf{H}'_{\mathsf{M}} \times \mathbf{X} & \rightarrow & \mathbf{H}_{\mathsf{M}} \times \mathbf{X} \\ & & \downarrow & & \downarrow \\ \left(\prod_{i \in \mathbf{I}} \mathbf{G}'_{i}\right) \times \mathbf{X} & \rightarrow & \left(\prod_{i \in \mathbf{I}} \mathbf{G}_{i}\right) \times \mathbf{X} \end{array}$$

we obtain the following proposition :

PROPOSITION 1. – Let Z be an analytic space and T_z a coherent subsheaf of $p_Z^*\Theta_X$ satisfying :

- (i) $p_Z^* \Theta_X / T_Z$ is Z-flat.
- (ii) For every $z \in \mathbb{Z}$ the cuirasse $M((K'_i))$ is $\Theta_X/T_Z(z)$ -privileged.
- (iii) T_z is a m_z-stable submodule of $p_z^*\Theta_x$.

Then the unique morphism $g: \mathbb{Z} \to \mathbb{H}$ such that

$$(g \times I_X)^* \mathscr{R} = p_Z^* \Theta_X / T_Z$$

factorizes through H'_M and verifies

$$(g \times I_X)^* T'_M = T_Z.$$

3. End of the proof of Theorem 1.

Notations are those of the previous proposition; the unicity of g implies the unicity of its factorization through the subspace H'_M of H. Hence, when the refinings of a given M are varying, one obtains analytic spaces H'_M which patch together in an analytic subspace of an open subset of H_M .

When the « cuirasse » M varies in the family of all the Θ_X -privileged « cuirasse » the spaces H_M form an open covering of H; then the universal property of the H_M 's implies that $\tilde{H} = \bigcup_M H'_M$ is an analytic subspace of an open subset of H. Theorem 4 is proved.

Remark. — More generally if X is not compact, let Θ be a coherent sheaf on X and $m: \Theta \times \Theta \to \Theta$ a sheaf morphism inducing for each open set U a continuous C-bilinear map $m_U: \Theta(U) \times \Theta(U) \to \Theta(U)$; let H be the Douady space of the coherent quotients of Θ with compact support ([4]). We get a universal analytic structure on the subset of those quotients which are *m*-stable.

BIBLIOGRAPHY

- P. BAUM, Structure of foliation singularities, Advances in Math., 15 (1975), 361-374.
- [2] G. BOHNHORST and H. J. REIFFEN, Holomorphe blatterungen mit singularitäten, Math. Gottingensis, heft 5 (1985).
- [3] H. CARTAN, Faisceaux analytiques cohérents, C.I.M.E., Edizioni Cremonese, 1963.
- [4] A. DOUADY, Le problème des modules pour les sous-espaces analytiques..., Ann. Inst. Fourier, XVI, Fasc. 1 (1966), 1-96.
- [5] B. MALGRANGE, Frobenius avec singularités-codimension 1, Pub I.H.E.S., nº 46 (1976).

47

- [6] G. POURCIN, Sous-espaces privilégiés d'un polycylindre, Ann. Inst. Fourier, XXV, Fasc. 1 (1975), 151-193.
- [7] Y. T. SIU et G. TRAUTMANN, Gap-sheaves and extension of coherent analytic subsheaves, *Lect. Notes*, 172 (1971).
- [8] T. SUWA, Singularities of complex analytic foliations, Proceedings of Symposia in Pure mathematics, Vol. 40 (1983), Part. 2.

Manuscrit reçu le 12 mars 1986.

Geneviève POURCIN, Département de Mathématiques Faculté des Sciences 2 Bd Lavoisier 49045 Angers Cedex (France).

48