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KILLING DIVISOR CLASSES
BY ALGEBRAISATION

by Alexandru BUIUM

0. Introduction.

By singularity we mean any germ (^,o) of analytic space; throughout
this paper all singularities are assumed to have dimension ^ 2 . By
algebraisation of a singularity (^,o) we mean a pair (X,o) where X is an
affine complex algebraic variety and oeX is a closed point such that
(^,0) ^ (X^o) as analytic germs. By [9], § 9, any complete intersection
isolated singularity has an algebraisation (X,o); one can of course assume
X is normal and speak about its divisor class group C1(X).

By [11] p. 21, the divisor class group of a normal singularity decreases
by algebraisation in the sense that Cl(^x,o) c Cl(^). The problem we
are dealing with is: how much can it decrease ? It was conjectured by
J. Kollar [7] that any hypersurface isolated singularity of dimension 2 has
an algebraisation (X,o) with C1(X) = 0 (and hence with C1(^J=0).
In § 1 of this paper we shall prove that one can kill at least the « moduli »
in C1(X), more precisely:

COROLLARY 1. - Any complete intersection isolated singularity (9^,6)
has an algebraisation (X,o) such that Cl (X) is finitely generated.

Note that in the above corollary the divisor class group C1(^J is far
from being finitely generated in general; for instance the divisor classes on
the vertex of a cone over a smooth irrational complete intersection curve in
projective space depend on g moduli, where g is the genus of the curve.
On the other hand by a theorem of Grothendieck [5] p. 132 one has
cl ( ,̂o) = 0 for any complete intersection isolated singularity (9^,6) of
dimension ^ 4. This together with our Corollary 1 implies that any
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complete intersection isolated singularity of dimension ^ 4 has an
algebraisation (X,o) such that C1(X) = 0.

In § 2 we take a closer look at the group Cl (X) appearing in Corollary
1 in the 2-dimensional case. We first associate to any closed embedding
Y c= A" of a normal surface Y with finitely generated class group Cl (Y)
two decompositions of Cl (Y)/torsion into finite sets

Cl(Y)/torsion= |j S, = |j F,
r d

where roughly speaking the S/5 are the sets of classes of fixed length = r
with respect to some canonical euclidian metric and the F/s are sets of
classes of curves of fixed degree = d (see § 2 for the precise definitions).
For any r and d we can form the sums

^rd = E a.
aeF^nS,.

We will prove that these sums can be killed, which may be interpreted as a
symmetry property of Cl:

COROLLARY 2. — One can choose X in Corollary 1 and an embedding
X <= A" such that all a^ vanish.

The method of proof of the above statements is to « move » inside
sufficiently large linear subspaces contained in the contact orbit of the
singularity and to consider the monodromy produced by this movement.

We are indebted to J. Kollar for his letter [7] which was the starting
point of this investigation.

1. Killing moduli.

For any algebraic variety X let hpa(X) denote the Hodge number
hpo(Z) where Z is some smooth projective model of the function field of
X; since h?0 are birational invariants of smooth projective varieties, the
definition above is correct. We will prove the following:

THEOREM. — Any complete intersection isolated singularity (S\6) has
an algebraisation (X,o) with hP°(X) = 0 for 1 ^ p ^ dim (X) - 1.
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Remark. — If X is a normal algebraic variety then ^^(X) = 0 iff
C1(X) is finitely generated. Indeed, C1(X) ^ C1(U) where U is a Zariski
open subset of a smooth projective variety Z. Now ^(Z) = 0 iff
Pic°(Z) = 0 hence (by the Neron-Severi theorem) iff Pic(Z) is finitely
generated and we are done. In particular Corollary 1 from § 0 follows from
the above Theorem.

The rest of this § is devoted to the proof of the Theorem. The key point
will be a variation on an argument from [I], § 3.

Let's fix some notations. Put A = C[t^,.. .,rJ = polynomial ring in n
variables, (9 = C{t i , . . . , („}= convergent power series ring in n
variables. The set of germs of analytic maps (C^o) -> C5 will be identified
with (9s. The contact group [9] acting on (9s will be denoted by Jf.

Now for any finitely dimensional linear subspace L of
^A + • • • + ^A let ^L be the maximum of the degrees of the
polynomials in L and consider the injective C-linear map e: L -> A[to\
defined by e(F) = r^F^i/to,. • .,^o)- ^t PL be the projective space
associated to e(L). Clearly PL. is a linear subsystem of \(Ppn(di)\ where
P" = Proj(A[ro]). Call L a large linear space if the set-theoretic base
locus of the linear system PL consists only of the point o = (1:0:.. .:0)
and if the associated rational map R : P" --—^ PL is generically finite-to-
one.

To prove the Theorem note that ^y,<, ^ ^/CA,. . - , /s) where

C/i,...,/,) e 0s is some finitely determined germ [9] § 9. So the Theorem
will be proved if we prove the following lemmas:

LEMMA 1. — If fe(98 is a finitely determined germ then there exists a
large linear space L such that (Jf/) n L5 contains an open Zariski subset
ofU.

LEMMA 2. — If L is a large linear space then there exists an open
Zariski subset V of L' such that for any (/i,... ,/s) e U w6? have
hpo(Spec(A/CA,...,/,))) =0 for 1 ̂ p ^ n - s - \ .

Proof of Lemma L — Let m be the determination order of/. We may
suppose that the components of / are polynomials of degree ^ m. Let N
be an integer ^ m 4- 1, let Li be the linear space spanned by /i,...,/,
and L^ a linear space of homogenous polynomials of degree N such that
the corresponding map P"~1 —-—-•>? (L^ is everywhere defined and
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fmite-to-one (for instance let L^ be spanned by ^N , . . . ,^) . Put
L == Li © L^. It is easy to see that L is a large linear space; on the other
hand if w denotes the composition of canonical maps L5 -> L\ -^ A Li
then the complement in I/ of w"1^) clearly lies inside JT/.

Proof of Lemma 2. — By Hironaka's resolution of singularities there
exists a birational morphism g : V ->• P" and a morphism A : V -> ?
such that V is smooth projective and h = Rg where recall that R :
p"-—^ was defined by the linear system PL. Put ^ = h*(9p (1);
clearly -Sf is spanned by global sections and dim (h(V)) = dim (V) = n.
By Bertini's theorem [3], p. 33, there exists a non-empty Zariski open subset
D of (PJ5 such that for any (Hi,.. .,H,) eD the scheme-theoretic
intersection

s == n ̂ 'w» = i
is smooth and connected. Let U be the preimage of D under the
projection L5-+(P^5 and let /i, ...,/, eL be the polynomials
corresponding to H^ , ..., H,. Then S is a smooth projective model of
the function field of Spec (A/C/i,...,/,)). Let's prove that ^(S) = 0 for
l ^ p ^ n — s — 1. We have an exact sequence

H^OW ^ H^SA) -^ H^^VJ)

where J is the ideal sheaf of S on V. Since ^(V) = /^(P") = 0 for
p ^ 1 we only have to prove that WCVJ) = 0 for q ^ n — s. Put
E = (^f"1)®5; we have the exact Koszul complex

0 ^ A E - ^ • • • - ^ A E - ^ E - ^ J - ^ 0 .

Since A E are direct sums of negative powers of ,Sf we have by the
Grauert-Riemenschneider vanishing theorem [4] that H^V, A E) = 0 for
any i = 1, ..., s and q = 0, . . . , n — 1. Decomposing the Koszul
complex into short exact sequences and applying induction we get
WCVJ) = 0 for q < n — s and we are done.

2. Killing ,̂.

In this § we suppose dim ̂  = 2. We begin with some general
constructions.
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First we will show that for any normal algebraic affme surface Y whose
divisor class group Cl (Y) is finitely generated there exists a « canonical »
positive definite Q-bilinear form \|/y on Cl (Y) ® Q. Indeed take an
embedding 7*1 : Y -> Y^ of Y into a normal projective surface Y^ such
that Yi\Y is the support of an ample Carrier divisor Di and take a
desingularization g ^ : Xi -^ Yi. We will define the bilinear form on
C1(Y) (g) Q in terms of Y^ and X^ and then remark it actually depends
only on Y. Since h10^) = 0 the intersection form (p on Pic(Xi) ® Q
is nondegenerate. Let Mi be the kernel of the surjection
Pic(Xi) ®Q ->-Cl(Y)(g) Q. Since M^ contains an element x with
(p(x,x) > 0 (take for instance x=g?Di®l) it follows by the Hodge index
theorem that Pic(Xi) ® Q = M^ © M^ and q> is negative definite on
Mt. Identifying C1(Y) (g) Q with Mt we define \|/Y to be the restriction
of - (p to Mt. To check independance of \|/y on Yi and Xi take
another compactification 7*2 : Y -> ̂ 2 and a desingularization
g ^ : X^ -> Y^ and let M^ be the corresponding kernel. There exist a
smooth projective surface X3 and birational morphisms
hi: X3 -> X,, i = 1, 2, such that we have an equality of rational maps :

Ji2^ =hlglbl.

Using the fact that fc; are both compositions of blowing ups one
immediately identifies the quadratic linear space M,1 with the quadratic
linear space N,1 where

N, = Ker (Pic(X3) ® Q -> Cl (Y,) ® Q -^ Cl (Y) ® Q).

Finally it is easy to see that N^ = N3 hence N]1 = N^ and we are done.

So, for any normal algebraic affme surface Y whose class group is
finitely generated we have a canonical decomposition

Cl(Y)/torsion = (J S,
r

where S,. = {a;^Y(a,a)=r} are obviously finite.
Now for any closed embedding of Y above into an affine space A"

one can associate another decomposition

Cl(Y)/torsion = (J F^
d

(which will depend on the embedding) as follows. It makes sense to speak
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of the degree deg (C) of a curve C on Y : it is the degree of its projective
closure C in P" ^ A\ Define F^ c Cl(Y)/torsion by

Pd = {a=cl(C);C=irreductible curve on Y with deg(C)==d}

and put F^ = F^i^i^' • • ̂ F^-i). It is easy to see that F^ are finite
sets and their union is all of Cl (Y)/torsion. Indeed let Y* be the closure
of Y in P", D* the intersection of Y* with the hyperplane P"~1 at
infinity, Y^ the normalization of Y*, D^ the pull-back of D* on Y^,
g : Xi -^ YI a desingularization and D = g*D^. By [6] p. 172, there is a
very ample divisor on Xi of the form H = feD + Za,E, where k ^ 1
and E; are irreducible curves contracted by g . In particular the image of
H in C1(Y) is zero. Since any divisor R on X^ may be written as
R ~ C - mH where C is an irreducible curve and m is an integer we get
that any class in Cl (Y) may be represented by an irreducible curve. To see
that F^ are finite note that for any irreducible curve G on X^ we have
(G.H) = fe.deg (i^(G)) + 5^(G.E,) where u'.X^P" is the canonical
morphism. Furthermore for any i, (G.E,) ^ deg(i^(G)). It follows that
the strict transforms on X^ of irreducible curves on Y of bounded degree
have still bounded degree with respect to H, consequently by the theory
of the Chow variety there are finitely many of them up to algebraic
equivalence and hence up to linear equivalence, since X^ is a regular
surface.

Our result in this § is the following:

PROPOSITION. - Let L be a largelinear space (see § 1 ) . There exists a
Zariski open subset U of I/, a member fe U and a representation

p : TT = 7ii(U/) -^ 0(Cl(X)/torsion, \|/x)

where X = Spec (A/CA,...,/,)), /=(/,,...,/,) such that if
Cl(X)/torsion = u F^ is the decomposition associated to the embedding
X c= Spec(A) then :

1. Pa is globally invariant under n for any d > 1.
2. The group of invariants (C^/torsion)" vanishes.

In the above statement 0(Cl(X)/torsion, v|/x) denotes the orthogonal
group of the lattice Cl (X)/torsion with respect to the restriction of v|/x. In
particular if u S, is the decomposition of the lattice into sets of vectors of
fixed length then each S,. is globally invariant under n. This together with
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the above proposition gives the vanishing of all a^ in Corollary 2
from § 0.

Proof of the Proposition. — We shall use the notations from the proof
of Lemma 2, § 1. Let P be a sufficiently general (5+ l)-dimensional linear
subspace of L, let Pp c P^ be the projective space associated to it and let
B be the base locus of Pp on V. By Bertini's theorem [3], p. 33 again, B
is smooth connected. Let b: W -^ V be the blowing up of V along B and
let F be the exceptional locus of b. The rational map V----->Pp lifts
then to a morphism W -̂  Pp. Let ^ e Pp be a generic point of Fp (in
Weil's sense) over the common field of definition of our varieties and
morphisms, write ^ as an intersection of s hyperplanes in Pp and lift
these hyperplanes to 5 hyperplanes in FL corresponding to polynomials
/i, .. . ,/,eL; put /= CA,...,/,). Now if U is as in the proof of
Lemma 2 and S c: V corresponds to / then the construction from
Lemma 2 clearly yields a monodromy representation
9 : Tt i ( U , / ) - ^ OCH^S .Z) , ^ ) . We c la im t h a t if
T| : n' = 7ti(U',^) -> (^(H^S^),^)) is the monodromy representation
defined by the family W -> Pp (where U' is the Zariski open subset of Fp
above which W -> Fp is smooth) then Im (6) 3 Im (r|); in particular
any Tt-in variant element is Tc'-in variant. Indeed put Y = ^v~l(0) c: L5

where w : L5 -> A L is the canonical map. There is an obvious morphism
(U\Y) n P8 -»• U' which is a locally trivial fibration with connected fibres
hence the map 7ti((U\Y) n P5,/) -> TC^U',^) is surjective and we are done.

Now since S is regular,

Pic(S) = Im^S,^*) -^ H^S.Z))

and since / is generic it follows by the theory in [10] § 3 that the above
subgroup of H^SyZ) is a Tt-submodule hence 9 induces a representation
T|* : K -> 0(Pic(S),(p). To show that T|* induces a representation p as in
the statement of the proposition it is sufficient to see that
MQ = Ker (Pic(S)^Cl(X)) is a Tt-submodule. Let T be the projective
closure of X in P" and H = P""1 n T where P"~1 = P"\A". Let Z,be
the irreducible components of the exceptional locus of g : V -> ¥" and E^
the irreducible components of Z, n S. Let q : S -> T be the restriction of
g to S. Then Mo is spanned by c\(q*H) and cl(E^). Now
cl(^*H) clearly is Ti-invariant because it is the pull-back on S of
cl(b*g* (?(!)). Consequently for any y e n we must have

(cl(^H). ycl(E,,)) = (ycl(^H). ycl(E,,)) = (^H. E,,) = 0.
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Since by the theory in [10] § 3 again, cl(Ey) may be represented by an
irreducible curve it follows that ycl(Ey) = cl(Ej^) for some k and w; in
fact it is easy to see that in the above we must have i = k.

To see that the F/s are globally invariant take an irreducible curve D
on X of degree d and let D^ be its proper transform on S; we have
(q*H .Di) = d . As above for any y € n one may write ycl(Di) = cl(D2)
where D^ is an irreducible curve on S hence:

d == (^H.Di) = (ycl(^H).ycl(DO) = (^H.D^),

and we are done.

Finally suppose a e (Cl(X)/torsion)" c (CUXVtorsion)"'. Since
Pic(S) ® Q = M ® M1 where M = Mo 0 Q and M1 identifies with
C1(X) ® Q it follows that a may be viewed as an element of Pic(S) ® Q
and is Tt'-invariant with respect to the action T|* . By [2], p. 40 it follows
that a e Im (H^W.Z) ̂  H^Z)). Since /^(W) = /^(W) = 0 it
follows that H^Z) = Pic(W) which is spanned by cl(fc*^(l)), cl(F)
and cl(Zf) so a is a linear combination of cl(^*H), cl(B) and cl(E^).
But now we are done because B e | Gs ® ^ I and JSf may be expressed
again in terms of g*0(\) and the Z[s so we get a = 0.

Let's close with three remarks :
1. The simplest non-trivial example of monodromy action as in the

above Proposition is the following : take (^,0) c: (C^O) to be the analytic
germ given by /„ = 0 where /„ is a nondegenerate homogenous
polynomial of degree m = 2 or 3. Then f^ = 0 ism-determined; take L
to be the large linear space of all polynomials ̂  -h ^fm+i where K, \i e C
and /„,+! is an arbitrary homogenous polynomial of degree m + 1.
Generic singularities / = 0 with /eL contain yn(w+l) lines
DI , . . . , D^+1) through the origin whose union is given by the equations
f^ =/„+! = 0 and which generate the class group of the affine surface
{/=0}c:C3 . One sees immediately in this example that
DI + • • • -h ^>m(m+i) ls ^e complete intersection of f= 0 with the
Cartier divisor /„ = 0 so the class of the above sum vanishes in the class
group. The monodromy clearly acts by permuting the lines.

2. Kollar's conjecture remains open. Note that Kollar proved his
conjecture for certain rational double points using moduli of K 3 surfaces.
An example of non-rational singularity for which the conjecture holds is
provided for instance by {/3=0} c= (C3,^) where f^ is a generic
homogenous polynomial of degree 3 [I], § 3.



KILLING DIVISOR CLASSES BY ALGEBRAISATION 115

3. The monodromy action we introduced in § 2 is related with another
action which naturally appears in this context namely with the action of the
contact group Jf. Roughly speaking the problem is to see to what extent
the monodromy action of a path y : [0,1] -^ U c: jf/ on Cl (X)/torsion is
induced by an automorphism CT of 6^ and to what extent a may be
obtained as CT = y(l) where y : [0,1] -^ jf is a lifting of y with
y(0) = identity. For the moment we have no satisfactory answer to the
above questions.
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