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AN F. AND M. RIESZ THEOREM
FOR BOUNDED SYMMETRIC DOMAINS

by R. G. M. BRUMMELHUIS (*)

to the memory of my mother

1. Introduction.

In [11] J. H. Shapiro has given new proofs of the classical F. and
M. Riesz theorem for the circle group T = { z e C : | z | = l } and of
Bochner's generalization of F. and M. Riesz to the torus T x T. These
proofs were based on a study of the duals of certain subspaces of L^(T),
respectively L^(TxT) for p ' s between 0 and 1.

In this paper Shapiro's methods are generalized to arbitrary compact
groups. As a result, we obtain in section 3 a general F. and M. Riesz
theorem for compact groups whose center contains a circle group.

A typical special case of our F. and M. Riesz theorem is the unit sphere
S in C": S = S^-1 = U.(n)/U(n— 1), where U(n) is the unitary group. For
the formulation we have to recall some definitions from harmonic analysis
on S, cf. [7], chapter 12. Let H(p,^) be the set of restrictions to S of
harmonic polynomials in z and z which are homogeneous of degree p in z
and of degree q in z. Let a denote the l/(n)-invariant measure on S with
total mass 1. The spaces H(p,^) span L^S,^) and are pairwise orthogonal.
Let Kpq denote the orthogonal projection of L^S.o) onto H(p,^). The map
f -> (7t^/)(z)(z e S) can be represented as the inner product in L2 of/with
an element K^ in H(p,^). Hence we can define Kp^ e H(p,^) for any finite
Borel measure p, on S. Let specp, = {(p,^)eN x N:7i^p^0}.

(*) Author supported by the Netherlands organization for the advanceme.nt of
pure research (Z.W.O.).

Key-words: F. and M. Riesz theorem - Measures on compact groups - Absolute continuity
- Non locally convex I^-spaces (p< 1) - H'' theory - Bounded symmetric domains - Spherical
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1.1. THEOREM. - Let A c N x N satisfy the following two conditions :
(i) For each meZ the set {(p,q) e A : p-q=m} is finite.
(ii) The set {p-q: (p,q) e A} fs bounded from below (or above).

Let [i be a finite Borel measure on S such that spec [i c A. Then [i is
absolutely continuous with respect to a. Q

Examples of sets A which satisfy conditions (i) and (ii) of 1.1 are the sets
^ = {(P.q) e N x N : ̂ ap} for a < 1. The singular measures T defined
by

I^-ffd^=\ /(e'yrie, /eC(S),
J -"

^ e S fixed) show that condition 1.1 (ii) by itself is not sufficient. Similary,
the existence of a singular pluriharmonic measure ^ (that is,

specn ^ N x {0} u {0} x N,

cf. Aleksandrov [1] or Rudin [8]) shows that some condition on the set
{ P - q ' ' (P^)especn} is necessary. Cf. also remark 3.4 below.

Another application of our F. and M. Riesz theorem is made to the
Bergman-Shilov boundary S of a bounded symmetric domain Q: we get
another proof of the known result that an H1 function on 0 can be written
as the Poisson integral of an L1 function on S. Finally, our
F. and M. Riesz theorem contains the classical results of the Riesz brothers
and of Bochner as special cases.

Kanjin [5] has proved an F. and M. Riesz theorem for zonal (i.e.
£/(n-^-invariant) measures on S: such a measure ^ is absolutely
continuous with respect to a if spec ^ c [(p^q) e N x N : min (p,^)^N} for
some N 6 N. I do not know if Kanjin's result can be proved (and extended)
by the methods in this paper.

As in the classical case, if ^ is a measure such that spec [i satisfies 1.1 (i)
and (ii) then not only is ^ absolutely continuous with respect to a but a is
absolutely continuous with respect to n as well. This will be shown in the
final section of this paper.

Acknowledgement. I would like to thank dr. T. H. Koornwinder and
prof. J. Korevaar for helpful comments.
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2. Absolute continuity and the existence
of Lp continuous linear functionals, p < \.

2.1. Notations. — If X is a compact topological space, let C(X) denote
the space of complex valued continuous functions on X, with the
sup norm. M(X) denotes the dual of C(X), the space of finite Borel
measures on X.

Throughout this paper, K will denote a compact group with a
countable basis of neighborhoods at e. By dk we denote the Haar measure
on K, normalized to total mass 1; L^K.rife) = LP(K) and ||/||p(0<p<oo)
have their usual meaning. If p. e M(K) we write (as usual) p, « dk, p, -L dk
for « H is absolutely continuous with respect to dk », respectively, «p, is
singular with respect todk».

2.2 Fourier transform on K. — Let 1C be the unitary dual of K, i.e. 1C is
the set of (equivalence classes of) irreducible unitary continuous
representations of K. For T in 1C, let H(x) denote the representation space
of T, and d^ the complex dimension of H(i), the degree of T. The Fourier
transform p, of peM(K) is defined as the following (operator valued)
function on K:

A(T)= f T^-1)^).
JK

Let T(K) be the space of trigonometric polynomials on K; i.e. T(K) is
the set of finite linear combinations of functions k -> (T(k)y,w) where
i;,weH(T), T G & and(.,.) is the inner product of H(r). If ^ denotes the
character of T then for F e T(K)

F(fe) = E d^ * F)(fc) = ^ ^Tr {F(T)r(fe)}
T T

where * denotes convolution on K and Tr means trace.

For r e ^ C let T^(K) denote the linear span of all functions
k -^ (T(k)i;,w), where U,W€H(T) . The map f->d^*f is the L2-
orthogonal projection of L^K) onto T,(K). For H € M(K), the Fourier-
Stieltjes series of [i is defined as the formal series

E ^(X.*^)(fc)=^Tr{ft(T)T(k)}.
T 6 ^
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2.3. The spectrum of a measure. - For ^eM(K) , let spec n be the
support of p,: spec p = {r e K : p(T) ^ 0}.
Clearly, spec ^ = {r e K : 7, * ̂ 0}.

Let X^ be the subspace of T(K) defined by

X , = { F * H : F € T ( K ) } .

X^ determines spec ^ completely, since spec p, = {r e K : X^ n T,(K)^0}.
Conversely, spec p, does not determine X^ in general: note that X^ is
spanned by the functions

k -> (T(k)u,w), v e Range ^(r), w e H(r):

a short computation shows that for w ^ , n^eHO:) one has

((T(.)W, ,^2) * H)(fe) = (T(fe)A(T)w, ,^2).

If K is abelian, K can be identified with the character group of K and then
X^ is the linear span of spec ^.

It is expedient to use X^ instead of spec [JL when generalizing Shapiro's
results to non-abelian K.

Recall that a space of functions Y on K is called invariant under left
translation if / e Y implies k/ e Y, where ^(x) : = f(kx). Note that X^ is
invariant under left translation.

If Y is a subspace of T(K), let Y" denote the closure of Y in ^(K).

2.4. THEOREM. — Let [i in M(K) be singular with respect to dk. Then X{;
has no nonzero continuous linear functionals if 0 < p < 1.

Compare [II], theorem 2.1. For the proof we need some lemmas.

2.5. LEMMA. — There exists a sequence {F^} of trigonometric
polynomials, mth {||FJ|^} bounded such that

(i) if [i 6 M(K), H 1 dk, then F^ * [i -> 0 in Haar measure as n -> oo ;
(ii) if f € L^K), then ¥ , * / -^ / in L^K) as n -^ oo .

Proof. - Let { V ^ : n e N } , V^+i c y^, be a countable basis of
neighborhoods of e (the identity element) in K. Let h^ be the characteristic
function of ¥„, divided by the Haar measure of ¥„. A rather
straightforward argument shows that (i) and (ii) hold with F^ replaced by
/in, cf. [II], proof of lemma 1.1.
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Since each ^ is in L^K), there exists F^eT(K) such that
I IFn-^l l i < 2~\ Hence (ii) holds. Furthermore, (F^-^) * ̂  -^ 0 in Haar
measure as n -> oo for every n e M(K) since ||(F^-^) * \i\\^ -> 0. Hence (i)
follows. Q

2.6. LEMMA. - Let {/„} &6? a sequence of functions in L^K) \vhich
converges to 0 in Haar measure. Suppose there exists a C > 0 such that
11/nlli ^Cfor all n. Then ||/j|p-> 0 ^ n -> oo for all pe(0,l).

Proo/. - It is enough to observe the following: if E c K is Borel
measurable then if |E| denotes the Haar measure o fE ,

I'^-J\t.\'a- l/.l'Xi<itsll/.ll!IE|'-'
J

^ C ^ . I E I ^ ^
by Holder's inequality with exponent 1 / p . Now take for E = E^ the set
where |/J > e; for large n , it will have small measure. D

Proof 0/2.4. - Fix p, p€(0,l) and write X for X^. Let {FJ be as in
lemma 2.5.

Then /„:= F^^i-^0 in L^K) by 2.5 (i), 2.6 and the fact that
l|F,*H||i ^ I I F J I J I u l l ^ C l l n l l for a l ln .

Suppose d> is an L^ continuous linear functional on X. Then 0 is L1

continuous on L^K) n X, since || ||p ^ || ||i. By Hahn-Banach and the
fact that the dual of L^K) is L°°(K), there exists a (p in L°°(K) such that

^(/)= f /(x)(p(x-1)^, /eXnL^K).
JK

By the left translation invariance of X^, k^ € X^ for all k e K a-nd
Y^ -^ 0 in L^(K) as n ̂  oo since rffe is left invariant. Therefore

W) = (/. * <P)(fe) = ((F^ * H) * (p)(fe) ̂  0, n ̂  oo .

Since H * (p e L^K), F^ * (^ * (p) -^ (^ * (p) in L^K) (2.5(ii)). Hence
H * (p = 0 a.e.. Since

0(F * n) = ((F * n) * (p)(^), F e T(K),
0 = 0 on X. Q
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2.7. THEOREM. - Let 0 < p < 1 anrf te Y c L^K) fc^ a closed
subspace, invariant under left translation. Suppose that Y n T(K) has
sufficiently many L^ continuous linear functionals to separate points. Let p in
M(K) be such that X^ c Y. Then p, is absolutely continuous with respect
to dk.

Compare [II], corollary 5.2.

Proof. — Let \\. = fdk 4- v be the Lebesgue decomposition of p,
/ e L ^ K ^ v l d k .

Choose [Fn] as m lemma 2.5. Then by 2.5 (i) and (ii) and 2.6,

FH * H "̂  / m L^ as n -^ oo (0<p<\).

This implies that / e Y, since X^ c Y.

Let V be the closed subspace of L^K) spanned by the left translates
of/. Then V c Y since Y is closed under left translation. Hence
F * / e V c Y for all F e T(K). Also F * n e Y for all F e T(K). Hence
X^ ^ Y n T(K). But this implies v = 0, by theorem 2.4. D

3. A general F. and M. Riesz theorem.

3.1. Our main theorem concerns compact groups K (with a countable
neighborhood basis at e) whose center Z(K) contains a circle group T.
Throughout this section, let K be such a group, and fix an identification
T -> Z(K), so that e19 denotes an element of K as well as of T. By Schur's
lemma, there exists for each T G 1C an n(r) € Z such that

T(^'9) = e^.ld, QeR.

We can now formulate our main result.

3.2. THEOREM. -- Let A c K satisfy the following two conditions :
(i) For each m e Z the set {r e A : n(T)=w} is finite.
(ii) The set {n(i): T € A} is bounded from below.

Let [i e M(K) be such that spec [i c A. Then [i is absolutely continuous
with respect to dk.

In condition (ii) of 3.2 «from below » may be replaced by « from
above » : just replace [i by ji.
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Proof. - Let Y be the linear span of the T,(K) 's with T e A. By
theorem 2.7 it is sufficient to show that for p < 1

(3. la) YpnT(K)=\,

(3.1fc) Y has sufficiently many 1̂  continuous linear functionals to
separate points.

In the proof of (3.1a) and (3.1&) we will use the following lemma:

3.3. LEMMA. - For me Z define the projection H^: T(K) -^ T(K) by

n,/(fe)= [n f(eiQk)e-imQ dQ/2n
J -n

= Z ^Oc.*/)W.
n(-c) = m

IfY is a subspace of T(K) such that the set {n(r ) : 3f e Y : /, * f^O} is
bounded from belo\v, then H^ is U continuous on Y for all p > 0. (The
interesting case is of course 0 < p < 1.)

Proof. - For k e K, / e T(K) define the « slice function » /^ on T by
fk^):= f^k). Obviously

A(^)= Z f Z ^(X.*/)^))^6

w e Z \H(T)=W /

= ^ n^fe)^"9.
w e Z

Let N e Z be such that n(i) ^ N for all T for which d^ */^ 0 for
some /eY. Suppose first that N ^ 0 . Then f^e19) is an analytic
trigonometric polynomial for each / in Y. Hence, by a result from one
variable KP theory due to Hardy and Littlewood (cf. [3], theorem 6.4; cf.
also [2], p. 68, for a short proof) for each p > 0 and each m e Z there exists
a constant C = C(p,w) such that

IIWWI^C F \f(eWdQ/2n.
J -n

Integration over K yields the lemma when N ^ 0.
If N < 0 then for each / e Y, /^le) = e^. F(^9) where F is again an

analytic trigonometric polynomial on T. Apply the one variable result
mentioned above to F and note that |F[ = 1/^1 on T. D
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We now return to the proof of theorem 3.2. To prove (3Aa) suppose
that /„ e Y, / e T(K) such that /„ -^ / in l/(K) as n -> oo . By lemma 3.3
applied to Y' = span{Y,/}, T1^(L) -> nj/) in L^K) for all m e Z. Since
Y is invariant under left translation, n^(/J belongs to
Y n ®{T\(K): n(x)=m}. The latter is a finite dimensional subspace of
T(K) by condition 3.2(i). Since all vector space topologies on a finite
dimensional vector space are complete, II^(/)eY for all m e Z , which
implies that / e Y .

For (3.1fc) it is sufficient to show that for each CT G A and each k e K the
linear functional

(3.2) / - do0c.*/)(fe)

is L^ continuous on Y. Take a cr in A. Clearly, the linear functional (3.2) is
equal to the composition of the projection n^ with the restriction of (3.2)
to ©fI\(K):TeA, n(T)=n(a)}. Since this subspace is finite dimensional,
the L^ continuity of (3.2) follows from the L^ continuity of n^. This
proves the theorem. D

3.4. Remark. — Recall that a subset Z of K is called a A(l) set
(Rudin [10]) if there exists a p < 1 and a constant C such that for all / in
® { T , ( K ) : T G £ } ,

ll/lli ^C||/||,,

i.e. if the L1 and L^ topologies coincide on span {T^(K): T e £}.

We can replace condition (i) of 3.2 by the following weaker condition :

(i)' For each m e Z the set { T e A : n ( T ) = m } is a A(l) subset o f K .

The proof remains essentially the same: instead of the finite
dimensionality of the subspaces ® {T^(K): T e A, n(T)=m} we now use the
equivalence, for some p < 1, of the L1 and L^ topologies on these
subspaces, and the L1 continuity of the linear functionals (3.2) (for all
a e K).

Similarly, we may also replace condition (ii) by

(ii)' The set {n(r): T e A} is a A(l) subset of Z (considered as the dual
ofT).

In this case the analogue of lemma 3.3 becomes trivial.
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Note, by the way, that for arbitrary compact K the conclusion of the F.
and M. Riesz theorem holds for all A(l) subsets of K : this follows
immediately from theorem 2.7 and the definition of a A(l) set.

3.5. Example. - Let K = T x T and identify T with a subgroup of K
via the map ^e-^i9,l), 9 e(- 71,71]. The irreducible unitary
representations of K are the characters %p^: (e19^) -> 6?l(pe+<^) and
^(Xp^) = P. In this case theorem 3.2 contains Bochner's theorem where the
spectrum is required to lie in an angle to the right of opening less than n
(cf. [9], theorem 8.2.5 for the precise formulation).

According to the remarks made in 3.4 it suffices to require in condition
(i) that for each p the set [q e Z : (p,q) e spec [i] is a A(l) set. We refer to
the appendix of [2] for another strengthening of Bochner's theorem which
only requires that for each p these sets are either bounded from above or
from below. This can easily be proved by the method of proof of
theorem 3.2 if we note that W^T) n T(T) consists of analytic polynomials.

3.6. F. and M. Riesz for homogeneous spaces. — Let H be a closed
subgroup of K. Functions and measures on K/H can be identified with
functions and measures on K which are right H-invariant. I f^ie M(K/H) is
a right H- invariant measure on K, then n^ := d^ * ji is again right H-
invariant. Let a be the K-invariant measure on K/H, normalized to 1.
The map TC, : / -» d^ * /(r e K) is an L2 orthogonal projection of
L^K/H.o) == L^o) which is different from zero iff T occurs in the left
regular representation of K on L^a). As in the case of the unit sphere, T^
can be represented by an integral operator with continuous kernel.

Theorem 3.2 can now be formulated for measures on K/H entirely in
terms of n^ and CT :

3.7. THEOREM. — Let A ^ fc be such that all.^eA occur in the left
regular representation ofK on L2^) and suppose A satifies conditions (i) and
(ii) of 3.2. Let neM(K/H) be such that n^ = 0 if T ^ A . Then [i is
absolutely continuous mth respect to a.

If we take K = C/(n), H = U(n - 1) then K/H = S and we get
theorem 1.1 : Z(K) contains the multiplications by e19. If T^ denotes the
restriction of the left regular representation of U(n) on L^o) to H(^),
i.e. UU^O^aj-1;;), feH(p,q), Ue£/(n) , ( ;GS , then ^ is
irreducible, n(ipq) = q — p, the Xpq are pairwise inequivalent and they
represent all irreducible representations of U(n) which occur in L^a) (cf.
for example [7], chapter 12).
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In case H = T theorem 3.7 becomes trivial: n(r) = 0 for all T which
occur in K/T and (i) then implies that A is finite.

3.8. Application to bounded symmetric domains. — Let Q c c" be a
bounded symmetric domain. (Cf. [6], [4] for the relevant facts.) We may
assume that Q is convex and circular (i.e. z e O implies e^.zeQ, for all
9 e R). Let K be the stabilizer of 0 in the component of the identity of the
group of holomorphic automorphisms of 0. The action of K on Q
incorporates multiplication by e^\ in particular, T c Z(K). Let S denote
the Bergman-Shilov boundary of 0. Then K acts transitively on S and we
can apply the principal theorems 3.2, 3.7 to S. As above, let a be the
normalized K-invariant measure on S.

Let H^S) be the closure in L^S.a) = L^a) of the holomorphic
polynomials, restricted to S. Obviously H^S) is K-invariant under the left
regular representation ofK on L^o). Let K^oi be the set of irreducible
representations of K which occur in H^S); for a description of KH i
cf. [12].

We claim that K^oi satisfies conditions (i) and (ii) of 3.2. For let H(p) be
the space of holomorphic polynomials which are homogeneous of degree p,
restricted to S. By a well known theorem of H. Cartan (cf. [7],
theorem 2.1.3) K acts on Q by complex linear transformations. Hence each
H(p) is K-invariant and decomposes as a finite sum of representations in
^Hoi • Obviously, n(r) < 0 ifr is in K^oi and n(r) = - p i f r occurs in H(p).
This proves the claim.

By theorem 3.7 a measure H in M(K/H) for which spec [i c Knoi is
absolutely continuous with respect to a. By a familiar weak-* compactness
argument this implies the following result:

3.9. COROLLARY. - Iff is in the Hardy space H^Q) ofSl then f can be
written as the Poisson integral of a function in L^a). (C/. [6], [14] for the
definitions of Hardy space and Poisson kernel.) D

The analogue of 3.9 for generalized Siegel half-planes is due to
E. M. Stein [13]; 3.9 can be deduced from his result by using the
generalized Cayley transform, cf. [6], p. 189. Corollary 3.9 can also be
proved more directly, by using Bochner's method of slicing and the Hardy-
Littlewood inequality for the radial maximal function from one
dimensional FF theory.
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4. A supplement to theorem 3.2.

4.1. THEOREM. — Let K be a compact Lie group whose center contains
the circle group T and let H be a closed subgroup of K such that K/H is
connected. Suppose f in L1 (K/H,a) is such that spec / satisfies conditions (i)
and (ii) of theorem 3.7. Then either f = 0 or f(^) ^ 0 a.e. [a].

In particular, if ^ e M(K/H) is as in theorem 3.7 and \JL ^ 0 then a « p,
as well as H « a. The case K = T , H = { l } o f this theorem is classical (cf.
for example [3], theorem 2.2) and will be used in the proof of 4.1.

Proof. — Let / in L^K/F^a) satisfy the conditions of the theorem and
suppose that / == 0 on a (Borel) set of nonzero measure. Identify / with a
right H-in variant L1 function on K, also denoted by/.

For almost all k e K the slice function/^19) = f(^k) is in L^T). Set
c^(fe): = /fc(w), the m-th Fourier coefficient of f^. Then c^ e L^K) and a
calculation of d^ * c^ shows that

(4.1) cjfe)= ^ d^^f)(k)
n(x) = w

(note that the sum is finite). The case K = T of 4.1 now shows that for
almost all k in K

(4.2) f,=0 or A(^)^0 a.e.[rf9].

Since / = 0 on a set of nonzero Haar measure there exists an F c K of
strictly positive Haar measure such that for all k in F, f^ = 0 on a subset of
T of nonzero (one-dimensional) Lebesgue measure. By (4.2) f^ = 0 for
almost all k in F and hence, by (4.1)

E ^rOCr * f)W = 0 for all m e Z, a.a. k e ¥ .
n(t)=m

Each T e ^C is an analytic function on K and therefore ^Xr * / ls an

analytic function on the analytic manifold K/H. It is not difficult to prove
that the zero set of a nonzero analytic function on a connected analytic
manifold has Lebesgue measure zero. Hence

I ̂ C.*/=0
n(t) = m

for all m and therefore d^ * / = 0 for all T e &, i.e. / = 0. D
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It is easy to find a counterexample to 4.1 if K/H is not connected. Take
K = T x F and H = {e}, with F a finite non-commutative group. Let T be
an irreducible representation of F and choose a matrix coefficient !„,„ of T
such that T^(^) = 0, T^(x) + 0 for some x e F. Now take/ = (1 ® r)^ :
spec/consists of one point but/ = 0 on the component of the unit element
o f K .

BIBLIOGRAPHY

[I] A. B. ALEKSANDROV, Existence of inner functions in the unit ball, Mat. Sb., 118
(160), N2 (6) (1982), 147-163.

[2] A. B. ALEKSANDROV, Essays on non locally convex Hardy classes. Complex
Analysis and Spectral theory. Seminar, Leningrad 1979/1980, V. P. Havin and
N. K. NikoFskii (ed.), 1-89.

[3] P. L. DUREN, Theory of W Spaces, Acad. Press, New York, 1970.
[4] S. HELGASON, Differential Geometry, Lie Groups and Symmetric Spaces, Acad.

Press, New York, 1978.
[5] Y. KANJIN, A convolution measure algebra on the unit disc, Tohoku Math. J.,

28 (1976), 105-115.
[6] A. KORANYK, Holomorphic and harmonic functions on bounded symmetric

domains, C.I.M.E. summer course on Geometry of Bounded Homogeneous
Domains, Cremonese, Roma, 1968, 125-197.

[7] W. RUDIN, Function Theory in the Unit Ball of C", Springer Verlag, Berlin,
1980.

[8] W. RUDIN, Inner functions in the unit ball ofC',.7. Funct. Anal, 50 (1983), 100-
126.

[9] W. RUDIN, Fourier Analysis on Groups, Interscience, John Wiley, 1960.
[10] W. RUDIN, Trigonometric series with gaps, J. Math. Mech., 9 (1960), 203-228.
[II] J. H. SHAPIRO, Subspaces of L^G) spanned by characters, 0 < p < 1, Israel J .

Math., 29, N0^ (1978), 248-264.
[12] W. SCHMID, Die Randwerte holomorpher Funktionen auf hermitesch

symmetrischen Raumen, Invent. Math., 9 (1969), 61-80.
[13] E. M. STEIN, Note on the boundary values of holomorphic functions, Ann. of

Math., 82 (1965), 351-353.
[14] S. VAGI, Harmonic analysis on Cartan and Siegel domains, M.A.A. Studies in

Math., vol. 13: Studies in Harmonic Analysis, J. Ash (ed.), 257-309.

Manuscrit re<?u Ie 22 avril 1986.

R. G. M. BRUMMELHUIS,
Universiteit van Amsterdam

Mathematisch Instituut
Roetersstraat 15

1018 WB Amsterdam (The Netherlands).


