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LOCAL-TO-GLOBAL EXTENSIONS
OF REPRESENTATIONS

OF FUNDAMENTAL GROUPS
by Nicholas M. KATZ

Introduction.

The classification theory (cf. [Le]) of coherent modules with integrable
connection (C.M.I.C.) in the punctured formal neighborhood of the point
oo of P^, shows that any such C.M.I.C. has a « canonical extension » to
a C.M.I.C. on all of P^-{0,00} which has regular singularities at 0. If we
replace P^ by a projective smooth connected complex curve C of genus
g > O," and fix two distinct points 0, oo of C, it remains true that any
C.M.I.C. on the punctured formal neighborhood of oo in C extends to a
C.M.I.C. on all of C-{0,oo} which has regular singularities at 0.
However, the failure of C to be simply connected makes it seem unnatural
to try to specify a particular such extension.

In this paper, we give the analogous theory of such extensions for the
characteristic p analogues of C.M.I.C. in characteristic zero, namely lisse
etale sheaves, or representations of pro-finite fundamental groups. In this
analogy, a C.M.I.C. on the punctured formal neighborhood of a point oo
in a complex curve Cc corresponds to a representation of the local Galois
group at a rational point oo of a proper smooth geometrically connected
curve CK over a separably closed field K of characteristic p > 0. A
C.M.I.C. on Cc-{0,oo} corresponds in this analogy, to a representation of
the pro-finite fundamental group of CK-{O,OO}. The condition « regular
singularities at 0» corresponds to the condition «tame ramification
at 0» .

An especially interesting aspect of the characteristic p theory is the
possibility of working over a field K which is not separably closed,

Key-words : Monodromy - Swan representation - Lisse sheaf.



70 NICHOLAS M. KATZ

especially a finite field. As one might expect from looking at the complex
situation, where one has a canonical extension in the P^ case, one can
construct a canonical extension in the P^ case over any ground-field of
characteristic p . For curves of higher genus, one can deduce a weak but
useful extension theorem over any groundfield K at the expense of
ignoring finitely many other points, simply by mapping the curve in
question to P^ in a reasonable way (cf. 1.7). However, in order to obtain
the general extension theorem alluded to above on a curve of genus g > 0,
we are forced to work over a separably closed groundfield, «jusqu'a
nouvel ordre ».

The paper is divided into two chapters. The first is devoted to
constructing the canonical extension in the P^ case, where K is any field
of characteristic p > 0 (strictly speaking, the theory we develop is also
valid in characteristic zero, but there it is without interest). We construct
our canonical extension by introducing an a priori notion of « special»
finite etale covering of G^ = PK-{O,O)} , and showing that the category
of such special coverings is equivalent, by the functor « restriction to the
punctured formal neighborhood of oo », to the category of all finite etale
coverings of this punctured neighborhood.

The first three sections of Chapter I develop the formalism of special
coverings. The main result and some immediate corollaries are given in the
fourth section. Section 5 gives the application to « canonical extensions » of
sheaves. In Section 6, we use the canonical extension to give a global
cohomological construction of the Swan representation. The final section
gives an analogous, but less canonical, extension result for curves of higher
genus, still over an arbitrary ground-field.

The second chapter is devoted to proving the extension theorem 2.16 for
curves of any genus over a separably closed ground-field k of characteristic
p > 0. We study this as a problem of «interpolating» to a global
representation a finite number of local representations given at distinct
points on the curve. The main technical result is (2.1.5), which roughly
speaking says that p-groups pose no obstruction to this sort of
interpolation theorem (this is a standard manifestation of the fact that the
p-cohomological dimension of a smooth curve over a separably closed field
of characteristic p is ^ 1, while « obstructions lie in an H2 »). For the
sake of completeness, we also give a rather strong interpolation
theorem 2.1.4., originally proven by Harbater (cf. [Ha], 2.7), for
representations to p-groups, again based on the vanishing of suitable H2^.
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It is a pleasure to acknowledge my overwhelming debt to Ofer Gabber,
without whom this paper could not have been written. The results of the
first chapter emerged in the course of many fruitful discussions with him,
and those of the second chapter (except for (2.1.4)) are due to him alone
(though I of course take full responsibility for any defects in their
presentation).

1.

1.1. Tameness at Zero.

(1.1.1) Let K be a field, T an indeterminate, A^ = Spec(K[T]) the
affine line over K, and G^K = Spec(K[T,T~1]) the multiplicative group
over K. For every integer N > 1, we denote by

[N]: G, K ^ G,,K

the K endomorphism « N » of the group-scheme G^, given by
T ̂  T^.

(1.1.2) Let N ^ 1 be an integer which is invertible in K.

A finite etale G^-scheme

E -^ G'w,K

is called « N-tame at 0» if the pull-back [N^E) of E by [N] extends to
a finite etale covering EN of A^. Notice that the extended covering EN is
necessarily unique if it exists; it is just the normalization of Ag in [N]*(E):

E <———— [N]*E <—, EN

G^-^-G^K ^ A^ .

The property of N-tameness at 0 is geometric in the sense that for any
overfield L of K, E is N-tame at 0 if and only if E (g) L -^ G^ is N-
tame at 0.

To see this, we may replace E by [N]*E and reduce to the case
N = 1. The only if direction is trivial (E ® L extends E ® L).K K
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Conversely, if E ® L extends, it already extends over a finitely generated

sub-extension Lo of K. Let Loo be a maximal separable-over-K subfield
of Lo. Then Lo is a finite purely inseparable extension of Loo, so
A, ->- A. and G^ -^ G^ ̂  are finite radicial, hence by « topological
invariance of the etale site» (SGA 4, VIII, 1.1), the covering already
extends over Loo • But Loo is a direct limit of smooth K-algebras, so
formation of the normalization of A^ in E commutes with the extension
ofscalars K -^ Loo • Denoting this normalization by E, we thus find that
£ g) Loo is finite etale over A^ , whence E is finite etale over A^ by

descent (SGA 1, IX, 4.1), as required.

(1.1.3) A finite etale covering of G^K is called « tame at 0 » if there
exists an integer N ^ 1 invertible in K for which it is N-tame at zero.

The tame-at-0 finite etale coverings of G^K f011^ a 1̂1 Galois
subcategory of the Galois category (cf. SGA 1, Exp. V, §4,5) of all finite
etale coverings of G^- Therefore for any geometric point
(cf. SGA 1, Exp. V,§7)x of G^K, the category of tame-at-0 finite etale
coverings is equivalent (by the functor E i—^ E^) to the category of finite sets
together with a continuous action of a suitable pro-finite quotient group
7ti(G^K,x)(tame at 0) of n^G^x).

(1.1.4) Let K8^ be a separable closure of K. The Galois group
GaHK^/K) operates on G^sep = Spec^^T.T"1]) through its action
on K^ alone; aeGal maps Sa/P to £<j(a,)T, and «7^—^Spec(a - l)
is a left action of GaUK^/K) on G^sep. For any finite etale

E —>• G^sep, and any <r e Gal, we denote by E0 the finite etale covering

of G^sep which is the composite E —> G^sep —————> G^sep.

Then Ei-^E0 defines a left action of Gal (K^/K) on the category of
finite etale coverings of G^sep. If we pick a geometric point
x: Spec (ft) -> G^ K and take for K8^ the separable closure of K in ft,
we have a well-known short exact sequence (SGA 1, IX, 6.1).

(1.1.4.1) 1 ̂  7ii(G,^ep,x) -> n,(G^x) ̂  Gal (K^/K) -> 1,

in which the action modulo inner automorphism of Gal on n^(G^sep,x)
is induced by its action E i—^ E° on the category of finite etale coverings
°f G^K^P-
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(1.1.5) For any element aeGal, a finite etale covering E of G^ep
is tame at 0 (resp. N-tame-at-0 for a given N) if and only if E° is (for
Ey extends [N]*(E°) iff EN extends [NHE)). Therefore the kernel of
the canonical projection

n^(G^sep,x) -^ 7ii(C^Ksep,x)(tame at 0)

is normal in n^(G^x), and (because tameness-at-0 is geometric) this
kernel is equal to the corresponding kernel over K. Thus we obtain a
short exact sequence of tame-at-0 n\s

(1.1.5.1) 1 -> 7Ci(G^Ksep,x)(tame at 0) -> n^G^^x) (tame at 0) ->
GaKK^/K) -> 1.

1.2. Monodromy and Geometric Monodromy.

(1.2.1) Let X be a connected scheme, x a geometric point of X , and
E -» X a finite etale covering of X. The fibre E(x) over x is a finite set
on which n^X,x) acts continuously. The image of 7ii(X,x) in Aut(E(x))
is called the monodromy group of E -^ X at x . If y is a second
geometric point of X, any « chemin » from x to y induces a bijection
E(x) ^ E(y) which carries the monodromy group at x isomorphically
to that at y .

(1.2.2) Let K be a field, and suppose that X is a geometrically
connected K-scheme. For any separably closed over-field L of K, and
any geometric point x of X ® L , the image of 7ti(X®L,x) in

K K

Aut(E(x)) is called the geometric monodromy group at x . It is a
subgroup of the monodromy group at x . As above, this group is, for given
L, independent of the base point x up to an isomorphism which is unique
up to inner automorphism. It is also «independent of L », for if we denote
by K8^ the separable closure of K in L, and by y the image of x in
X 00 K^, the natural map of K\S

7ti(X (x) L,x) -^ 7ii(X ® K^JO
K K

is surjective (for if Z -> X 00 K^ is a connected finite etale covering, then

Z is a connected K^-scheme, so remains connected after any field
extension (EGA IV, 4,5.21)).



74 NICHOLAS M. KATZ

(1.2.3) If E -+ X is a finite etale covering, then there exists a finite
Galois extension K'/K such that the geometric monodromy group of
E ->• X is equal to the monodromy group of E 0 K' -> X ® K/. For

K K

if we denote by G the geometric monodromy group, then there exists a
finite etale connected G-torsor Z -> X ® K^ over which E -> X splits

K

completely. Just descend this G-torsor to a finite etale connected G-torsor
Zo -^ X ® K' over a finite Galois extension K' of K which still splits
E -> X. K

1.3. Special Coverings.

(1.3.1) Let K be a field of characteristic exponent p. We say that a
finite etale covering E -> G^ is « special » if it is tame at zero and if its
geometric monodromy group has a unique p-Sylow subgroup. Notice that
the class of finite groups having a unique p-Sylow subgroup is stable under
formation of subgroups, quotients, and finite products, and that any
extension of a group of order prime—to-p by such a group is again one.
[When p = 1, i.e. when K has characteristic zero, then by the « 1-Sylow
subgroup » of a finite group we mean the subgroup with one element. By
the known structure of the fundamental group of G^ when K has
characteristic zero, every finite etale covering of G^ is « special».]

LEMMA 1.3.2. — Let K be a field and E -» C^ a finite etale
covering. Then the following conditions are equivalent :

1) E -> G^K ls special,
2) there exists an overfield L of K such that E ® L -^ G^ is

special,
3) for every overfield L of K, E ® L -> G^ is special,

4) there exists an integer N ^ 1 prime to p such that the inverse image
[N]*(E) of E by the N'th po\ver map [N]: G^ -> G^ extends to a

finite etale covering EN -^ A^ \vhose geometric monodromy group is a p-
group :

E<————[N]*E (—, EN

GUI K <———————— ^m K (=—> A K •«,K ^ m,K K
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5) for some integer N ^ 1 prime to p , the covering [N]*E -> G^ ;s

specfa/,
6) /or every integer N ^ 1 prfme to p, the covering [N]*E ->• G^ ̂

(fn the notations of 4) above) is special.
7) for every a e K " == G^(K), the inverse image Trans^E o/E by the

automorphism Trans^: G^K ^ C ,̂ K defined by T \—> aT is special:

E <——————Trans.E

Gm,K <——~—————— C ,̂ K
TranSa

8) There exists an integer N > 1 pn'me to ^, and a finite Galois
extension K'/K such that K' contains N distinct N'th rods o/ Mnft}/,
SMC/I that t/ie inverse image [Nj^E ® K') of E -» G^ ̂  ^ ^e composite

c [N] r -^ r^.K' ————*• ^m.K1 "̂  ^K

extends to a finite etale covering EN ® K' -^ A1 whose monodromy groupK K
is a p-group.

Proof. — The equivalence of 1), 2), and 3) is just the invariance of both
the geometric monodromy group and of «tameness at zero » under field
extension. The implication 4) ==> 1) is obvious, and 1) => 4) holds because
over an algebraically closed field L, for any integer N ^ 1 prime to p,
the unique open normal subgroup of 7ii(G^L,x) of index N is the one
corresponding to the N'th power covering [N] of G^ by itself. The
equivalence 4) <=> 8) follows from (1.2.3). The implications 1) => 6) ==> 5)
are obvious, and 5) => 4) by applying the implication 1) => 4) to the
covering [N]*E.

The implication 7) => 1) is trivial (take a = 1). To prove 1) ==> 7),
we may suppose K algebraically closed, and that E satisfies 4) for some
integer N ^ 1 prime to p . Given a e K " , chodse b e K " with b^ = a.
ThenTrans^(E) satisfies 4) with the same N (the extension is provided by
the inverse image of EN by the automorphism T \—> bT of A1).

Q.E.D.

(1.3.3) The special coverings of C^ (orm a ^U Galois sub-category of
the Galois category of all finite etale tame-at-zero coverings of G^.
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Therefore, for any geometric point x of G^, the category of special
coverings is equivalent (by the functor E ^ E^) to the category of finite
sets together with a continuous action of a suitable quotient pro-finite
group 7ti(G^K^) (special) of 7Ci(G^K^)(tame at 0), itself a quotient of
^l(G^K^)-

The quotient n^(G^sep,x) (special) of n^(G^sep,x)(t8ime at 0) is
defined by purely group theoretic conditions (it is the maximal pro- « group
with unique p-Sylow subgroup » quotient). Therefore the kernel of the
projection

7ti(G^Ksep,x)(tameatO) -^ ^(G^sep^) (special)

is invariant by any continuous automorphism of ^(G^^P^)- In
particular, it is normal in 7ii(G^K,;c)(tame at 0), and (because specialness
is geometric) this kernel is equal to the corresponding kernel over K.
Therefore we obtain from the short exact sequence of tame-at-0 n\s a
short exact sequence of special n\s

(1.3.3.1) 1 -> ^(G^Ksep^) (special) -> Ki(G^,x) (special) -^
GaKK^/K) -. 1.

1.4. The Main Theorem.

For any field K, we denote by K((T~1)) the field of finite-tailed
Laurent series over K in the variable T~ 1 , i.e., K((T~1)) is the fraction
field of K[[T-1]]. We will always view K[T,T-1] as the sub-ring of
K((T~1)) consisting of the Laurent polynomials in T~ 1 . Geometrically,
the corresponding morphism

Spec(K((T-1))) ^ G,,K = Spec(K[T,T-1])

is the inclusion into G^ °f ̂  punctured formal neighborhood of oo
inPL

MAIN THEOREM 1.4.1. - Let K be afield. Then the inverse image
functor

/special finite etale coverings^ /finite etale coverings\
[ofG^ = Spec(K[T,T-1]) ) ^ [of Spec (K((T-1))) ;

is an equivalence of categories.
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Proof. — Let us fix an integer N ^ 1 which is invertible in K, and a
finite Galois extension K'/K such that K' contains N distinct N'th
roots of unity. Let us denote by

eS/(N,K/): the full subcategory of all finite etale coverings of G^^
whose inverse image under the composite

[N]
Gm',K' ——> G^K' "̂  ^m,K extends to a finite etale covering
of A^, whose monodromy group is a p-group.

^(N,K/) : the full subcategory of all finite etale coverings of
Spec(K((T~'1))) whose inverse image under the composite
map

FN1Spec^ftT-^^SpecOK^T-1))) ^ Spec(K((T-1)))
has monodromy group a p-group.

The inverse image functor induces a functor

j^(N,K') -> ^(N,K')

for each pair (N,K') as above. By 1) o 8) of 1.3.2, the category of special
coverings of G^ is the direct limit of the categories J^(N,K'). By the
theory of local fields, the category of finite etale coverings of
Spec(K((T~1))) is the direct limit of the categories ^(N,K').

Thus we are reduced to showing that for each (N,K') as above, the
induced functor is an equivalence. For fixed (N,K'), the semi-direct
product

G = IMK') ix Gal(KVK)

operates on both G^ = Spec (K'[T,T~1]) and on Spec (K'((T~1))), by
the rule g \-^ Spec(g~1), where g = ($,a) operates on the coordinate
rings by

(i;,a): £a,T-1 ^ Za^-T-1.

It also operates on A^- = Spec(K[T]), by g -> Spec(^~1), g = ((3,0)
acting by

K,a): 5^T ^ EaWT.

By elementary descent theory, and the uniqueness of the extension
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to A1, the two functors

j^(N,K') -> /finite etale coverings E of G^K' which extend to
finite etale coverings of A^, and have monodromy
group a p-group, together with an action of G on

.E covering its action on G^'.

/finite etale coverings fi of A^' with monodromy
( group a p-group, together with an action of G on
\ ,E coverings its action on Aj^

defined by

E i-̂  [N]*(E®K') with its canonical G-actionK I
the unique extension to A^ of this data

are equivalences of categories.

Similarly, elementary descent theory shows that the functor

^(N,K') -> /finite etale coverings E of Spec(K'((T~1))) whoseN

( monodromy group is a p-group, with an action of G
\ on E covering its action on Spec(K'((T~1))) ^

E i-̂  [N]*(E®K') with its canonical G-action
K

is an equivalence of categories.

Now consider the inverse image functor

finite etale coverings of\ /finite etale coverings of
AK, = Spec(K'[T]) with \ -^ ( Spec(K\(T~1))) with
monodromy group a p- f \ monodromy group a p-

^ group / \ group.

This functor is visibly compatible with the action of the group G on both
source and target. So if it is an equivalence, it automatically induces an
equivalence between the « G-equi variant objects » of its source and target.
Thus we are reduced to the case (N,K/) = (1,K), over the field K'. If the
characteristic exponent p = 1, there is nothing to prove. It remains to
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treat the case when p is a prime number, in which case the result holds in
greater generality.

PROPOSITION 1.4.2. — Let p be a prime number, R an ¥p-algebra
mth connected spectrum. Then the rings R[T] and R((T~1)) have connected
spectra, and the universe image functor

/ finite etale coverings of\ /finite etale coverings of
[ AR = Spec(R[T]) mth ) -^ | Spec(R((T-1))) mth mono-
\ monodromy group a p-group ) \ dromy group a p-group

is an equivalence of categories.

Proof. — For the connectedness, one checks directly that for any ring
R, the inclusions R c-̂  R[T] c_^ R((T~1)) induce bijections on
idempotents. Let x be a geometric point of Spec(R((T~1))), y its image
in AR. We must show that the dual map of fundamental groups

^(SpecCRaT-1)))^) -. TT,(A,J)

induces an isomorphism of maximal pro-p quotients. Let us temporarily
admit the truth of the following well-known lemma.

LEMMA 1.4.3. — For any connected affine ¥p-scheme Z, with
geometric point z, one has

W(Z^¥,) ^— W(7Ci(Z,z),F^) for all q ̂  0

W(Z^,F^)=0 for q ^ l

so in particular one has

H^Z.z^F^O.

(1.4.4) From the vanishing of H^Tt^Z.z)^), it follows (cf. 2.3.8.1)
that the maximal pro-p quotient of 7ii(Z,z) is a free pro-p group. Thus
both of the maximal pro-p quotients in question are free pro-p groups. But
a homomorphism between free pro-p groups is an isomorphism if and only
if it induces an isomorphism on the groups H^—.Fp) of continuous
character to Fp (cf. (2.3.7)). Because the continuous characters to Fp of
the maximal pro-p quotient of 7ti(Z,z) are just the same as the continuous
Fp-valued characters of 7ii(Z,z) itself, the interpretation of H^Z^.Fp) as
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the group of these characters reduces us to showing that the map

^((A^F,) ^ H^SpecCRaT-1)))^)

is an isomorphism.

(1.4.5) For any Fp-algebra B, we denote by F : B-> B the absolute
Frobenius endomorphism F(fc) = fr^, and by ^ = 1 — F the additive
mapping ^(b) = b — W of B to itself. The Artin-Schreier short exact
sequence of Fp-sheaves on Zg(, Z = Spec(A) any affine Fp-scheme,

0 -̂  ¥p -^ G, -^- G, -. 0

yields a long exact cohomology sequence in which (cf. SGA4, IX 3.5 and
VII 4.3)

H-(Z,,G.)^-H^,^)=^ ;; ;:;°̂

whence we obtain

H°(Z,,,F,) ——— Ker(^:A-^A)

H^Z^^Fp) —2—^ A/^A, the « Artin-Schreier quotient» of A

W(Z^)=0 for q ^ 2 .

Thus we are reduced to observing that the inclusion of rings

R[T] c-̂  R((T-1)) = R[T] ® T^R^T-1]]

induces a bijection on Artin-Schreier quotients. But this is clear,
because the © decomposition written above is F-stable and F is
T^-topologically nilpotent on T^ROT"1]]. Therefore ^ = 1 - F
respects the © decomposition and is bijective on T^R^T"1]].

(1.4.6) It remains to prove Lemma 1.4.3. Thus let Z be an affine
connected Fp-scheme, z a geometric point of Z. We have already seen in
1.4.5 above that Artin-Schreier theory yields

W(Z^)=0 for q ^ 2 .

Now let Z' -> Z be a finite etale connected Galois covering of Z,
corresponding to an open normal subgroup of 7ti(Z,z). Then Z' is still
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affine, so we have

W(Z^¥,)=0 for q ^ 2 .

The interpretation of H^Z^Fp) as the continuous horns to Fp of the
open normal subgroup of 7ti(Z,z) corresponding to Z' shows that

lim H1(Z^¥,)=0,
—+

the direct limit taken over all open normal subgroup of 7ii(Z,z). For each
Z' -» Z as above, with covering group G, the Hochschild-Serre spectral
sequence with Fp coefficients

E°/ = H^G.H^F,)) => H^Z^)
has

E^° = H°(G,Fp) (because T is connected)
E^1 = H^G.H^Z^^F,))
E^ = 0 if b + 0,1.

Passing to the direct limit of these spectral sequences over all open
normal subgroups of 7ii(Z,z), we obtain a spectral sequence

E a,b _. tia+bc-y T? \2 => H {^t^p)

in which E^ = 0 for ft + 0, and in which

E^° = limH^OF^) dLn H^TI^Z^F,). Q.E.D.
—^

COROLLARY 1.4.7. — Lei K be a field, Q an algebraically closed
overfield of K((T~1)) viewed as a geometric point x of Spec (K((T~1))),
K^T"1))^ the separable closure of K((T~1)) inside Q, and y the image
of x in C^ K • The induced map of n^ ' s

GaHKftT-WKftT-1)))
= n, (Spec (KOT-1)))^) ^ 7ii(G,,K^)(^cfaO

is an isomorphism. D

(1.4.8) Let K^ denote the separable closure of K inside 0. Then
K^ ® K((T-1)) is the union of all the subfields K'((T-1)) with K'/K a
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finite Galois sub-extension of K^/K. Thus it is the fraction field of a
henselien discrete valuation ring, hence has the same Galois theory as its
completion K^^T"1)). This remark allows us to choose a geometric
point ;q of Spec^^T"1))) lying over x, and then to interpret the
short exact sequence of n ^ ' s

1 ^ TC^Spec^^OKttT-1)))^)^
K

Tii (Spec (KttT-1)))^) -^ GaUK^/K) -. 1

as an exact sequence

(1.4.8.1) 1 -. ^(Spec^aT-1))),^) - ^(Spec^T-1))),^
GaHK^/K) -> 1.

COROLLARY 1.4.9. — The isomorphisms of the preceding corollary for K
and K^ sit is a commutative diagram

1 -. ^(Spec^aT-1))),^) -. Tii (Spec (KrtT-1)))^) -. Gal (K^/K) -. 1

K [\ I
1 -* ^i(G^p,}0(special) -. 71, (G,,K^) (special) ^ Gal (K^/K) -^ 1.

COROLLARY 1.4.10 (Retraction Theorem). —

1. The composite homorphism

n^(.G^sep,y\)(tameatO) -^ ^(G^^PJ ̂ (special)
-^

^ ^ U inverse of the
"̂  )[c'fl/2. isom.

"^ Tii (Spec (K^aT-1))^,)

15 ̂  unique continuous retraction of the canonical homomorphism

n, (Spec (K^T- ̂ xi) ^ TCi (G^sepJi) (^m^ at 0).

2. 77î  composite homomorphism

^i(Gm,K.y)(tame at 0) -^ 7Ci(G^KJ)(5p^flO

^ (, inverse of the
^ ̂  ) [ can. ('sow.

^ •^>» w ^c^^n^rr-^^Tt^Spec^Cr-1)))^)
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i5 the unique continuous retraction of the canonical homomorphism

n, (Spec (K((T-1)))^) ^ n,(G^y)(tame at 0)

w/nc/i maps 7Ci(G^Ksepji)(tam(? at 0) (o n^ (Spec^^Cr"1))),^) (frs
restriction to this group is necessarily the retraction in 1. above).

Proof. - The profinite group n^ (Spe^K^Cr"1))),;^) has a unique
p-Sylow subgroup.

Q.E.D.
COROLLARY 1.4.11. — The canonical homomorphism

K, (Spec (K^T-1)))^) ^ n,(G^y)

is injective, and admits a continuous retraction.

Proof. — Just compose with the projection onto n^(G^,y)(speci^l).
Q.E.D.

COROLLARY 1.4.12 (Local monodromy at zero of special
coverings). — Let K be a separably closed field, x a geometric point of
Spec(K((T))), y its image in G^, E -^ G^ a special covering,

P: 7ii(G,,KJ) ̂  G c Aut (E(y))

its monodromy representation, G(p) the p-Sylo\v subgroup of G, and
H = p(7ii(Spec(K((T))),x)) <= G the image of the inertia group at zero.
Then H 15 a cyclic group of order # G/# G(p) (and consequently
G = G(p) ix H).

Proof. — By tameness at zero, H is a cyclic group of order prime to
p, so it is isomorphic to its image in G/G(p). Thus we may suppose G
has order N prime to. p. But the unique such quotient of K^(G^,x) is
|AN(K), corresponding to the covering [N]: G^ -^ G^, and for this
covering the assertion is obvious.

Q.E.D.

1.5. Canonical Extension of Lisse Sheaves.

(1.5.1) Let K be a field of characteristic p exponent, ^ a lisse etale
sheaf of finite sets (resp. of finite groups, resp...) on G^. We say that 9^
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is special if the finite etale covering of G^ which represents ^ is special.
Thus y is special if and only if it is tame at zero and its geometric
monodromy group has a unique p-sylow subgroup.

(1.5.2) More usefully, if we pick a geometric point x of G^, then ^
is special if and only if its monodromy homomorphism

< P : ^i(G,,K,x) -> Aut(^(x))

factors through the quotient TCi(G^,x) (special) of ^i(G^,x).

LEMMA 1.5.3. — Let K be a field and A a finite ring. The category of
lisse etale sheaves of left (resp. right) A-modules on G^ which are special is
a full Abelian subcategory of the category of all lisse etale sheaves of left
(resp. right) A-modules on G^. If A is commutative, it is stable under ®
and indeed under all « operations of linear algebra ».

Proof. — In terms of a geometric point x bf G^, we are considering
the full subcategory of all representation of K^(G^,x) on finite left
(resp. right) A-modules which factor through a particular quotient
7Ci(G^,K, ̂ (special).

Q.E.D.

LEMMA 1.5.4. — Let K be afield, ^ a lisse sheaf of finite Abelian
groups on G^, N ^ 1 an integer prime to p, and [N]: G^ -> G^ the
N-th power map T h-^ T1^. Then the following conditions are equivalent:

1) y is special.
2) [N]*^ is special.
3) [N]^ is special.

Proof. — The equivalence 1) o 2) is the already proven (1) <^ 5) o 6
of 1.3.2). To prove 1) <=> 3), we may suppose K algebraically closed. By
l)o2) applied to [N]^, we are reduced to showing that ^ is special if
and only if [N]*[N]^<^ is special. But we have a canonical direct sum
decomposition

[N]*[N]^ ^ ® Transf(^),
^ 6 H^W

so the result follows from the equivalence 1)<=>7) of 1.3.2.
Q.E.D.
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(1.5.5) Let A be a profinite adic commutative ring, e.g., a complete
noetherian local ring with finite residue field. We say that a lisse « sheaf »
y of finitely generated A-modules on G^ is special if for every finite
quotient ring Ao of A by an open ideal, the lisse sheaf ^F ® AQ of Ao-
modules is special.

THEOREM 1.5.6. — Let K be afield, A a pro-finite adic commutative
ring. Then the inverse image functor

(special lisse sheaves of fin.\ (lisse sheaves of fin. gen. A-\
\gen. A-modules on G^ j ~^ \ modules on Spec (K((T~1))) )

is an exact A-linear equivalence of categories compatible with
1) all constructions of linear algebra,
2) change of pro-finite adic ring A -> A,
3) extension of ground-field K <—^ L,
4) [N]* and [N]^, for any integer N ^ 1 prime to p,
5) inverse and direct image by translations T \-> aT by

aeK^GJK).

Proof. — If A is finite this follows immediately from its set-theoretic
analogue (1.4.1) and the previous lemmas 1.5.3-4. The case of a general A
follows from the case of finite A's by passage to the inverse limit, over the
discrete finite quotient rings of A.

Q.E.D.

COROLLARY 1.5.7. — « The » quasi-inverse equivalence of categories

-lisse sheaves of fin. gen.\ ( « special» lisse sheaves of\
A - m o d u l e s on \ -^ [ fin. gen. A-modules on G^ 9

,Spec(K((T-1))) / V ° W 'K/

denoted
y ^ y^^

is an exact A-linear functor, called « canonical extension » whose formation is
compatible with

1) all constructions of linear algebra,
2) change of pro-finite adic ring A -> A,
3) extension of ground-field K -^ L,
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4) [N]* and [N]^, /or an^ integer N ^ 1 prfw^ ro p,

5) inverse and direct images by translations Ti-^oT by
aeK^G^K).

In terms of a geometric point x of Spec(K((T~1))) with image y in
G^K» t^ monodromy representation of ^'can at y is obtained from that of
3F at x by composition with the inverse of the canonical isomorphism

n (SpecCKaT-1)))^) ^ n (G ^(special). D
1 ' 1 W,!̂ .

COROLLARY 1.5.8. — Let R be an integral domain which is finitely
generated as a Z-algebra, and M a set of maximal ideals of R. For
m e M, denote by &„ the m-adic completion of R. Suppose we are given a
family {^m}meM oflisse sheaves of free finitely generated ^-modules ^
on Spec (K((T~1))), which is compatible in the sense that

for any geometric point x of Spec (K((T~1))), any element
y e ^ i (Spec^K^T"1)),^), and any w e M , the «rever-
sed » characteristic polynomial

det(l-TY|(^J,)Gfe,[T]

actually lies in R[T), and in R[T] is independent of m € M.

Then their canonical extensions {^^meM on G^K are compatible in
the sense that

for any geometric point y of G^, any element
y e Tti (G^ K,}Q , and any m e M, the « reversed »
characteristic polynomial

deta-TYlW^efe^T]

actually lies in R[T], and in R[T] is independent of m e M.

Proof. — To prove compatibility as above, it suffices to check for a
single choice of geometric point (as one sees in joining any two by a
«chemin »...). So we may fix a geometric point x of Spec(K((T~1))),
and take for y its image in G^. But in this case the monodromy
representations pS?" of the y^ are obtained from the monodromy
representations p^ of the ^\ by composing with the inverse of the
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canonical isomorphism

^(Spec^T-1))),^) ^ ^(G,,KJ)(special),

so the assertion is obvious. Q.E.D.

1.6. Cohomological Construction of the Swan Representation
(compare [Lau], 3.6, [Se-1], VI § 4).

(1.6.1) Let K be a separably closed field of characteristic p > 0,
J ' ' ' ' ^m K -)> AK ^le inclusion, <f a prime number ^ ^ p , and A a finite
commutative local ring of residue characteristic < f . The functor

^lisse sheaves of finitely'
generated A-modules on

/ finitely generated A- ̂
\ modules )

^mjC

defined by

3F ^ H^AU^)

is exact (the H° vanishes trivially and the H2 vanishes because the
cohomological dimension of a smooth affine curve over a separably closed
field is ^1).

(1.6.2) Composing the above functor with the functor «canonical
extension » of (1.5.7) we obtain an exact functor

/lisse sheave of finitely gene-\ /g^ely generated A-\
rated A-modules on ^ I modules /

\Spec(K((T-1))) /

defined by
3F ^ H^AKJ.^"")).

(1.6.3) Fix a geometric point x of Spec(K((T~1))), and denote by
I oo («inertia group at oo ») the group n^ (Spec^^T"1)),^). In terms of
I oo, the above functor may be viewed as an exact functor

/continuous representations^ ^^ generated A-\
of I, on finitely generated 1 -. I joules ) '
\ A-modules / ' '
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(1.6.4) If we further fix a finite quotient G of 1̂  and restrict this last
functor to the full sub-category of representations of 1^ which factor
through G, we obtain an exact functor T

/finitely presented feft\ /finitely presented^
\A[G]-modules / Y A-modules /

(Recall that A is finite, so « finitely presented » is equivalent to « finitely
generated »).

(1.6.5) We now apply to this last exact functor the following general
lemma, whose proof is left to the reader. In it, R = A and S = A[G]
(cf. [Ka], II).

LEMMA 1.6.6. — Let R and S be not-necessarily-commutative rings
(associative, with unit), and

( finitely presented\ , , / , „ , , .T : , - ,, , , } -> (left R-modules)
\ leftS-modules )

an additive covariant right-exact functor. Then S acts left-S-linearly on itself
by right multiplication, so by functoriality T(S) is an (R,S)-bimodule.

We have a canonical isomorphism of functors

T(S)®M ^ T(M).
s

The functor T is exact if and only if T(S) is flat as a right S-module. If
T(S) is finitely presented as a right S-module, then T is exact if and only if
T(S) (5 a projective right S-module of finite presentation.

(1.6.7) We now apply this lemma to our situation 1.6.4. Let us denote
Rego;A the regular representation A[G] of G, viewed as a lisse sheaf of
finiteiy generated A-modules on Spec(K((T~1))). Then with S = A[G],
we have

1) T(A[G]) = H1 (A^J^Reg^D)

is a projective right A[G]-module of finite presentation.

2) For any left A[G]-module M of finite presentation viewed as a lisse
sheaf of finitely generated A-modules 3F on Spec (K((T~1))), we have a
canonical isomorphism of A-modules

H^A^MRegG^r")) ® M ^ H^J^"").
A[G]



LOCAL-TO-GLOBAL EXTENSIONS 89

Because for each A our functor T is exact, its formation commutes with
arbitrary extensions of scalars A -> A' of finite commutative local rings
with residue characteristic ^. In particular, if n » 0, then A is a Z/^"Z-
algebra, so we have a canonical isomorphism of right A[G]-modules

T(Z/^Z)[G]) ® A ^ T(A[G]).
z<c

Passing to the inverse limit over n , we see that

a) T(Z,[G]) dLn lim T((Z/^Z)[G])
n

is a projective right Z^[G]-module of finite presentation.

b) For A any complete noetherian local ring with residue
characteristic < f , and M any finitely generated left A[G]-module,
corresponding to a lisse « sheaf » ^ of finitely generated A-modules on
Spec(K((T~1))), we have a canonical isomorphism of A-modules

H^AK.MRegc^r1)) ® M ^ H^J.^).
'L^[(J\

THEOREM 1.6.8. - The cohomology group H^A^J.^RegG;^")) is a
projective right Z^[G]-module of finite presentation, \vhich is isomorphic to
the S\van representation Swo (cf. [Se-2], 19.1 and 19.2).

Proof. — We have already seen that this cohomology group is
projective and finitely presented as a right Z^[G]-module. It remains to
show that as Q^[G]-module, it has the correct character. This amounts to
checking that for any Q^-irreducible representation M of G, with
corresponding sheaf ^ on Spec (K((T~1))), we have

dimQ^H^J,^")) = swan, (^),

where « swan, (^)» denotes the swan conductor (= «fc(M)» in the
notations of [Se-2], 19.3). In view of the vanishing of the other FT, this is
equivalent to the formula

^(A1,;!^") = -swan.(^).

•But ^A1,^"") = WA1,^"") = WC,,̂ "), so we need

Xcon^K,^11) = -swan,(^).
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But as y^ is lisse on G^, tame at zero, and has finite monodromy
(some quotient of G), this last formula is « WeiFs formula», cf ([Se-
ll, VI §4) and ([Ra],I,4).

Q.E.D.

1.7. Curves of Higher Genus.

(1.7.1) Let K be a field, C/K a proper smooth geometrically
connected curve, and PeC(K) a K-rational point. Let us denote

F = K(C), the function field of C,
Fp = the completion of F at the discrete valuation defined by P.

For any Zariski open neighborhood U of P in C,

P € U c C,

we have a natural «inclusion » morphism

Specie,?) -> U,

which over U — {P} induces

Spec(Fp) ^ U - { P } .

So for x a geometric point of Spec (Fp), with image y in U - {P},
and image z in Spec (K), we have induced homomorphisms sitting in a
commutative triangle

^ (Spec (Fp),x) -̂  TI,(U-{P}JO

7Ti(Spec(K),z)

THEOREM 1.7.2. - Given C/K and PeC(K); there exists a Zariski
open neighborhood V of P in C such that for any geometric point x of
Spec (Fp), mth image y e U — {P} , the homomorphism

7ti(Spec(Fp),x) ^ n,(V-{P},y)

is injective and admits a continuous retraction compatible mth the canonical
projections of these groups onto n^ (Spec(K),z).
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Proof. - Choose any function T e F which has a simple pole at P,
and take U = C-{the other zeroes and poles of /}. Then viewed as a
morphism T : C -> P1 , T is etale at P and induces an isomorphism
K((T~1)) ̂  Fp of completions, so we have a commutative diagram

Spec (Fp) ————————. U - {P}

Spec (K((T-1))) —————. G,,K .
Denoting by x^ and ^ the images of x in Spec (K((T~1))) and in G^
respectively, this gives rise to a commutative diagram of homomorphisms,
the bottom horizontal one of which admits a continuous retraction,
say (R)

n, (Spec(Fp),x) ————————. n,(\J-{P},y)

W\\ .̂ .-^-.̂ ^ |(B)

K, (Spec^T"1))),^) ————> 7ii(G^Ji)
Then (A^^R^B) provide the required retraction. Q.E.D.

Remarks. — 1) If U «works», so does any smaller open
neighborhood of P.

2) If C has genus zero, the fact that PeC(K) shows that C ^ P^,
with P <-^ oo. Then (1.4.10) we may take U = P^ - {0}. However we
cannot take U = P^ itself.

To fix ideas, suppose that K is separably closed. Then the prime-to-p
completion of ^(P^— {oo},}?) is trivial, while the prime-to-p completion of
Tti (Spec^Cr"1))),^) is fl z^1)- so there exlsi no surjective

(^P
homomorphisms from n^P^-{ao},y) onto n^ (Spec^^T"1))),^), so
certainly no retractions.

3) If C has genus g ^ 1, then we may always take U such that
U = C — D for a divisor D of degree ^ 4g + 1 which is disjoint from
P (by R.R., for n ^ 2g - 1 we have <f(nP) = n + 1 - g , so for
n ̂  2g there exist functions /„€ L(nP)-L((n-l)P); then T =/2^+i//2^
has by construction a simple pole at P, and at most 4 ^ + 1 other zeroes
and poles). If C(K) contains a second rational point Q ^ P, we may
take U = C — Q — D with a divisor D of degree ^ 2g, by taking
T(=L(P+(2^-1)Q)-L((2^-1)Q) a difference which is again non-
empty by R.R.
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2.

2.1. Statement of the results.

(2.1.1) Let k be a separably closed field of characteristic p > 0, C/k
a proper smooth geometrically connected curve, and

S = {5i , . . . ,5 j C: C

a finite non-empty set of closed points of C. We denote by (^ the
C,5,

henselization of the local ring O^s by K^ the fraction field of (9^ , and
" s! 0,we define

C^Spec^).c,̂

When no confusion can arise, we denote also by 5; the closed point of C^*.
Because ^ is a discrete valuation ring, we have

C^-s—Spec^).

We have a natural «inclusion » morphism of C^ — 5, into C — S. Fix^
geometric points x of C'— S and x, of each Spec^), and«chemins»

si

in C — S from the image of each x, to x. Then for each i we have an
induced continuous homomorphism of pro-finite groups

^: K,(C^-S^) -. 7ii(C-S,x).

(2.1.2) Let G a finite discrete group, H c= G a subgroup, and for
i = 1, .. . , n ,

p,: 7ii(C^-s,,x,) ^ G

a continuous group homomorphism. We say that the condition

Interp(G,H,pi,...,p^)

holds (with respect to our fixed choices of geometric points and chemins) if
there exist a continuous group homomorphism

p: 7ii(C-S,x) -> G
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and
elements h^, . . . ,/!„ e H

such that for all f = 1, . . . , n, the diagram

n^C'-s^Xi) -^ n,(C-S,x)

/i,pA

commutes, where ^•p^"1 denotes the homomorphism Yfi-^^p^Yi)^"1 '
We say that

(p;hi,...,^)

is a solution to the interpolation problem (G,H;pi, . . . ,?„).

(2.1.3) Notice that the group H acts on the set of solutions, by having
f t e H act as

(p;/i,,...A) ^ (^-1;^,...,^).

In particular, if there exists a solution, then there exists another with
A! = e, i.e., with p.^ = pi .

THEOREM 2.1.4 (Harbater). —

If G is a p-group, then Interp (G,{^};pi, . . . ,?„) ^loMs, anrf the number
of solutions is (#(G))\ vv^r^ h is the « p-rank » of C, f.^. h is the ¥p-
dimension of H^C^.Fp).

THEOREM 2.1.5. — Suppose \ve are given data (G,H;pi, . . . ,?„), in
which H is both a normal subgroup of G, and is a p-group. Denote by
n: G -» G/N the projection onto the quotient, so that we have an exact
sequence of groups

1 -> H -> G -^ G/H -> 1.

Then we have the equivalence

Interp (G,H;pi, ...,?„) <^ Interp (G/H,{^};7tpi,.. .,7cp^).
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THEOREM 2.1.6. -

Suppose that # S = 2, an^ denote by n^(C—S,x) (tame at s^) the
quotient of n^(G—S,x) classifying finite etale coverings which are tame at
52. Then the natural continuous homomorphism

TC^C^-Si,x) -»- n^(C-S,x)(tameats^)

"\ /
7Ci(C-S,x)

admits a continuous retraction (left inverse).

2.2. Elementary Exact Sequence.

(2.2.1) Let ^ be any etale abelian torsion sheaf on C — S. The Leray
spectral sequence for the inclusion j: C — S -^ C,

E^ = H^CW^) => FP^(C-S,^)

has E^4 = 0 unless pq = 0, because for ^ ^ 1 the sheaves R%^ are
supported at S. By (SGA4 IX 5.7 and X 5.2), R4/^ vanishes for q ^ 2,
E5'0 vanishes for p ^ 3, and H^C-S,.^) = 0 , so we have a four-term
exact sequence of etale cohomology groups

(2.2.1.1) 0 -. H^CJ^) -^ H^C-S,^) +

CH^C^-s,,^) ^ H^CJ^) -^ 0.

(2.2.2) Case I : ^ is killed by a power of p. Then so is 7'̂ , so by
Artin-Schreier theory (SGA 4, X, 5.2) we have H^Cj^) = 0, whence a
short exact sequence

(2.2.2.1) 0 -> H^CJ.^) -^ H^C-S,^) -^ © H1^-^) ^ 0.
i si

For ^ the constant sheaf Fp, we have y^Fp = Fp, and an exact
sequence

(2.2.2.2) 0 -. H^C^) ^ H^C-S^) ^ © H1(C^-5,;F^)=0.
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(2.2.3) Case I I : ^ is a constant sheaf A, with A a finite abelian
group of order prime to p. Then ;^A = A, H^CJ^A) ;2> A ( — l ) , and
each H^C^—Sf^^A^l) , so we have a four term exact sequence

(2.2.3.1) 0 -^ H^A) -^ H^C-S.A)-^

CA(-l) -^A^l) ^ 0.

(2.2.3.2) The individual maps

H^-s.A) A, H^C.A)
^1 ^1

A(-l) A(-l)

are each isomorphisms (for this, it suffices to check that each 8^ is
surjective, but 8^ occurs « alone » in the analogous exact sequence for the
inclusion of C — s^ into C).

2.3. Review of pro-/?-groups (cf. [Sh], Chpt III).

(2.3.1) Let ^ denote the category of pro-p-groups, with maps the
continuous homomorphisms. Given any non-empty indexing set I, a
family G., i e I of objects of ^, and an object H of ^, a family of maps
(pf : G, -> H is said to « tend to zero » if for every finite discrete quotient
H -^H of H, the composite homomorphisms TC o (p^ : G, -> H are
trivial for all but finitely many values of i.

(2.3.2) Given the G^, f e l as above, they have a «restricted
coproduct », i.e. an object G in ^ together with maps o^ : G^ -> G such
that for any object H in ^, and any family of maps q\ : G( -+ H which
tends to zero, there exists a unique map cp : G -^ H such that cp o a,• = (p^
for all f e l . We denote this restricted coproduct G by *(p)(G^gj.

(2.3.3) By the universel mapping property, we have

(2.3.3.1) ^(^(G,),^,^) ^ ©H^G.F,).

(2.3.4) Given a set I, the free pro-p-group on I, denoted Fp(I), is by
definition the restricted coproduct of Zp with itself I times (i.e. G/=Zp
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for all i e I). As a special case of 2.3.3.1 above we see that

(2.3.4.1) H^F^I)^) ^ ©F,,
I'el

in particular we have

(2.3.4.2) # (I) = dim^ (H^F^I),?,)).

(2.3.5) A pro-p group G is said to be a free pro-p group if it is
isomorphic to Fp(I) for some I. One knows that for a pro-p group G,
the following conditions are equivalent (cf. [Sh], Theorem 15 and Cor. 2 of
Prop.23):

(1) G is a free pro-p group,

(2) for every surjective mapH^ -^ H^ of pro-p groups, Hom(G.Hi)
maps onto Hom(G,H2), i.e. any map of G -> H^ lifts to H ^ ,

(3) same as (2) for those H^ -^ F^ with kernel Fp,
(4) H^G.F^O.

(2.3.6) Given a family G^, j e J , of free pro-p groups, say Gj ^ Fp(I^)
for some set 1 .̂, their restricted coproduct is again a free pro-p group,
isomorphic to Fp(I) with I = 1L I.; this is obvious from the universal

;eJ

mapping property.

(2.3.7) If GI and G2 are free pro—p groups, one
knows ([Sh], Prop. 23) that a map (p : Gi -> G^ is an isomorphism
(resp. is surjective) if and only if the induced map

H^G^.F,) ^ H^Gi.F,)

is an isomorphism (resp. is injective).

(2.3.8) If G is any pro-finite group, not necessarily pro-p, we denote
by

G ̂  G(p)

the projection of G onto its maximal pro-p quotient (i.e. for any pro-p
group K, any continuous homomorphism G -^ K factors uniquely
through G -^ G(p)). Using criterion (3) for pro-p freeness, one sees that

(2.3.8.1) H^G.Fp) = 0 => G(p) is a free pro-p group,
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while for any pro-finite G, the universal property of G -^ G(p) shows
that

(2.3.8.2) H^GOW ^ H^F,).

LEMMA 2.3.9. — Let n ^ 1 fc^ an integer, and consider a diagram of
continuous homomorphisms of pro-finite groups

Suppose that

H2(G,¥,)=0 for G = N , , . . . , N ^ F , K ,

and suppose that the sequence

0 ^ H^K,^) -^ H^F,^) ̂ > ® H^N,,?^) ^ 0

f5 exact.

Then

(1) a» rn^ groups ^i(p) for i = 1, . . . , n , r(p) anrf K(p) are free
pro-p groups,

2) ̂  induced map \i(p) :r(p) -> K(p) fs surjective, and admits a
4 section (right inverse) a : K(p) -^ r(p),

(3) ̂  maps ^.(p): N^(p) -^ r(p) for i = 1, . . . , n , anrf rne map
a : K(p) -^ r(p) d^n^ an isomorphism of free pro-p groups

Ni(p)*(p)N2(p)*^ . . . ^)N^(p)*^ K(p) ^ r(p).

Proo/. - (0 f5 2.3.8.1, (2) is 2.3.7 and the fact that K(p) is free pro-p
so by 2.3.5 (1) ==> (2) the section exists, and (3) is via the criterion 2.3.7.

Q.E.D.
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2.4. Proof of Theorem 2.1.4. (cf. [Ha], 2.7).

We will show that lemma 2.3.9 applies to the situation

7ti(C^-Si,^)-~^k

(2.4.1) 7ti(C-S,x)-^Hi(C,x)

Tt^C'-S,,^) ^^,
"n

where \x is the natural map induced by the inclusion of C — S into C.
The required exact sequence is precisely the one noted in 2.2.2.2. above. It
remains only to see that all the groups above have H^G^p) = 0. For all
but 7ti(C,x), we have the n^ of a connected Fp-scheme which is affme,
and for these the vanishing of H2(n^,¥p) has already been established
(1.4.3). The same Hochschild-Serre spectral sequence for the universal
covering of any connected scheme Z with geometric point z, with any
finite abelian continuous 7ti(Z,z)-module A as coefficients, has E^'1 = 0
and Ej'° = H^TC^Z.Z^A), so the exact sequence of terms of low degree
gives an injective map

(2.4.2) Ej'° = H^TC^Z^A) ̂  H^Z^A).

Taking (Z,z) = (C,x) and A = Fp, we get

(2.4.3) H^T^C^F,) ̂  H^F,) = 0,

the final vanishing by Artin-Schreier theory (SGA 4, X, 5.2).

Thus we may apply the lemma. If we choose a section

a: 7ti(C,x)(p) -. n,(C-S,x)(p),

then a and the ^;(p) exhibit n^(C—S,x)(p) as the restricted coproduct of
the groups ^(C^—s^xXp) for i = 1, . . . , n , and of n^(C,x)(p), and

si
this last group n^(C,x)(p) is a free pro-p group on h = dimH^C^Fp)
generators.

Q.E.D.
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2.5. Proof of Theorem 2.1.5.

Recall the setting; we are given a finite group G, a normal subgroup
H c G which is a p-group, n: G -^ G/H is the projection, and we are
given continuous homomorphisms p ^ : ^(C^—s^Xf) -> G.

The implication

Interp (G,H;pi,. . .,?„) => Interp (G/H,{^};7cpi,.. .,7ip^)

is trivial, for if (p ; / i i , . . . ,/!„) solves the first problem then n o p solves the
second. Suppose now that we wish to prove the other implication.

We first reduce to the case when H is abelian. For suppose that
2.1.5 holds universally when H is abelian. Then we may proceed by
induction on # (H), the case # (H) = 1 being obvious. Because H is a
non-trivial p-group which is normal in G, its center Z(H) is both non-
trivial and normal in G. If Z(H) = H, there is by hypothesis nothing to
prove, for H is abelian. If not, both Z(H) and H/Z(H) have order
strictly lower than H.

We will apply the induction hypothesis in two steps. Denote by
KQ : G -> G/Z(H) the projection. The induction hypothesis applied to the
data (G/Z(H),H/Z(H);7topi,...,7ioPn), shows that

Interp (G/Z(H),H/Z(H);7Copi,. . . ,7CoPn)

holds. By definition, then, there exist elements ^eH/Z(H) for
i = 1, . . . , n such that

Interp (G/Z(H),{^;?i,(7ioPi)?ir1,.. ..^oPn)^-1)

holds. Pick elements h^ e H with

TCo(^) = Tli,

then

Interp (G/Z(H),{^};7io o (h^h^),.. .,7io o (^pA~1))

holds. Applying once again the induction hypothesis, this time to the
situation

(G^H);^?^-1,...,^^1),
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we see that
Interp (G,Z(H);^p^-1,... ApA"1)

holds. By definition, there exist elements Z i , . . . , z ^ in Z(H) such that

Interp (G^z^pi/ii"1^1,... .z^pA"1^"1)

holds. As each z^- lies in H, this implies that

Interp (G,H;p !,...,?„)
holds, as required.

Suppose now that Z(H) = H, i.e., that H is abelian. Our situation is
summarized by the following commutative diagram :

1 -. H -> G G/H -> 1

Pi

K,(C^-S^X)—^K,(C-S,X)

The obstruction to lifting p to a continuous homomorphism
p : 7ii(C—S,jc) -> G with p = jcp is the cohomology class in
H^Tt^C—S.x^H) of the pull-back by p of the extension
1 -> H -> G -> G/H -> I where H is viewed as a continuous
7Ti(C—S,x)-module by means of the pulled-back extension. As already
noted above (2.4.2), we have

H^C-S.^.H) ̂  H^C-S.H)^,

the vanishing because C — S is of cohomological dimension one for
torsion sheaves, being a smooth affine curve over a separably closed field
(SGA 4, IX 5.7, and X 5.2).

Therefore we may choose a lifting p of p, which sits in a not
necessarily commutative diagram

^ ^1 -> H -. G G/H

n^C'-s^x,) ~^n,(C-S,x).
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We know only that

Tcp^- = npi for i = 1, . . . , n .

Therefore for each f = 1, . . . , n, the « ratio » of p^ to pX,, is the
unique mapping of sets

Z,: ^((^-5^) - H

such that for all y, in ^(C^—Sf,^), we have
î

p,(y,)=Z,(Y,).(p^)(y,).

Because both p, and pX^ are homomorphisms, the function Z, is easily
checked to be a 1-cocycle from ^(C^—s^Xf) to H, for the action of
^(C^—s^x) on H which is « conjugation by p^» (i.e. the restriction to
^(C^—Sf,^) by ^ of the action of 7ii(C—S,x) on H already used
above in proving the existence of p).

Suppose we could find a 1-cocycle

Z : 7ii(C-S,x) -^ H,

for the above structure of 7ti(C—S,;c)-module on H, such that Z^ = Z.^
for i = 1, . . . , n. Then the function

Zp: 7ii(C-S,x) -»- G
y t-^ Z(y)p(y)

would be a continuous homomorphism which satisfies p^ = (Zp) o ̂  for
i = 1, . . . , n , and we would have Interp (G,{^};pi, . . . ,pn).

The next best thing is to find a 1-cocycle

Z : 7ii(C-S,x) -> H

such that for every i = 1, . . . , n ,

Z.^ is cohomologous to Z^.

For if ZoKi and Z^ are cohomologous, then by definition there exists an
element /i^-eH such that for every element y^eTi^C^ —s^x^), we have

(*) Z(^(y,))=A,.Z,(y,).(/l,)-Yi.
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A straightforward computation then shows that for i = 1, ..., n we have

(Zp)o?i, = h,p,fcf-1;

indeed because p; = (Z,)(po^.), this amounts to

Z(^(Y,)) P(^(Y.)) = ^Z,(y,) p(^(y,))^-1,

which, right multiplied by the inverse of p(^-(Yi))» is precisely the
cohomology relation (*) above. Therefore, for such a Z, (Zp;/ii,.. .,/!„)
is a solution of the interpolation problem (G,H;p,, . . . ,?„).

It remains to show that we can find a 1-cocycle Z such that Z o ̂  is
cohomologous to the given 1-cocycle Z^, for f = 1, . . . , n . But this
means precisely that the simultaneous restriction map

^(^(C-S^.H) -^-> © H^^-^x^H)
i "i

is surjective. This map is none other than the restriction map on etale H1

for the finite locally constant Abelian sheaf H corresponding to H as
7Ti(C — S,x)-module,

H^C-S.H) ^ ©H^C'^H),

which we have already seen is surjective (2.2.1.1).
Q.E.D.

2.6. Proof of Theorem 2.1.6.

The local Galois group ^(C^—s^Xi) sits in a well-known exact
sequence

1 ^ p ^ ̂  -5,,x0 -^ ]"[ W) -^ 1,
1 f ^ p

in which the wild inertia group P is the unique p-Sylow subgroup, and in
which for any integer N ^ 1 prime to p, the unique discrete quotient of
order N is the Galois group of the field extension obtained by adjoining
the N'th root of any uniformizing parameter. Any finite^discrete quotient
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G of ^(C^ —Si ,Xi ) sits in an exact sequence

1 -^ H -> G -> Z/NZ -̂  1 ,

with H a p-group normal in G, and N ^ 1 an integer prime to p .

We wish to fill in the diagram (remember # S=2)

n,(C^-s^x,) -^ n,(C-S,x) -^ n^-s^)

7Ci(C^-Si,Xi)

in such a way that

p o ̂  = id, Im (p o ̂ ) is pro-prime to p .

To do this, it suffices to find, for each finite discrete quotient G of
7ti(C^ —5i ,Xi) as above, a map

such that

po o ̂  = canonical projection, Im (po o ^3) has order N

and such that the collection of all po's is compatible. Because a directed
inverse limit of finite non-empty sets is non-empty (Bourbaki Top. Gen.
nouvelle edition, Ch. I, § 9, Prop. 8, p. 64), if we can show that for each
individual G there exists at least one but at most finitely many po as
above, then there exists some compatible system of po's, and we are done.

We first explain why there are, for a given G as above, only finitely

many possible pc. For if pi is one such, and if E^ —l—^ C — S is the
corresponding finite etale connected G-torsor, then for any other, say p2,
corresponding to a finite etale connected G-torsor E^ -^ G — S , the
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fibre product
/ EI x ^2

/ c - s

Elv ^2

^c - s^
gives a finite etale not-necessarily connected G-torsor on E^ which is
unramified at all the missing points of E^ (it is unramified at points over
Si, because pi and p^ are equal on the inertia group at s^) ; it is
unramified at points over s^ by Abhyankar's lemma, for both pi and p^
map the inertia group at s^ onto a cyclic group of order N prime to p.
Therefore if we denote by C^ the complete nonsingular model of E ^ , and
pick a geometric point y of Ei lying over x, the restriction of p2 to
7Ci(Ei,^) factors through 7Ci(Ci,jQ. Because 7ii(Ci,^) is topologically
finitely generated (SGA I, X, 2.6), and G is a finite group, the set
Horn (Tii (Ci ,}0,G) is finite. Therefore the restriction of p^ to 7ii(Ei,^)
is one of finitely many possible homomorphisms to G. Taking the
intersection of all the possible kernels, we get an open subgroup of
n^(E^,y) on which any p^ is trivial. As n^(E^,~y) is itself an open
subgroup of 7ti(C—S,x). We see that there exists an open subgroup of
7ii(C—S,x) on which any possible p^ is trivial. Therefore the set of
possible p2 is finite.

It remains to show that we can find a single po. For this, we use the
structure of G as extension

1 -> H-> G -^Z/NZ -> 1

with H a p-group, and N ^ 1 prime to p. Because (p,N) = 1, this
extension splits; pick any splitting

1 -^ H ^G|^ Z/NZ -^ 1.

Recall the exact sequence 2.2.3.1, with A = Z/NZ:

0 -> H^C.Z/NZ) -> H^C-S.Z/NZ)-.

© H^-5,,Z/NZ) At^ H^C.Z/NZ) -. 0.
i=l,2 s*
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As explained in 2.2.3.2, each of the maps 5i and §2 is an isomorphism. So
given any element

pi e H^C^ -5i ,Z/NZ) = Hom(7ii(C^ -5^ ,;c),Z/NZ)

there exists a unique element

p^H^-s^Z/NZ) = Hom(7Ci(C^-S2,;C2),Z/NZ)

for which
§i(Pi) + §2(P2) = 0 in H^C.Z/NZ).

By the exactness, this means exactly that

Interp(G/H,{e};pi,p2)
holds.

Apply this with

pi = 7i o p i , for pi the canonical projection of

7ii(C^ —5i ,Xi) onto its quotient G.

This produces an element p^ e Hon^i^ — s ^ ^ x ^ ^ G / H ) , which we lift
to an element

P 2 ^ 7tl(C^-S2,X2) -. G

by defining
P2 '="50^.

Then by construction,

Interp(G/H,{^} ;7ipi .np^)

holds. So by Theorem 2.1.5, we conclude that

Interp(G,H;pi,p2)

holds, say with solution (p;hi ,^2). Then (cf. 2.1.3) (h^ph^ ^^h^h^) is
another solution. Writing it (po;l,fe) this means that we have

PG ° ̂ i = canonical projection
PG ° ̂ 2 = h(sop^)h~1, whose image has order N prime to p .

Q.E.D.
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