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SIDON SETS AND RIESZ PRODUCTS

by Jean BOURGAIN

1. Notations.

In what follows, G will be a compact abelian group and
' =G the dual group. According to the context, we will use
the additive or multiplicative notation for the group operation
in I'. For 1 <p <, L?(G) denotes the usual Lebesgue space.

For u€M(G), let |lpllpy = sup la(M)1.
YyET

A subset A of I' is called a Sidon set provided there is a
constant C such that the inequality

Yl I<Cl Y a7l (1)

YEA YEA

holds for all finite scalar sequences (,),c, - The smallest constant
S(A) fulfilling (1) is called the Sidon constant of A. The reader
is referred to [3] for elementary Sidon set theory.

| A| stands for the cardinal of the set A.

Assume A a subset of I' and d= 0. We will consider the
set of characters

P,,[A]=:2 z,vlz, EZ(YEA) and X |27|<d}.

YEA YEA

CIAl Y

Then 1P,,[A1|<(—'d—') if d<|Al
CdlAI

and  |P,[A]l < I—A—l) if d>|Al

where C is a numerical constant (cf. [7] p. 46).

Mots-clefs : Ensemble de Sidon, Ensemble quasi-indépendant, Produits de Riesz.
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We say that A CI' is quasi-independent, if the relation
Z,2,y=0,2z,=—1,0,1(y€EA) implies z, =0(yE€A).
If A is quasi—independent, the measure

p= I (1+ Rea,r'y)
YEA

where a, € C, la, | <1, ispositive and || u [ly G = 1.
We call it a Riesz product.

Say that A CTI' tends to infinity provided to each finite
subset I'j of T corresponds a finite subset A, of A such
that

v, 6 €EA\A,, y#8 = y— 8 &T,.
A Sidon set A is of first type provided there is a constant

C <o and, for each nonempty open subset I of G, there is a
finite subset A, of A so that

2 e l<Cl X o vl )

YEA\A, YEA\Ag

for finite scalar sequences (a,),ea\a, » Where

Ifllc@= sup [f(x) .

x€l

2. Interpolation by averaging Riesz products.
In this section, we will prove the following result::

THEOREM. — For a subset A of TI', the following conditions are
equivalent :

(1) A isa Sidon set

Q) 12,0, 7vll, <Cp'? (Z|a,*)!/? for all finite scalar sequen-
ces (a'y)'yE\A and p=21.

(3) Thereis & > 0 such that each finite subset A of A contains
a quasi-independent subset B with |[B| 2§ |A]|.

(4) There is 8 >0 such that if (a,),ep is a finite sequence of
scalars, there exists a quasi-independent subset A of A
such that
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2 oja=8 X el
YEA YEA
Implication (1) == (2) is a consequence of Khintchine’s inequa-

lities and is due to W. Rudin [8]. The standard argument that quasi-
independent sets are Sidon sets yields (4) = (1). We will not give it
here since it will appear in the next section in the context of an
application. Finally, the results (2) = (1) and (1) == (3) are due
to G. Pisier (see [4], [5] and [6]. The characterization (4)is new. It has
the following consequence (by a duality argument):

COROLLARY 1. —If A is a Sidon set, there is & >0 such that
whenever (a,),c, i a finite scalar sequence and |a,| < &, then we
have

i =J, F© @) =a, for yEA

where u is in the o-convex hull of a sequence of Riesz products.

Recall that the o-convex hull of a bounded subset P of a
complex Banach space X is the set of all elements S N\, x; where
oo i=1
x, €P, ¥ INISI.

i=1

The remainder of the paragraph is devoted to the proof of

2) = @3) = 4).

Let us point out that in the case of bounded groups, i.e. which
elements are of bounded order, they can be simplified using
algebraic arguments.

LEMMA 1. — Condition (2) implies (3) with & ~ C™?%.

Proof. — We first exhibit a subset A, of A, Al 2 C %Al

such that if X e y=0 and e =-—1,0,1, then
TEA,

1 \
Zle,I<=IAl. If 2 ey=0, e =21 and A,CA,
2 yEA, Y Y
is choosen with |A,| maximum, the set B = Al\A2 will be
quasi-independentand |B| > 8 |A|.
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The set A, is obtained using a probabilistic argument. Fix
1
r=C['C? and ¢ =57 |A| (C, is a fixed constant, choosen

to fulfil a next estimation). Let (§,),co be independent (0,1)-

valued random variables in w and define
N

F,)= 2 2 1 £(w) (k) +7x).
m=2 SCA ~y€S
1SI=m

Notice that the property F_(x)dx = 0 is equivalent to
G w

the fact ¢ I (y+7) =0 whenever S is a subset of the
YES

random set {7€A|£1(w) = 1} with |S| = K.
Thus the random set does not present (% 1)-relations of
length at least £.

Using condition (2) and the choice of 7,8, we may evaluate

1Al 1
Jfi Fowaxdo< 3 — [z, +Dim

m= !

A m/2
<X r"'(scy"(‘——') <279
m> m

Hence

A
Z|_2...'+2sm fj; F,(x) dx dw <f 1§A £, (w)

implying the existence of w s.t.

TIA|
2

IA,l>

where A, = {y€A|E, (w) = 1}
and
o Fo) <27 A<, s0 j; F,(x)=0.
By definition of F, and the choice of ¢, it follows that
A, has the desired properties.

The key step is the following construction:

LEMMA 2. — Assume A
subsets of T' and

1o Ay disjoint  quasi-independent
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A
Byl SR for ji=1,...,J—1
[ Al
where the ratio R > 10 is some fixed numerical constant
(appearing through later computations).

Then there are subsets A,' of AN <j<])) st

1
1) lAi’|>Ia|Ai| and (2) U Ai is quasi-independent.
=1

Proof —Fixing j=1,...,J, we will exhibit a subset A; of
A,. satisfying the following condition (*)

Ny Moy Mjgy---MF0

if
09&17,-: Z 5—77(e—y=—1’0’1)
'YEAI B
and foreach k #j
IA; |
N € Py (Ay)  where d; =1 %
lAkl'yEAj

Those sets A; satisfy (2). Indeed if

M---m=0 and n;= 2 e v(,=—1,0,1
761\} )

then, defining d,-=;\2I€1I, either di=0 or deAk|>di|Ail for

j
some k #j. If the di are not all 0, we may consider j's.t. dl.qlA,'l
is maximum, leading to a contradiction.

The construction of A,' for fixed j is done in the spirit of
Lemma 1. It suffices to construct first KJ.C A, 1A |> Al

fulfilling (*) under the additional restriction

2 e, |>—|A| (+%)
'yEAI
This set 1_\, is again found randomly. Consider independent (0, 1)-
1
valued random variable {Evl'YEAi} of mean y and define the

random function on G
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1Al
F,= X L O E@@+M I3 in€P,, (A
m=IAjl/10 SCA; ~ES k#j

ISI=m

A
where d, (m) = I—le. Write

| Agl
1A
ffG F,(x)dxdwo< 2 27"
m=|A;l10

c I (1 +Rey) I X {n€P, ) (A},
'yGA/ k#j

and using the estimation on |P,(A)| mentioned in the introduction,
it follows the majoration by

._!.A_Ll |A |2

2 ¥ 1o op, (A d, = d, (|A;|) = ——
By (A1 (4, = d.aAD |A,,|)
_lal

A A2 A
2 Y iaogc Al 4 g B IAE o 1A
k<j [ ALl k>7 1A 1Ay

Sincelog x <24/x for x =1, we may further estimate by

<2 "Yexp

1Al

2 10 exp

1Al

|A|l/2 |A|1/2 ——1
C (—L +C, % (=L Al <2 U
’k‘::,- [A ] ‘k>,(|Ak|) !

for an appropriate choice of the ratio R.

So again, since we may assume IA,.l > 20
| A]I

::'—IA,|+2—‘T_f_/; Fw(x)dxdw<f1§‘<’7(w)dw

and there exists therefore some w s.t. if /_\j = {'yEAle,,(w) =1}
we have

- 1
IAI|>g|AiI and _/;; F,x)dx =0.

But the latter property means that (*) holds under the
restriction (%),



SIDON SETS AND RIESZ PRODUCTS 143

This proves lemma 2.

We derive now the implication (3) = (4).

LemMMA 3. — If (3) of the theorem holds, then (4) is valid with
6(4)~86@3).

Proof. — From Lemma 2, the argument is routine. Let R be

the constant appearing in Lemma 2 and fix a sequence (01.7)1,E A St
Zla, | =1.
Y

Define for k=0,1,2,...
Ae = (YEAIRT* > a1 > R7* 7}
where R, is a numerical constant with R, > 4R.

By hypothesis, there exists for each k a quasi-independent
subset A; of A, s.t.

AL > 8 | Ayl (1)
Defining
Q.= U A, and ,= U A,
k even k odd
we have
)
Z |a7|+ 2 |a7|>-—
R
1ER, YEQR 1

and may for instance assume
6
X e l=—. )
YES e Y 2R1
Define inductively the sequence (k,),= 1,2,... by
k, =0 and k., =min {k>kllA,|>R IA;kII}.

If we take AJ,2 = A;kj, it follows by construction that

|AZ, |
—i*1 S R.
|A]|

Moreover
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> > Y«

< =1 ¥l
] ki<k<kj+1 €A

< Z I R{FRIAL
1 k>k
2R —2ki—
<___ Z R]Zk] 1 IA;kJ.l
1 g
2R
<_
Rl 'yezﬂe Ia7|
and since R, > 4R, it follows thus by (2)
. 1
Y o2 la>-—5. 3
i 7‘51\,2 K 4R1 @
Application of Lemma 2 to the sequence (A’),_, , .. leads

to further subsets A]3 C Af satisfying
1
A= o A7l and A =UA’ is quasiindependent.

It remains to write

Y la |>ZR""/“|A3¢>—1— 2 R72M (A2
ea Vo7 777 10R, 7T i
1

>—3 Y la

10R A v
and use (3). 1 ovef

Remark, — Say that a subset A of the dual group I' is
d-independent (d = 1,2,...) provided the relation

Y e, y=0(,=—d,—d+1,...,d
YEA
implies €, = 0 (Y€ A).

With this terminology, 1-independent corresponds to quasi-
independent.

Assume G a torsion-free compact, abelian group. Fixing an
integer d, statements (3) and (4) of the theorem can be reformulated
for d-independent sets. The proof is a straightforward modification.
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3. Sidon sets of first type.

As an application of previous section, we show

COROLLARY 2. — A sidon set tending to infinity is a Sidon set of
first type.

Notice that conversely each set of first type tends to infinity
(see [2]). Also, each Sidon set is the finite union of sets tending to
infinity (see [3], p. 141 and [1] for the general case).

Proof of Cor. 2. — Fix a Sidon set A tending to infinity and
a nonempty open subset I of G. Choose &§ > 0s.t. (4) of the
previous theorem holds.

Let p€L'(G) be a polynomial st. p=0, p=0,
-/;p =1 and |p|<e on G\l (where €>0 will be defined

later). Denote I'y; the spectrum of p. By hypothesis, we may
assume

y—8¢rI, for y#8 in A. 1)

We claim the existence of a finite subset A, of As.t. if
(@y)yenr A, s a finite scalar sequence, there exists a quasi-
independent subset A of A\A, s.t.

)
2 la>2Z | )
yEA k4 2 Y
and
fp I (1+Rey)<2. 3)
YEA

The existence of A, is shown by contradiction. Indeed,
one should otherwise obtain finite disjointly supported systems

(a7)7€A1 e ’(a‘y)'yEA," ..(A,CA)
with
2 lo, | =1

YEA,

and for which a quasi-independent set fulfilling (2), (3) does not
exist.

Fix R large and apply (4) of the Theorem to the system
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R
a, |y € U A ¢

r=1

This yields a quasi-independent set B CA so that

R
X2 X lol>8R. )

r=1 YEA,NB
Also, since p = 0
R
X [»

r=1

i (1+Re7)—-lz

YEBNA,

<[P I (1+Ren)<lpll. <ITol. (5)

YEB
As a consequence of (4), (5), there must be some r=1,...,R

e

5
for which o o, | >— as well as
YEA,NB 2

fp I (1+Re'y)<1+fp=2,

YEBNA,

provided R is chosen large enough. Since A =B N A, is quasi-
independent, a contradiction follows. This ensures the existence
of A,. Weassume I'y C A,.

Let now (@,),ea\a, @ finite scalar sequence and A a
quasi-independent set fulfilling (2), (3). Clearly, whenever
layl < 1 (y € A), by construction of p,

|f I (1+Rea, VEa,MNpI<2IZa,vleq +€Zla,l.
YEA

We now analyze the left side, defining a,=kb, (| b, = 1), ¥ to
be specified later. Write
I (1+Rea,v)=1+« > Re b, v+ by k% Qq

dand
YEA YEA 2>2

where Q, = 2> I Re b,y and, since f(E o vp=0,
SCA €S
ISI=2

minorate consequently the left member as



SIDON SETS AND RIESZ PRODUCTS 147

2 Reb,q)(Z -2 > .
xlf(ﬁA eb, 7 ( a,v)pl szlngp( o7l (%)

Since p = 0, we have for fixed £ (from (3))
| [QpE oy M I<UQpllpy * T layl
and ’

1Qep llpy < I ( > n Re7>pllm

SCA yE€S
ISI=2

<[ T (Ad+Rey)-pl,<2.

YEA
Thus (*) can be minorated as

xlf(i Rebw/)(Ea,*r)pl—M’Ela,I.

YEA

Since Re b, v can be replaced by Im b, vy, we see that

K —
202 o, vl > | [Eu b, D Ea oy D1 = (€ + 36 T 1.

Now, for y€E ACA and 6§ € A, either y =6 or f78p=0.

av
This as a consequence of (1). Thus, taking b, = l—a;’—l,

)
S b D@ M= Zh 101> T 1.

Choosing €,k appropriately, the proof is completed.

Remark. — Let G be a compactly generated, locally compact
abelian group and B the dual group. A subset A of I' is called a
topological Sidon set provided there exists a compact subset K
of G satisfying Z Ia,,l < C sup | Z o, y(x) | where C

YEA x€EK v€EA
is a fixed constant.

Similarly to the case of compact groups, we define Sidon sets
of first type. Then Cor. 2 remains valid. It is indeed easy using the
stability property of topological Sidon sets for small perturbations
(see [2] for details) to reduce the problem to the periodic case.
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