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THE DENSITY
OF THE AREA INTEGRAL IN R%*!

by R.F. GUNDY and M.L. SILVERSTEIN

In [9], one of us introduced a functional D(u), défined on
harmonic functions in Ri, the upper half-plane, that shares some
properties of the Lusin area integral and nontangential maximal
function. It was shown that

IDI, = [All,, 0<p <o, .1

2 : — 2
where A”(u) (x,) = f‘/;,(x()) | vu|® dxdy.

In this way, one obtained another characterization of the class

H?, 0<p <o, and also, showed that the ration A/N, where

N(u) (xg) = sup [u(x,y)|, is of moderate size. (See [9] and [6].
T'(xg)

The proof of the norm inequalities for D, as it is presented
in [9], is limited in two respects. First, it is restricted to harmonic
functions of two real variables, that is, to functionson R2. Second,
it appeals to some deep, recent results on local times for Brownian
motion, due to Barlow and Yor [1]. As such, the proof provides us
with little insight about the nature of the functional and its possible
status in the catalogue of artifacts under the label “Littlewood-Paley,
singular integral theory”. It therefore seems desirable to seek
another proof of these norm inequalities for functions on R',:“ ,
one that makes no appeal to Brownian motion. This is our principal
aim.

The theorem of Barlow-Yor on local times now has at least
two proofs, both due to these authors. (See [1] and [2].) The
keystone of their first proof [1] is the theorem of Ray-Knight on
the Markov structure of Brownian local time; as far as we know,
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the Ray-Knight theorem has no counterpart in Euclidean harmonic
analysis (although the D functional may give rise to some
speculation in this direction). The second proof by Barlow and Yor
is very different ; the ingredients are, on one hand, stochastic integral
norm inequalities, the Ito calculus (specifically, Tanaka’s formula
for local times) and, on the other, a novel use of a real-variable
inequality due to Garsia, Rodemich, and Rumsey, (GRR), [8]. It
is this second proof that we adapt, replacing stochastic integral
inequalities by Calderon-Zygmund inequalities while retaining the
idea of using the GRR inequality.

The authors would like to express their gratitude to their
hosts in Paris and Strasbourg during the academic year 1982-83 ;
especially, we extend our warmest appreciation to Marc Yor for
his constant encouragement and interest.

1. Preliminaries and notations.

Points in the half space R'l“ are represented z =(x,y)
with x ER" and y > 0. We will be working with a function
u(x,y), defined and harmonic in R:*‘. The nontangential
maximal function N, (u), sometimes denoted simply N_, is
defined in the usual way: .Nau(xo)=supra(xo)lu(x,y)l where
[, (x,) is the cone T, (xy) = {(x,y) ERI " :|x—x,<ap}.
When the aperture constant « = 1 we delete it, that is, we write
N and I'(xy) in place of N, and I',(x,). However we work
with a ‘*smoothed version” of the Lusin area integral and its
densities. Let y(x) be a smooth nonnegative, radial function on
R" which is supported by B,(0) the unit ball in R". For
technical reasons we assume

1
Y(x) decreases monotonically as |x| increases, w(x)>2 ¥ (0)

3
when x| =:. (L.1)

For y >0 let y,(x)=y"" y(x/y). Our version of the Lusin area
integral is

A o) = [ [ v, 60— x)y 17ul? drdy. (1.2)
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The associated densities are

D) ) = f ¥, o =)y A —n)* @x,dy)  (13)

and this requires some discussion. The function (u —r)* is
subharmonic and so its distributional Laplacian is a nonnegative
Radon measure on R}"' which we denote A(u —r)* (dx,dy) and
which appears in (1.3). The justification for the term “density” is
the following change of variables formula

fftll(x ) fluGe , 1 Ivul?® (x,y) dxdy
= fff Y, »f)A@w—nT @x,dy)dr (1.4)

with ,f nonnegative Borel functions in R:“ and R. In
establishing (1.4) it is enough to consider ¥ ,f each C” and with
compact support respectively in R’,'r+1 and R. Let

F(s) = j:j s —n" f(rar.

Then F"(s) = f(s) and so AF[u] = f(u) |vu|* which means that
the left side of (1.4)

= [ v&x,») AFul axdy

= [[ (ay) F@w) axay

= [[ @) 70 @ = n* dr dxay
=fffw(x,y)f(r) A(u —nr)" (dx,dy)dr

and (1.4) is proved. The maximal density is
D(u) (x,) = sup,D(u ;r) (x,). (1.5)

It is easy to see that if everything is cut down to a fixed compact
subset of R”*! then the measures A(u —r)" are uniformly
bounded and continuous in the weak topology as r varies. This
implies that the densities D(u;r) (x,) are lower semi-continuous
in r and therefore the maximal density D(u) (x,) is Borel
measurable in Xx,.
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2. Statement of main result.
We will prove

THEOREM. — For 0 <p <oo there exists C> 0 depending
only on p,n such that

ID@)Il, < CIN@)Il, < C*ID@)Il, . 2.1

It is clear from Lemma 2 in [4] that the truth of (2.1) does
not depend on the definition (1.3) in terms of x}/y(x). Indeed
v, (x) may be replaced by cones of any fixed aperture.

For dimension n =1 this theorem follows from the results
in [9). In [9] the role of the measure A(u —r)* was played by
|vu|do, where do, is Lebesgue surface measure on the level
surface {(x,y) € RT Y:u(,y)=r}. This identity (1.4) and
the co-area formula of geometric theory (see Federer [S] Section 3.2)
guarantee that these measures are identical for almost every r.
Indeed careful examination of the relevant change of variables
establishes weak continuity in r of |vu|do, on compact subsets
of the set where vu # 0. This, together with the elementary weak
continuity result for A(u — r)* established at the end of section 1
shows that for every r the measures |vu|do, and A(u —r)* are
identical on the set where vu # 0. We believe but have not yet
proved that A(u — r)* never charges the set where vu = 0 which
would establish complete identity of |vu|do, and A(u —r)*.
Still, we know that the definition of the maximal density D (u)
is everywhere the same for |Vu|dg, and A(u — r)*. This is
because in either case D(u;r) (x,) is lower semi-continuous in r
and so D(u) (x,) is also the essential supremum in r.

The bulk of the paper is concerned with the proof of the first
inequality in (2.1). The second will be seen to follow from an
elementary pointwise estimate and the L? equivalence of A and
N established in [4] and [7]. ’

3. Local estimates.

We begin with a covering lemma which will allow us to
truncate cones.

LEMMA 1. — There exist N wunit vectors e,,...,ey in R"
with the following property. For any x,€ R" and p >0
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N
inf  |x—ul=2p+min |u— (x, + 3pe)|
lx—xgl<p i=1

whenever |u — x,| = 3p.

Proof. — By an obvious change of variables, it suffices to
consider the special case x,=0 and p=1. Let e be a unit
vector in R"” and let |u|=>3. Define the angle 6 by

u*e=|ulcosf. Then
1

lu—3e|=(ul>+9—6|ulcosb). G3.1)
If | x|I<1 then |lu—x|2lul+|xi=2lul—1.

If we could show that (3.1) is dominated by |u|—2 for |0|
sufficiently small, independent of |u|, so long as ju|= 3, then
lemma would follow by compactness of the unit sphere in R".
Since @B.1)=|u|l—3 for 6§ =0 and since (3.1) is jointly
continuous in 6 and |u|, it is enough to establish the existence
of R>0 and 6,> 0 such that

lu—3e|<|ul—2 for jul=2R, |0]<I[6,. (3.2)
But by Taylor’s theorem

3 1
—3e| = 1 —-— cos§ +0 (—; §
|u e|l=lul Iulcos (IuI’)

=|u|— 3 cos 0+0(—1)

lul
and (3.2) follows easily. o
Now we introduce W,, a subset of R", and associate with
it the union of cones W= U I'(x) and also the union of
xEWo
larger cones W, = U [ (x) with a>1 fixed once and for
xEWq

all. In the rest of this section we work with the ‘“cut down”
functions N, (W,) (xo) = Supp (xpy 1% | Ly,

DWW, 1) (o) = [ 4,00 = 2) Iy &x,»)y A (u = )" (dx,dy)

with Iy ,ly denoting the indicators (characteristic functions
to nonprobabilists) of W, W, .
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PROPOSITION 2. — Foreach t €R and for 1 <p <oo
foW,n@y ac<c [NWH@)?dx  (33)
with C > 0 depending only on p and the dimension n.

Proof. — It is enough to establish a ‘“‘good A’ estimate of the
form

m((DW,1) >N, N,(W,) < 6 D) <C‘:‘m D*W,nH>nN 3.4

for § >0 and B> 1 sufficiently large. Here D* (W,f) denotes
the Hardy-Littlewood maximal function of D(W,f). For a fixed
p > 1, this inequality implies

Jivw.op =g [1252p 3.5)
<Fp [TNT'mDW, 1>, N,W,) < 5)) d\

+6°p fo" N m (N, (W,) > 8)) d)

§ e
QCEﬁ"p‘/o‘ N1 m(D*(W,,1) > A) dA

+ Y [inawr

_ BV
=csp™ [iDrov.nr +c(s) [iNw)r.

Since p > 1, we may bound the first term

s~ [D*w,ep<spic[DwW,ey. (36
If the integral on the right is finite we choose & small enough so
that CB°~' 5 <% which allows us to subtract the right hand term
from the left side in (3.5) and thus deduce (3.3). In general we can
truncate W and replace u be a harmonic function with boundary
function in C;n (R"), so that the right side of (3.6) is finite,

argue as above and then pass to the limit to establish (3.3) for the
given ¥ and W. Thus the proposition will follow if we prove (3.4).

To prove (3.4) let Q be a Whitney cube of the open set
[D*(W,t) > A]. This means that the distance from Q to the
complement [D*(W,#) <A\] is comparable to the diameter of Q.
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(See [10].) Thus there exists x, with D*(W,#) (x,) <A and

p > 0 such that .

QCB, (xg);p<clQl". 3.7
Let e,,...,e, be asinLemma I and denote x; = x, + 3pe,. Since
B, (x;) <B,,(x,), wehave

/1B, D) D(W;#) (x) dx

Bp(x})
n W, dx
<S@/1ByG) fo . DV, D @)
< 4"D*(W,1) (x,)
< 4"\
- which certainly implies the existence of at least one x;, € B,(x))

for which D(W, ) (x,) < 4"\. Now consider z = (u,y) such that
z€T(x) with |x —x,I<p and also y >4p. If |u—x,| < 3p,

3
then |u —u,l < z y and so by our technical assumptions (1.1)

about y,
wy(x —u)<?2 \t/y(xo —-u). (3.8)

If |u—xy/>3p then Lemma 1 is applicable and so for at least
one i, 1<i<N, p+ |x;—ul<I|x—u| and, since (x,—x;1<p,
also |x;,—u|<|x —u| which, by monotonicity of ¢ (again
see (1.1)), implies V¥,(x —u)< v, (x —x). Combining this
with (3.8), we conclude that

N
SUD|y —xgi< o Yy & —U) S 29,00 —u) + X v, —u)
i=1

for y > 4p. This implies in turn .
sup,cq DWN U, ;) (x) S 2DW;8) (xp) + ?—" D(W ;1) (x,)

1
<2+ N4HA, (3.9)
where U, = {(x,y) € R?*':y > 4p}. Now let
Vo = {x:D(W,1) >p\;N,(W,) < 63 N Q
vV = {(Yxev, LG} N L,,
where Ly, = {(x,y) ER"*':y <5p}. From (3.9) it follows

16
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that forsome C > 1, for §>C and x €V,

1
DWW NV, (x) >—2-B7\.
This allows us to estimate

m(D;t) > BA,N,(W,) K 6X,Q)
<mDWNV;H)> -;— B\, N, (W,) € 8))

<CIN [ [ ,60 =% Lynyx,)y A — D" (dx,dy) dx,
= /BN [ [Twnvy &A@ =0 dx,dy).

After approximating (u —t)* by a smooth function of u,
applying Green’s theorem and passing to the limit, we conclude that
the last expression equals

G 9
y=@—0"—2 @-0*{ do
on

[ .

A(WNV)

0
where do is surface measure on (W NV) and e denotes the
n

exterior normal derivative on the boundary 9(W N V). This gives
us an estimate

m(DW ;) > B\, N,(W,) &£ 86),Q)

< (2/8N) f yl2 w—28"1do
awnv)  0n

+ (2/BN) f (u—t)+|-£'7y|do. (3.10)

3(WNV)

Since WCW_, we conclude from [10, p. 207] that y|vu| < CéA
on 9(WNYV)., The smooth functions of # which approximate
(u —a)* can be chosen with uniformly bounded derivatives and

)
it follows that y | . w—0"I<SC8\ on IWNV).
n
)
Also (u—1)" <8\ and since I-az |<C, we conclude that
n

3
w—0* |;—;’.| < C 8. Finally, by (3.7),

f do <Cp"<C|Q).
a(WNVv)
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This ixnplies (3.4) if everything is taken relative to the Whitney
cube Q and so (3.4) itself and therefore the proposition follows
after summing over Q. o

Finally we establish a smoothness result which will allow us
to apply the Garsia-Rodemich-Rumsey inequality in Section 4.

LEMMA 3. —For 2<p <o

2 e
fWo ID@;r) (x) — D ;s) (x) P dx <Clr—s|? f (N, (W) dx.
Proof. — We compute the left side of (3.11) by duality :

1

(fwo ID@ ;r) (x) — D@ ;s) (x) dx)p_

=sup, [v(x)) [ [ ¥, (o= x)y A (1" — (@ —95)"}dx,dy)dx,

with the supremum taken as ¢ runs over functions which vanish
on R"\W, and have L? norm = 1. (Of course q =p/(p — 1),
the conjugate index of p. ) By Fubini’s theorem the last integral

= ffdz(x,y)yA {w—n"—@—9%)dx,dy)

where ®(x,y) = ¥, *¢(x). Now split A=A, +3%/3y*. Since
® is supported in W, we can integrate by parts

[[eya, t@—n" —w—9"dx,dy)
== [[y9. @ v, (w—nN*—@—5*dxdy
=—fff U, g—x)y vV, ® v, {(u—n" —(@—s)"} dxdy dx,
1

<fsz U, —xg)y IV ? dxdyt—z_ L
{ff tlfy(x—yo)ylv((u—r)+—(u—s)+)|2 dxdyf_{dxo

< [fdxo §ff¢y(xo—x)yw<1>|2 dxdy§%]'/2 x

P11

[fdxoszlw Wy(xo —x)y v (u ._r)+ — _s)+)|2 'IW}T]F

The first factor < C ||¢Ilq < C, either by a standard application of



224 R.F. GUNDY AND M.L.SILVERSTEIN
the Calderén-Zygmund decomposition [10], or by the vector valued
results in {3, last paragraph]. Thus

| [[y @ a, tw—n* —@—s)"} dedy | (3.12)

1

<C (fH(xo)% dx, )’

where H(x,) = ffy v, —x0) Iy 1V {(u -t — (@ — )"} Pdxdy.
By the change of variables formula (1.4),

j:ffy Yy (x —xo) Iy A(u — N* (dx ,dy) dt

H(x,)

[T DW, 0 (o) dt
r
and since p/2 = 1, the right side of (3.12)

L
2

< {is = risup,IDW, 01
2

and so by Proposition 2, by (3.12), and by Jensen’s inequality
lffy QA {(u—n"—(@u—s*})dxdy|
1 p 1
<Cir=sf{ [ INW) 6o dxo |7
Next we estimate
| [ @ (@ —n* —@w—9"raxdy1  (3.14)

<1 [f y@®/ap)a/oy (e — N* — @ —5)*} dxdy |

+1 [ @8y (w =N — (w— )"} dxdy |
=1+

The integral I can be estimated in exactly the same way as the
contribution from A, to give

3 L4 L
1<C@—s) Uf IN,(W,) (xg) Pl 7. (3.15)
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Lemma 3 will be proved if we can get the same estimate for II.
Integration by parts gives us

n<i [fee/oy) w—n* — @ -9 dxdy
1 fyy 0 1@ =D =@ =9 dx|

=10, +11,.
1 L
Clearly ((u —r)" — (@ — )" iSlr—s> (NJ(W)F on W, and so
the boundary term

L L
I, <ir—sf /Wo 19(x) IN,(W,)? dx

<|r —-sl-;(me(Wm)!23 dx)‘;_

as required. To treat II, we apply a technique used in [3]. Thé
point is that

a®/dy = X (3/ox) @,
ji=1

where
q>](' y) = (W/)y *‘P:d’j(x) =X Y (x).

Thus if we again use the fact that d’l is supported on W, then

I, < 2| [f @/ox) ®) w—n* —@—s5)*ydxdy |
i=1

2] ®0/0x) {w — ' — (u—s)}dxdy|
= 7 /

<cX fff U, o= x) @1V {( — )" — @ — 9"} dxdy dx,
i=1

1

<cl fdxosz v, (xo—x);l-@,.z dxdyF
ji=1

1

X 1 fflw ¥, (o= x)p 1V {u—n" —(“—S)J'}lzz;
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and so the necessary estimate for II, will follow as for I in (3.14) if
we can show thatfor j=1,...,N the functional

o {Jf wanbiog wn)?

is bounded on L%. But this can be established by the techniques
refered to above, using the fact that each w, has mean 0. This
completes the proof of Lemma 3. o

4. The Garsia-Rodemich-Rumsey inequality.

In [8], Garsia, Rodemich, and Rumsey obtain an inequality
relating the modulus of continuity of a function to the size of
an integral of its difference quotients. The form of the inequality
is particularly suited for applications to problems involving path
continuity of stochastic processes. Barlow and Yor, in their paper
on local times [2] show that the GRR inequality may also
provide bounds for a maximal function. Their technique may also
be used here.

The GRR inequality, as it applies to our situation, is as
follows. Let F(r) be a measurable function, defined on a real
interval I. Suppose that for some p > 4

jxl|ﬂilﬂﬂrwa=w<w.
x 1

lr—s|?
Then F has a continuous version F satisfying

1 2

|[F() —F(s)|I<CB|r—s[> Pr,s€EL

In particular if F vanishes on a subset of I having positive
measure, then

1 2

- ——

sup,|F(") | <CB 1| °
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or, equivalently,
1 1
= (1 F(r) — F(s) =
2y LI LAY N )
ess.sup F(r) < C |I]| 3lllzf'/;XI | L | ,p>4
lr —s|? 4.1)
where ess. sup is an abbreviation for essential supremum.

Our goal now is to estimate the maximal density D(u). The
main step is to prove a distribution function inequality of the form

m(D >N <m(D > \,N, <A) + m(N,> N (4.2)
C , |
< Fﬁua«} NP dx + Cm(Ny > \)

for p > 2. Thecrucial termis m(D > A,N, <\). Let
wv,= U I kx)

* XEW,
with W, = {D(u) > \;N,(u) <A}. Ontheset W,
N, @) = N,(W,)
D(u) = sup,D(u ;r) = sup,, ;<) D(u ;r).

Now apply the GRR inequality to F(r)=D(u;r)(x) with
I={—2A<r<2\} and fixed x €W,. Then (4.1) is applicable,
and by lower semi-continuity (see last paragraph in section 1)

21 D(u;r) (x) — D@ ;5)(x)
2 —_ > )
D (u) (x) < CA 2(4>\)2fﬁx1 | 1

{Pdrds
lr—s? 4.3)
for p > 4. Integrating over x € W, and applying Lemma 3, we get

p 2
ﬁlo D?u(x) dx < CA* [NZ(W,) dx

which allows us to estimate
m(D@w) > \,N, @) <))

<—1— D?(u) d.
AP Jwo (w) dx

P

c £ L £ 4
2 2 2
< SN, NIW,) + O /;,8 NZ(W,).
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Since N,(W,) <X on R", and W, is a subset of {N_(u) <]},
we complete the proof by writing

_P P
2 2
Mm@ >N <CA 2 i Niw)
+ Cm (N, () >N\) .
This is valid for any p > 4, which is exactly (4.2).

To establish the first inequality of the theorem for a given
p>0, we apply (4.2) with p replaced by p'>p, multiply
both sides by pA~' and integrate with respect to A. The
second, converse inequality is a consequence of Holder’s inequality,
relation (1.4), and the norm equivalence of A(u) and N(u):

Al) (xy) = ffwy(xo —x)y Au?
= fN(“)("°) f Y, (o —x)y A —nr" dr

—N (u)(xg)

= [(N@)(xg) .
f_N(u)(xo) D(u ;r) (x,) dr

< 2N(u) (x4) D (u) (x,)
so that

1

[arw <2 ([New) (f D"’(u))’l_
<rc,(f Az"(u));_ (f Dz”(u))zl.

This completes the proof of the theorem.
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