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TOPOLOGICAL TRIVIALITY
OF VERSAL UNFOLDINGS

OF COMPLETE INTERSECTIONS

by James DAMONO

1. Introduction.

In this paper, we continue an investigation which has been pursued by a
number of authors [18], [29], [24], and [4,1,11]. We are concerned with
when a versal unfolding of a germ of a mapping is topologically trivial (i.e.
topologically a product mapping) along certain parameter subspaces. We
shall consider this problem for the case of weighted homogeneous germs
fo : k5, 0 -» k\ 0 with 5 > t which have finite singularity type [21] (here
k=R or C and the germs may be C°°, real analytic, or holomorphic).
Such germs define complete intersections with isolated singularities.

In [4, II], the problem of topological triviality along the direction of
maximal weight was reduced to proving the surjectivity of any one of a
sequence of linear maps T, or T^ which measure the failure of relations
between certain deformations of fo to lift to the versal unfolding. Here we
shall be principally interested in verifying that certain classes of germs
satisfy the conditions which imply that T^ or T^ is surjective.

Let N(/o) denote the space of non-trivial infinitesimal deformations
of/o (^•g*=^xT^ iffol(0)=X). Then, a sufficient condition that Ti be
surjective in « most weights »is that NO/o)* (the dual with respect to k) is
a principal Q(/o)-module [4, II, thm. 6.5] (Q(/o) is the local algebra of fo
and by principal we mean that N(/o)* is generated by one element). One
of our concerns is to investigate when this condition does and does not hold
(e.g. it fails for large families of curve singularities in k3 and for

C") Partially supported by grants from the British Scientific Research Council
and the National Science Foundation.



226 JAMES DAMON

intersections of pairs of generic quadrics in k", n > 4; however, it holds
for a number of infinite families of surface singularities in k4).

We will analyze the behavior of N( ) in two situations. One is when
the germ F defining the singularity is obtained by adjoining a power to a
lower dimensional singularity. This is analogous to the Thom-Sebastiani
construction (f(x) -> F(x,z)=f(x)-^-z^) for isolated hypersurface
singularities [27]. We derive a formula for the Milnor number p(F) and
the structure of the Jacobian algebra / ( P ) and N(F) in terms of the
corresponding objects before adjoining powers (§3,4). Secondly, we
consider complete intersections obtained by intersecting a hypersurface
singularity with a non-singular quadric. For such singularities we show
(§ 5) that Gorenstein properties of the Jacobian algebra are related to
N( )'" being principal.

Using these results, we establish (§6-8) that for infinite families of
surface singularities in k4 beginning with the exceptional uni-modal and
simple elliptic singularities, T^ is surjective. In contrast with this, there are
counter-examples for unimodal curve singularities where this fails. Also, in
addition to these algebraic methods, we illustrate how geometric methods
can be applied for the case of intersections of pairs of generic quadrics in
k " . Taken together these methods yield :

THEOREM. — For the infinite families of surface singularities beginning
with the exceptional unimodal and simple elliptic surface singularities in fc4

(table 2) and for the complete intersections in fe^n^) defined by pairs of
nonsingular quadrics :

1) the unfoldings versal in non-maximal weight are topologically versal so
that the versal unfoldings are topologically trivial along the direction of
maximal weight,

2) for unimodal germs these unfoldings are finitely determined and for the
families of surface singularities these unfoldings are topologically stable as
germs.

These results can be contrasted with the results for topological stability
using the Whitney conditions to determine the Thom-Mather strata [20],
[21], [26], (e.g. Bruce [2], Bruce-Giblin [3], Wall [28]). Together with other
results (e.g. Greuel[14]), they lead to some surprising comparisons for
topological stability which will be discussed elsewhere.

The author expresses his thanks to Jonathan Wahl, Horst Knorrer, and
Bill Bruce for valuable conversations on aspects of the problems discussed
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here, and to the referee for his useful comments. Lastly, special gratitude is
extended to the British Science Research Council for its support and the
Department of Pure Mathematics, University of Liverpool for its generous
hospitality during the completion of part of this work.

2. Preliminaries.

In this section, we will establish the notation to be used throughout this
paper (it is the same as in [4,1, II]).

We consider germs fo : k5, 0 -> k\ 0 which may be C°° or real analytic
when k = R or holomorphic when k = C. We denote the set of such
germs (for a fixed category) by ̂ . We assign local coordinates x for k5

and y for k1. Then, we let ^ denote the algebra of germs (in the
appropriate category) k\ 0 -> k. This algebra has maximal ideal ^. If
u denotes local coordinates for K1, then an unfolding of fo ^h
parameters u is a germ /: fc^4, 0 -> k^4, 0 such that f(x,u) = (f(x,u\u)
and 70c,0)=/o00. We let ^ denote the algebra of germs
fe5^, 0 -> k. It has maximal ideal m^. The germ fo induces the algebra
homomorphism /$ : ̂ y -^ ̂ , and this often will not be explicitly
indicated. For example, my.^j, will denote the ideal in ^ generated by
wiy (i.e., /$^y.^c). We let 9(/o) denote the module of vector fields
i;: fe5, 0 ̂  Tfe' such that n o i; = fo (n: W -^ V is the projection).

Then, 9(/o) is the free ^-module generated by \——•»...,—\. We
[8yi Sy,\

let £, = — and e; = — • In general, the R module generated by a set
oyi oXi

of elements { M I , . . . , ^ } will be denoted by R { M I , ...,^}. If the number
n is clear from context, then this module will be denoted by R{uJ .
Similarly, the vector space spanned by the {uj will be denoted by
< M i , . . .,^> or <Mf> if n is understood. Then, 9(/o) ̂  ̂ {sj • Also, we
let 9, = e(id^)(^^{e;.}), and similarly for 9,.

The extended Jf-tangent space of fo is defined as

Tjr,./o=^JN+^.^{e,}.
{OXi}

Then, we define

^(/o)=e(/o)/Tjr,./o.
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This is a ̂ -module which is annihilated by ^y.^; thus it is a module
over Q(/o) = ^/^y.^, the tocaf a^bra qf fo. We also let
N(/o) = ^x-^(/o)- This is a Q(/o) sub-module. If/o has rank 0, then
N(/o) ̂  ^x8(/o)/T^./o- We may enlarge the ideal my.Vj, to include
the r x ^ minors of d/o- This enlarged ideal J(/o) is the Jacobian ideal of
/o. The algebra /(fo) = ^x/KJo) is the Jacobian algebra of /o. Then, by
Cramer's rule it follows that N(/o) ls Bl80 a ^C/o)"1110^ .̂

If dinik S(/o) < oo, then /o ls ̂ id to be of finite singularity type (this
is equivalent by a theorem of Mather [19, III] to /o being finitely Jf-
determined). Also, Mather has shown [19, IV] that this implies when s ̂  t
that /o defines a complete intersection with isolated singularity (and is
equivalent to it when k = C). In the case s > (, we let X ss/o^O).
Then in the notation of algebraic geometry, ^(/o) = T^ and
Q(/o)=^x.

Hom^(N(/o),k)^N(/o)* is also a Q(/o)-module via ^.P(r) =^(g.v)
for ^eQ(/o), PeNOo)* and i;eN(/o). By N(/o)* being a principal
Q(/o)-module, we mean that it is generated as a Q(/o)-module by one
element. This will be the appropriate generalization for us of the notion of
a finite dimensional local k-algebra Q being a 0-dimensional Gorenstein
algebra. In turn, this means that there is a k-linear functional (p : Q -^ k
such that the pairing on Q, (g,h) -^ (pfe./O, is non-singular. The non-
singularity condition is equivalent to knowing that for the maximal ideal m
of Q, dim^Ann^) = 1 (Ann(^) = { h e Q : h.m=0}) and <p does not
vanish identically on Ann (m). The ideal Ann (m) is called the socle of Q.
It is also easy to see that being Gorenstein with linear functional (p is
equivalent to Q* being generated as a Q-module by (p.

When we restrict consideration to germs fo which are weighted
homogeneous we can assign weights wt(x,) = ^ and w((^) = di so that
if fo = C/oi» • • ••/0()» ^en /o» ls a weighted homogeneous polynomial of
weighted degree = ^. We assume all a,, d, > 0. For vector fields, we let
wt(£») = — wt(yi) and say that ^ = S/i,e» is weighted homogeneous with
w((Q = <f if each ^ is weighted homogeneous and ^ = 0 or
wt(/i;£,) (dlf H^(/I,)-I-H^(£,)) = / for each i. For weighted homogeneous
/o, the generators of TjTg./o are weighted homogeneous; thus, if /o has
finite singularity type, there is an induced weighting on N(/o). We denote
the subspace of terms of weight = m by N(/o)^. The maximum m for
which N(/o)m ^ 0 is denoted by max wt and the subspace, by N(/o)max •
The germ fo will be called uni-maximal if dim^ N(/o)^ax = 1 • Also,
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N(/o)* has a weighting such that if h: N(/o) -> k vanishes except on
N(/o)m» then wt(h) = max wr — w; thus, \vi(g.h) = wr(g) + w((fc) for
weighted homogeneous g€Q(fo).

Remark 2.1. — It is easy to see using Nakayama's lemma that if
N(/o)* is principal then dimfcN(/o)^x = 1 and the projection
P : N(/o) ̂  NOoLax ̂  k is a generator for N(/o)*.

Remark 2.2. — It can also be shown that whether N(/o)* is principal
is determined generically by the weights {aj and {rij. If there is one germ
/o with the given weights for which N(/o)* is principal, then it will be true
for a Zariski open subset of such germs with the same weights.

3. Adjoining Powers to Complete Intersections.

We begin to investigate an /o which is obtained from a lower
dimensional singularity by adjoining powers of new variables. In the
hypersurface case. Thorn and Sebastiani considered the gerrn f(x) -h g(z)
formed from germs / and g defining isolated hypersurface singularities.
In the case of complete intersections defining isolated singularities, there is
no general operation of this type. We restrict our Consideration to
adjoining to f(x) a ^ in some coordinate. Even for this, the situation is
far more complicated than the hypersurface case. For example, f(x) -h z2

has the same properties as / when / defines an isolated hypersurface
singularity. However, in the complete intersection case, adjoining a square
to a simple singularity can give a new singularity having moduli.

We begin with an analytic germ /: fc5,0 -^ k\ 0 which is a complete
intersection defining an isolated singularity (i.e. / has finite singularity
type). We write / = (/i ,/z) where /i: K5,0 -^ K ~ l , 0 and
/2 : k\ 0 ̂  k, 0; and we form F(x,z) = C/i,/2+^) ' ' ^^ 0 -^ k\ 0. We
ask when F also has finite singularity type. This is answered by

PROPOSITION 3.1. — Let F be obtained by adjoining a power to
/= C/iJz) as above so that F(x,z) = CA (x),^) + ̂ ). Then F has finite
singularity type if and only if both f and f^ have finite singularity type.

Proof. — Recall by [19, IV], g has finite singularity type iff
dmi,/(g) < oo, where as in (§2) /(^-^VJKjg) is the Jacobian
algebra of g , and J(g) its Jacobian ideal.
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First suppose / and /i have finite singularity type, then J(/i) :=> m\
for some r > 0. From the definition of J(F) we see z^JCA) c: J(F),
so ^-'^^c:J(F). Thus,

<(/2 +^) = </2 mod J(F).

Hence, ^cJ^-KF)^ ^d so ^.J(/) c= J(F). Also, by assumption
^ c J(/) for some ^ > 0; thus, ̂ q <= J(F) and ^+4.^ c J(F).

Lastly, f-i^^x so /2^c~1 c: !̂c ^d ^"i^^c"1 ^-KF)- Also,

z2'-1^-1 = -/^-^-^mod^F).

Thus, z2^"1^"1 c = J ( F ) . It then follows by induction that
z^-'^-^ c: J(F). If we let N = max {r+^-1}, then

^ c= L^^ + f; z"-1^-"1)^ ^ J(F).
\ m = l /

Conversely suppose that F has finite singularity type. We easily see
that the image of J(F) in ^/^.^-^->^ is J(/). Thus, J(/) has
finite codimension and / has finite singularity type.

For /i, we consider the complexification of F (which is analytic) if
k = R, and still denote it by F. Thus, we may assume k = C. The
complexified F still satisfies w^ c: J(F); and if the real/i is not of finite
singularity type, neither will the complexified one be. Thus, suppose /i is
not of finite singularity type (with fe=C). Then, there is an analytic
subspace V\, containing 0 and of dimension ^ 1, such that J(f^)
vanishes on V\. Let V^ denote the analytic hypersurface defined by
f^ -(- / = 0. As dim^ V^ x C ^ 2, dim^ (Vi x C) n ¥2 > 1 and it has
a component W containing 0. Then F|W = 0; and each t x t minor
of dp vanishes on W for it is a sum of terms each containing a
(t—\) x ( r—1) minor of d/i as a factor. Thus J(F) vanishes on W
contradicting the fact that F has finite singularity type.

D

Two special cases of interest are given by the corollaries.

COROLLARY 3.2. — Let f: k\ 0 -> fc2, 0 have finite singularity type,
w^/=(/i,/2). Then F(x,z) = (fi(x),f^x)+/) has finite singularity
type iff /i defines an isolated hypersurface singularity.
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Also, let g(z) be defined by two Pham-Brieskorn polynomials

g(z)=(ia^,ib^}
\i=l f = l /

and let A,, = det ai ?1 . Suppose f(x): k\ 0 -. fe2, 0 has finite
^ bJ\

singularity type then:
COROLLARY 3.3. — i) For g to have finite singularity type it is

necessary and sufficient that A^- + 0, i ^ 7 (or g^ 0 if f c= l ) .
ii) /(x) + ^(z) ^a5 J^"^ singularity type if and only if g(z) does and
bjfi — Ojf^ defines an isolated singularity for 1 ^ j ^ k.

Proof. — By performing a linear change of coordinates in the target we
see that f(x) + g(z) is equivalent to a germ with, say, z^ appearing in
only one coordinate function. It is obtained by adjoining a power. Then,
the result follows by an easy induction argument.

D

4. Milnor Number, /, and S after Adjoining Powers.

Let /: k\ 0 -^ k\ 0 be a weighted homogeneous polynomial germ (with
only positive weights) so that / = C/i 5/2) as m ^e preceding section. If /
and /i have finite singularity type, then we can adjoin a power and define
F(x,z) = C/i(x),/2(^)+^), which has finite singularity type. Here we will
compute the Milnor number |A(F) and determine the structure of / ( F )
and ?^(F) (and hence of N(F)). To compute the Milnor number, we
have the following formula (M. Giusti has indicated he is also aware of this
formula).

PROPOSITION 4.1. — Let f be a weighted homogeneous polynomial germ
as above with both f and f^ of finite singularity type. If F is obtained as
above by adjoining z^ then

(4.1) H(F)=(^-l^(/)+Wi).

Proof. — The proof of this result uses a formula for ^ of weighted
homogeneous complete intersections / due to Greuel-Hamm [15]. For /
as above,

ncn = E dl—-d1-ds.tT^(R^))
Wi . . . W,p= i ^i
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where w, = wt(x,), d, = w((^.) and the ^ are the set of distinct
representatives of possibly repeated integers d ^ p . . . , d^ so there is a total
of r distinct weights. Also,

^-^n(^>-^)n(n^r'
TI + 1 v = l \ \/ k=l \ d^ )

and res^=o denotes the residue at T| = 0. Applying the formula to
F(x,z) we obtain

>l(F)''t•»A^.|)'•;'-'re8-o(w•(n+14))•
(Note: we can choose weights d, so that ^|d,).

Then, taking d^/d^ inside res( ) for ^(f) we have

(4.2) H(F) - (/-I)H(/) = ^ dl • • • d t - 1 ^-<'-')
p"i Wi ... w, "P

^

re^o(R^)({n+l-^]-(.-l)^)).
Now, p p

^[-4j-^-<--^H-^).
Also, p

^(-^-nTT

-"(—^(-^y'-^
which is the form of Rp(r|) appearing in the formula for ^(/i). Thus,
from (4.2) we obtain

H(F)-(/-l)n(^

= ̂  S ^——d-1 ̂ (t-l) ̂ n-o (Rp1*^))) = W,).
\P=1 "1 • • • "S /



TOPOLOGICAL TRIVIALITY IN VERSAL UNFOLDINGS 233

Remark. - If d^ does not occur among d ^ , . . . , ^ _ i , then R^Cn)
is holomorphic at T| = 0 so there is no contribution from this term in this
case.

D

The importance of knowing \i is that by a result ofGreuel [12, III, 3.1],
if / is weighted homogeneous of finite singularity type,

^-{^::;
where S(f) = dim^ Q(/) with Q(f) = <^//*^.^.

Remark. — If s = r , then how much 8(/) deviates from dmifcS(/)
is an important deformation property of /. If we write
dinifc ̂ (/) = §(/) -h ^,, then K -h 1 is the maximum length of a string of
successive flat deformations of / which can be made [7]; or using the
methods of [8, § 5], it can also be shown to be a relative codimension of the
orbit of /*^y.^ in an appropriate Hilbert Scheme.

A special case of interest to us is

COROLLARY 4.4. — Let f and F be as above but with t = 2 and f^ a
non-singular quadric. Then

^-{E :̂̂  :̂
Knowing u(F), we turn to the question of explicitly determining K(F)

and ^(F). This is given by

PROPOSITION 4.5. - Consider the germ F(x,z) = (fi(x),f^)-^-z^)
obtained by adjoining / to the germ f: fe5, 0 ->- k\ 0 (where f need not be
weighted homogeneous), with both f and /i of finite singularity type. Let
VJm^ be denoted by \. Then, there are sequences which are right exact :

(4.6a) 0 ^ ^(/,) ® A, -^ ?J(F) -^ ?T(/) ® A,_, -. 0

(4.6 ft) 0 ^ /(f,) (g) A, ̂  / ( ¥ ) -^ /(f) ® A,_. -> 0.

If f is weighted homogeneous and s > t then the sequences are exact: Also,
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(4.6 d) can be viewed as a sequence of f(F)-modules, while for (4.6 ft) p' is
an algebra homomorphism and V is a homomorphism of ^(F)-modules.

Remarks. — All tensor products are taken over k. The ® indicates
that a twisted ^(F)-module structure is defined on the tensor product. An
alternate way of representing ( ) ® A^ as a ^(F)-module would be to
replace it in the proposition by

( ) ®^ A where A == ̂ W^(x)).

In this paper we will only use tensor products over k.

Proof. — First consider (4.6 a). The map p is induced by the quotient
map ^(F)-^^(F)lmi~^(F). This is because

^(F)/^-^(P) ——> ^{e,}/Tjf,F + ̂ -^{ej

and in

^.z{eJ/^-X..N —^ ^^z^l^i^Q^j^-2}

the image of TJf^. F is (^/^-1). (Tjf^./). Hence, taking quotients we
have

(4.7) ^(F)/^-^(F) -^ ^(f) ® A,_i.

Then, p is the composition of the isomorphism (4.7) and the quotient
map.

Consider the endomorphism of ?^(F) given by multiplication by /-1.
It has image = ker (p) and it also annihilates ^(F).8((in^(F)). Thus,
there is an induced map

^: -R(F)/^(F).e, ^ S(F)

with Im (v) = ker (p). We first construct a ^C/i)-module isomorphism
between ^(F)/^(F).e, and ^C/i)®A,. Note that S(F)/^(F).£, can
be identified with the image of S(F) under the projection onto the first
t — 1 factors. Thus,

(4.9) ^(F)/^(F).e, -^ ^{^i/CTjr,./, + C/2+^).^{e.}r1)
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where TJfg./i denotes the ^^-module generated by the generators of
Tjf^./i. Via (4.9) there is a natural map of ^(/^-modules

V|/:-RCA)®A, ^ S(F)A/(F).e,

sending (p g) ̂  -^ ^<P. By examining fixed powers of z3 we see that this
map is injective. Furthermore, by the division theorem, for any g(x,z).^,
i < t , we may divide in ^^

(4.10) ^=G.(z^+/2)+ I^).^.
1=0

Thus, (4.10) implies (via (4.9)) that ~g^ (the image in 5J(F)/^(F).£()
belongs to Im (\|/). Hence, \|/ is also onto. Hence, v|/ is an isomorphism
of </(/i) modules. Thus, via \|/"1 we obtain a ^(F)-module structure on
^(/i) ® A^ extending the ^(/i)-module structure. To describe this
«twisted» ^(F)-module structure, it is sufficient to describe
multiplication by z. It is given by

/ ^ h fq)®^'"1 i < ^ - 1z . ( c p ® z 0 = ^ _ ^ ^ ^ ^^,

Then, v = ^ o \|/.

In the special case when / is weighted homogeneous and s > t , we use
(4.3) to obtain from (4.6 a)

U(F) = dimk(Imv) 4- (^-1)^(/).

Together with (4.1), this implies dim^Im v) = ^.nC/i) so that v is
injective.

The proof for (4.6&) is similar. An explicit examination of the
generators of / ( F ) yields

^(F)/^-1.^) -^ ^/(J(/).^+^-l^.z)

-^^(/)®A,_i.

As before, multiplication by z^~1 induces a ^(F)-module endomorphism
of </(F) with image = ker(p') and with kernel containing J(/i).</(F).
Thus, it induces a homomorphism

^:^(F)/J(/i).^(F) ^ ^(F).
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As before we construct a </(/i)-module isomorphism

^ •• ^(/i) ® A, -^ ^(F)/JCA).^(F).

Then, v' = v'o<|r' and we use ^' to extend the ^(/i)-module structure
on /(fi) ® A/ to a «twisted » ^(F)-module structure. Again by a result
of Greuel [13, cor. 5.8] if / is weighted homogeneous and s > t ,
t1'"1* /(f} = U(/). Then, we proceed as before to obtain exactness.

D
On consequence of proposition 4.5 is a formula for N(F)^o .

COROLLARY 4.11. - With the preceding notation with f weighted
homogeneous, the following sequence is right exact (and exact if s>t)

(4.12) 0 -. (NCA)®A^^_,,^,

-^ N(P)^ -^ (NC/)®A/_,)^ ^ 0.

From this we can see how quickly the number of moduli increases when
powers are adjoined. For example, consider f•.ks,0-^k2,0 with
di = wt(ft) <d^= wt(f^). Let F(x,z) = C/l(x),.^(;c)+z/). For F to
be smiple we must have S(F)^o =0 . If s > 2, then F is not simple for
z EI is a non-zero element of N(F)^. Similarly, for F to be unimodal
(i.e. dim»'R(F)^o=l) with s > 2, we must have n(/i) = 1 and { = 2
since

v(^C/i) <§) m,) c S(F)^o (wt(zf. ei) > 0).

Nonetheless, we shall see, for example, that most unimodal surface
singularities in k* arise from adjoining powers.

5. Gorenstein Properties of the Jacobian Algebra.

As before, let / = C/i,/,): k', 0 -^ k; 0 with s > t and
/i: k1,0 -> V 1,0 and /; : ̂ , 0 -» ft, 0. Also, suppose / is weighted
homogeneous with both / and fi of finite singularity type. Thus, we can
adjoin / to obtain F(x,z) = (fi(x),f^(x)+/). Then, N(F)» being
pnncipal is related to properties of N(/i)* and /(f) via

THEOREM 5.1. ^ With the preceding notation, N(F)* is a principal
/(F)-module iff N(/i)* is principal and /(f) is Gorenstein.
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For the proof of the theorem, we make use of one additional c&act
sequence involving ?^(F).

LEMMA 5.2. — There is an exact sequence of /^-modules

0 ^ /(f) (S) A,., -^ ?J(F) -^ SCA) ® A, ^ 0

(yvherethe / (¥)-module structure on /(f) ® A^_i is uffl p' of (4.6 b) and
on ^(F^) (g) A^ it is the twisted structure defined in the same proposition.
Also K(g(x)®zi)=zig(x)^).

First, we use Lemma 5.2 to prove the theorem. We need the additional
observation that by proposition 4.5 v'(^(/i)®A^) annihilates
</( / )®A^_i . Thus, if pe^(F)* and geV(/(f^)®A^) then using
lemma 5.2 g . p vanishes on ^C/(/)®A^_i) and hence induces an element
of (S(/i)(g)A,)*. Thus,

(5.3) v^C/iXSA,).? ^ (^(/O&A,)*.

If now S(F)* is principal, then by Remark 2.1, it has a generator p
which vanishes on non-maximal weights. By the first observation, the
^(F)-module structure on (</(/)®A^_i)* factors to make
(</(/) ®A^_i)* a ^(/) ® A^_i module via its algebra structure. If
p^ = p o ̂ , then

(5.4) ^(F).(pi) = (^(/)®A,_i).pi c: (^C/)®A,.,)*.

Then, by dimension count (since dim^^F) =dimfc?^(F)), if 5^(F)* is
generated by p then we must have equality in both (5.3) and (5.4).

Then, for example, equality in (5.4) is equivalent to /(f)® A^_i
being Gorenstein. Since the algebra structure is that of tensor product

socle (^(/)®A^_i) = socle (/(f)) 0 socle (A^_i).

Thus, being Gorenstein implies dim^ socle (</(/) ®A^_i) = 1 so
dinik socle (</(/)) = 1 and hence /(f) is Gorenstein. Similarly, suppose
we have equality in (5.3). Note that

v'(^CA)(g)A,).p = (X/i^A,)./-1.?.

However, ^./~ l.p on ?^CA) ® A^ is just ^.p on v(N(/i)(g)A^) where
v is given in proposition 4.5 as multiplication by z f ' ^ . Thus,
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v(^(/i)®A,)* is a principal /(f,) ® A,-module generated by p . Now,
an argument similar to that given for /(f) ® A,_, shows that SC/i)* is
a principal ^C/i)-module.

For the converse, suppose ^CA) principal and /(f) Gorenstein. Let
(o generate Jhe socle of /(f) and ©' generate the subspace of maximal
weight of ?i(/i). Then, ^(/i) ® A, is a principal ^C/i) (g) A, module
so there is a p6^(F)*, with ^-V) = 1 (here z^o'^o)'®/-'))
and vanishing on non-maximal weights in v(^C/i)®A^) so that
v(^(/i)®A,)* is generated as a ^C/i) ® A,-module by p. Then, we
have equality in (5.3) (for the p we have just defined). Similarly, if ^ is
defined so p^®^~1) = 1 and vanishes on lower weights then
(</(/) ®A,_i)* is generated as a ^(/) ® A,_i module by p^ • Thus, to
prove ?^(F)* is principal it is sufficient to show that

(5.5) z^WEEz^.S.e, in S(F).

This is because (5.3) will be an equality by the choice of p while
^(co'Oz^-2) = 1 and vanishes on lower weights. Thus, X*p = p^ so
(5.4) is also an equality and p generates S(F)*. For (5.5) it is sufficient
to know

z^.co' = ©.e^in'R(F),
or

-/2.®' = o).e^in?T(F).

Now, by the assumption of maximal weight of o', f^.w' = 0 in ^C/i).
Thus, there is a vector field ^e9, so that

/2(o'=^C/i)mod/?^.e(/,).

Define co = ^(f^). Then, by construction f^' = - oe, m ^(F). The
theorem is then completed by the following lemma.

LEMMA 5.6. - If ?I(/i)* is principal and /(f) is Gorenstein then G)
(defined above) generates the socle of /(f).

It remains to prove the lemmas.

Proof of lemma 5.2. - Consider o^ : / ( P ) -^ 1^(F) sending
g ^ g . ^ t . Then,

coker(a0 -^ S(F)/^(F).£, ̂  »(/,) ® A,
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where the last isomorphism follows by the proof of proposi
as z^"1 annihilates E( in S(F), by (4.6 b) v'(^(j
Since v' is injective, a dimension count shows we hav

>ition 4.5. Also,
i)®A^) c: ker(a0.
equality; thus 4.6 b

implies ^(F)/ker (o^) -̂  /(f) (g) A,_i.

D

Proof of lemma 5.6. — As /(f) is assumed Gprenstein
necessary to show that o is a non-zero element of s
homomorphism 02 :</(/) -^ S(/) sending
K = ker (03), it is a non-zero ideal and hence its
maximal weight belong to socle (</(/)), thus soci^
sufficient to show CD e K and has maximum weigh

it is only
\e(/(f)). Define a
-> g . £(, then if
)n-zero elements of
( / ( f ) ) ^ K . It is
in K.

non

By an earlier argument we have

coker(a2) -^ ̂ (f)//(f).^ -^ ^(/i^.'NC/O.

As dimfc^(/) = dimfc?J(/), we have

dinifc ker (02) = dim^ coker (o^),

or dim^K = dimfc'R(/i)//2.?JC/i). Similarly, multiplication by f^ in
S(/i) induces a homomorphism with coker = ^C/i)//2-^(/i) and

ker = B = {(p €^C/i);/2.(p = OinS(/0}.

Again dim^ B = dim^ 'RC/i)//2 •^C/i). Hence, dim^ K = dim^ B. By
assumption 0' generates the subspace of maximal weight in B. We shall
show the operation by which we constructed CD from CD' extends to give
an isomorphism B——K which changes weights by a fixed amount.
Then, CD has the desired property.

To define a map P : B -^ K, let (p e 9(/i) project to an element (p of
B. Then there is a ^eO, so that

/2.(P=^(/i)mod/?^6(/i).

We define P((p) = ^(f^) viewed as an element of /(f). By its definition

P(9).e, = ^(/) - f2.(pmod/T^9C/i).
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Then P^.^eTjf^./; so in ?J(/), P((p).e, = 0 or P((p)eK. A priori
it is not even clear that P is well-defined.

PROPOSITION 5.7. — For /,/i weighted homogeneous of finite singularity
type and s > t (but without assumptions of Gorenstein, etc.) P : B -> K is a
(well-defined) isomorphism of / (f ̂ -modules.

Proof, — First suppose q> 6 6(/i) projects to a non-zero element (p of
B . We claim P((p) ^ 0. Otherwise consider F obtained by adjoining
z2 . By assumption, P((p)€J(/). Then, p((p).6(€J(/).6(. By
considering the generators of J(/), we see J(/).E( <= TjT^.F. Also,

/2.cp+P(^).£,=;;(/) mod TJT,.F.

As ^ e 6,, ^(/) = ^(F), so /a. (p e TJT, . F. Now in N(F),
/2.(p = — z2^) = — v((p®z) (v as in proposition 4.5). Thus,
v((p(g)z) = 0 but (p ® z ^ 0 in R(/i) (SA^, contradicting the
injectivity of v.

Claim 2. — If {(pj are linearly independent in B then {P((pi)} are
linearly independent (for any choice of P((pi) since P is still not
necessarily well-defined). If Zc,p((p,) = 0 and some c, + 0 then
ZCf(pf 9^ 0. However, EC(P((P() is at least one value for P(£Ci(p,). This
contradicts claim 1.

Claim 3. — P is a well-defined isomorphism of vector spaces. If it is
well-defined then it is an isomorphism by claim 2 since K and B have
the same dimension. Suppose there are two distinct possible values for
P((p),^,^. Extend (p to a basis {(pj for B so (pi = (p and pick
values hi = P((p») so P((pi) = h^. The {/ij are linearly independent by
claim 2 and so form a basis for K. Let h\ = 2c^ with some
c» ^ 0, i > 1. Then, (p' = (p — S Cf(pi 9^ 0, but has a value = 0 for
P(9'), contradicting claim 1.

Lastly, P is clearly ^-linear. Since B is a ^C/i)-module and P is
well-defined, K is also a ^(/^-module and P is a ^(/i)-module
homomorphism.

D

Remark. — The preceding proposition is also a type of duality result in
that it establishes an isomorphism between the ^(/i)-submodule of
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elements of ^(/i) annihilated by f^ and the ideal of /(f) which
annihilates the element E( in N(/) (and this latter ideal is not even a priori
a ^C/i)-module).

As an important special case we co'nsider /: k\ 0 ->• fe2, 0 with s > 2
and /i a non-singular quadric. By a weighted homogeneous change of
coordinates we may write /i in the form

/ i=Z^-^i+ Z 8^2 (5-±1).
i = l i=2/+l

Then, B = S(/i) = ^c/^c; thus, K has dimension = 1 and is
generated by o) = P(l), which in this case is given by the formula

( ^ - > . t % % 4 S 8/%Y.,̂ i ax. ^_,.n 4 .,̂ i \8xJ

COROLLARY 5.8. — With f as above:
0 if /{f) is Gorenstein, then N(F)* is a principal /(¥)-module.
ii) if instead ^(/)/((o) is Gorenstein then N(/)* is a principal/(f)-

module.

Proof. — i) is a direct consequence of Theorem 5.1. For ii), by
proposition 5.7, /(f)/((d)——>lm(^). While

coker(a2) ̂  K(/i) = ̂ /^.

Thus ^.^ (/)/(©) ——^N(/), and </(/)/((o) Gorenstein implies
(^x'/(f)IW is principal.

D

6. Sufficient conditions for topological triviality
in versal unfoldings.

In preparation for the next two sections we must recall the conditions
that must be verified to apply [4,1, II] to obtain topological triviality in a
versal unfolding. Let fo : fc8, 0 -+ k\ 0 be a weighted homogeneous germ of
finite singularity type (and of rank =0). Suppose fo is unimaximal. Using



242 JAMES DAMON

a basis {(pj for N(/o)<maxwt? there is defined a map TO which has image

Im(To)=^{N+^{£,,(p,}.
(/^U

"We first require that ^,.N(/o)max c I111 C^)' 1̂  ̂ is is satisfied then there
are defined maps

Ti:ker(To) -> (^u/^).N(/o)n,ax

or Ti1' if ^ is replaced by ^ (^ denotes unfolding parameters for
/(x,u)=(/o(;\;)+SMf(pi,M) and u+ denotes the parameters of positive
weight; / is said to be versal in non-maximal weight). The surjectivity of
either T^ or T^ is sufficient to conclude that the versal unfolding of /o is
topologically trivial along the parameter subspace corresponding to
N(/o)max [̂  II]- I11 ^rn, if N(/o)* is principal then TI and T^ will be
surjective in weights ^ ^ -h max wt. The remaining condition requires a
verification that T^ (or T^) is surjective in weights = d, -h maxwr.

The first condition can be disposed of in most of our cases by the
following simple lemma:

LEMMA 6.1. — Let / Q : 1^,0 -^ k2, 0 be a weighted homogeneous uni-
maximal germ with d^ < d^ and d ^ ) ( d^. If for i = 1, 2 there are
generators of N(fo)^x of the form /i^., then ^yN(/o)max c Im (^o)'

Proof. — Let v|/ generate N(/o)max- Then, by the preparation
theorem it follows that

Im(To)+^W=^{e,} .

Elements of ^y{v|^} have weights of the form
max wt -h nrii -h md^ n, m ^ 0. Hence, TQ is surjective in weights not of
this form. For i = 1,2

9(/o)maxw( = Im(To)n^ + <Mf> •

Thus, it is sufficient to show y^h^c^, y^h^ie ̂ m C^o) • F01" example, the
Euler relation implies

^Yi. £1 = - d^ ̂ y^ mod Im (To).

As wr(fci£i) = max wr, wr(hi£2) = max wt + d^ — d^. Thus, /ii£2 and
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then h^y^ e I"1 (^o) unless d^ — d^ = nd^ -+- m^, an impossibility as
d^ < d^. For i = 2, if we similarly obtained d^ - d^ = n^i + m^ then
w = 0 and hence d^\d^, a contradiction.

D

Secondly, we must deal with the case of w( = d, + max wr. The
reason this difficulty arises is that in the construction of [4, II, § 6], if there
is an element g(=Q(fo) such that g .£feIm(To) , then there is no
guarantee that the element of (^«/^).N(/o)niax corresponding to g . p
can be constructed (p a generator of N(/o)*). We consider the situation
of ii) in Corollary 5.8.

LEMMA 6.2. - If f: k\ 0 -^ fe2, 0 satisfies the hypotheses of Corollary
5.8 mth /(fo) Gorenstein and ^y.N(/o)max c Im (To). Then, for F
obtained by adjoining a power to /, T^ fs surjective.

Proof. — It is sufficient to show T^ is surjective in
w( = max wr -h di as di < d^.

By the proof of theorem 5.1 in this case z^'2.? = 0 on N(F), and
z^-'Ei generates N(F)^. Given he^(F)^,^^, there is a
constant c^ so that (b-c^~1).^^ = 0 in N(F), but
(b-c^z^-2)? = b.p on N(F). Thus, for any fc with b.^ + 0 in
N(F)^, there is a fci with b ^ . p = b . p on N(F) and hi .Ei = 0 in
N(F)^x- This observation together with the construction in [4, II, §6]
implies TI or T^ is surjective in wr = max w( + d ^ .

D

7. Curve Singularities in k3.

In this section we give a result for curves which has consequences in the
next section for surface singularities. We also give several counterexamples
to « expected behavior » for curve singularities which contrasts with the
behavior of surface singularities in the next section.

PROPOSITION 7.1. - Let /^ .O-^fe^O be a weighted homogeneous
germ defining an isolated curve singularity, then /(f) is Gorenstein.

Proof. - If k = R, then the results for / or its complexification are
equivalent. Thus, we may assume k = C. Then, J(f) only vanishes at 0
which has codimension 3 in C3. Thus, we may use the Buchsbaum-
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Eisenbud criteria [3 a] and show that J(f) is generated by the pfaffians of a
5 x 5 skew-symmetric matrix. Consider the following skew-symmetric
matrix.

/ 0 OiX - fl3Z /iy f^\

- a^x 0 a^y /iz Az
0 /„ /„

0 0
^ . . 0 .

^f

Here fix = —9 etc, where f= C/i,/2)» an(! ^i = wt(x), etc. A
(7^C

straightforward computation of the pfaffians shows they consist of the
2 x 2 minors of df, and a^xf^ + a^yfiy -+- a^zf^, i = 1,2. By the
weighted homogeneity of /, these are the generators of J(f).

D

Observe that the principal consequence of proposition 7.1 is for surface
singularities. We next see via several examples of uni-modal curve
singularities that the situation is less than might be expected for versal
unfoldings of curve singularities.

Example 7.2. — The curve singularities

fo(x,y,z) = (x^^+y+z'), 2 ^ a ̂  b, 2 < c

are uni-modal singularities exactly for (fl,fc,c) = (4,4,2), (3,6,2), and
(3,3,3). The versal unfoldings for these singularities are not topologically
trivial along the weight zero direction. For the first two examples,
ff(x,y,z) = (xy+tz,xa+yb-{-zc) is the weight zero deformation. However,
for t = 0, ff is a S^-singularity while for ( ^ 0, it is a ^L^-singulsinty.
Hence, by results of [6], the versal unfolding of /o changes topological type
at t = 0. A more involved argument using results of [6] also show that the
versal unfolding of f^(x,y,z) = (xy-{-tz2,x3-^y3-{-z3) changes .topological
type at t = 0.

Note. — Adjoining powers to the first two examples give surface
singularities for which the same phenomena holds. However, these surface
singularities are not uni-modal. Also, Wirthmuller [29] has shown this
phenomena can also occur for zero-dimensional uni-modal singularities.

Example 7.3. — For versal unfoldings viewed as germs, the ^/-orbit is
open in the JT-orbit. We can weaken versality in the simplest way by
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considering negative versal unfbldings of uni-modal singularities which are
still finitely j^-determined (so they are topologically versal). The condition
of openess of the j^-orbit is equivalent to the surjectivity of T^ . This has
been found to hold for all other uni-modal singularities. However,
surprisingly this condition fails for a uni-modal curve singularity.

PROPOSITION 7.3. — The germ fo(x,y,z) = (yz—x2,xy-^sxz3-{-tz5),
4 + 27e(2 ^ 0, ^ ^ 0, 8 = ± 1 defines a curve singularity/or which t is
a simple modulus and for which the negative versal unfolding is finitely s^-
determined. However, T^ 15 not surjective for any value of t.

Proof. — A calculation shows that ker (To) in weight = 1 has
dimension = 1 while (^u/^).N(/o)n,ax in weight = 1 has dimension = 2.
Thus, TI cannot be surjective. The fact that the modulus is simple [4,1]
implies that for most values of ( the negative versal unfolding is finitely
j^-determined. However, to determine that it is finitely .^-determined for
all values of t except those for which finite singularity type fails requires
an extensive calculation to show that eventually 15 is surjective!

D

8. Families of surface singularities
in C4 beginning at the uni-modals.

Uni-modal surface singularities in C4 with C*-action consist of the
simple elliptic singularity of Saito [25] and the exceptional uni-modal
quotient singularities ofDolgachev [9, 10] which are complete intersections
but not hypersurfaces. These singularities are listed in Table 1 (in a slightly
modified form as that given by Pinkham [23]). The equations also define real
singularities in R4. These singularities arise either by adjoining a power to
a curve singularity or as the intersection of a non-singular quadric and a
hypersurface. As such they fit into infinite families of surface singularities
arising by similar construction. These are given in Table 2. Then, for these
families we have the main result of this paper.

THEOREM 8.1. - i) The infinite families (in Table 2) beginning at the
exceptional uni-modal and simple elliptic singularities are uni-maximal germs
and have unfoldings versal in non-maximal weight which are infinitesimally
stable off the subspace of non positive weight. For the simple elliptic and
exceptional uni-modal singularities these unfoldings are actually finitely s/-
determined as germs.

ii) Hence, these unfoldings are topologically versal (and over R
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topologically stable), so that the versal unfoldings are topologically trivial
along the parameter corresponding to the term of maximal weight.

Proof. - First, we verify that for the germs fo defining the surface
singularities, N(/o)* is principal. For those obtained by adjoining powers
to curve singularities, it is guaranteed by proposition 7.1 and Corollary 5.8.
For the last three families which are intersections of hypersurfaces with
non-singular quadrics we can verify by direct calculation that /(f)/(w) is
Gorenstein, so again Corollary 5.8 applies.

Next, we verify the conditions described in § 6. For
^•N(/o)max c Im(To): we note that except for those special integral
parameter values which yield germs obtained by adjoining powers to curves
defined by a pair of quadrics, d^ )( d^. The remaining condition for lemma
6.1 follows from (5.5) for adjoining powers and by direct verification for
the last three families. For the special integral values the check must be
made directly.

Lastly, we consider the surjectivity of Ti or T^ on
wt = max wt + d ^ . By lemma 6.2, this is taken care of for all but the last
three families. For those families we directly observe that ©£i + 0 in
N(/o), and by examining weights, we see it generates N(/o)^x. Also,
co.p = 0 on N(/o); thus, the proof of proposition 6.2 shows that T^ is
surjective in wt = max wr + d ^ . For the simple elliptic and exceptional
uni-modal singularities, this implies that T^ is surjective, and yields the
finite j^-determinacy.

D

9. A geometric condition and pairs of generic quadrics.

All of our efforts have been concentrated on establishing algebraic
criteria for unfoldings to be finitely j^-determined or infmitesimally stable
off the subspace of non-positive weight. This is because generally it is
extremely difficult to establish infinitesimal stability geometrically. In this
section we present an interesting exception to this rule.

Generically, pencils of quadrics in C" contain non-singular quadrics,
and we may choose coordinates so a pair of such quadrics is given by

(^+...-h^,aixf+.-.+a^).

If Oi ^ a,, 1 ^ 7 , then the germ fo : k", 0 -^ fe2, 0 (we may choose fe=R
if Oi € R, all i) is a complete intersection defining an isolated singularity.
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For such germs there are n — 3 moduli obtained by allowing n — 3 of
the di to vary; and if n = 4, we obtain the simple elliptic surface
singularity in k4.

The versal unfoldings of such generic, pairs ofquadrics has been studied
by Knorrer [16] and [17]. In his work, among other things he succeeded in
showing that the discriminant of the versal unfolding is topologically a
product of the discriminant of the negative versal unfolding with the
subspace of moduli parameters. However, he was not able to obtain the
topological triviality of the versal unfolding along the subspace of moduli
parameters. We show how to obtain this result using results which Knorrer
used for analyzing the discriminant together with a result from [4,1].

We consider an unfolding F: C5^, 0 -^ C^, 0 of the germ
fo : C\ 0 -^ C, 0, with F(x,u) = (F(x,u),u), such that: i) F is
infmitesimally stable, and ii) there is a neighborhood U of 0 in C54^ and a
representative F^ of F, F^ : U -^ C^, such that F^ is infmitesimally
stable and there are only a finite number of germs F(^) (up to analytic
equivalence) for (x,u) e U — ({0} x C4). Then, we can stratify the
discriminant of F, denoted by C(F), by the analytic types of the germs

S(^M) = {F,,,) : (x,u) e S(F) n F-^y.u)}

for (y,u)eC(¥) - ({0} xOQ (recall E(F) denotes the critical set of F).
By the multi-transversality of F (see [19, V]), the set of (y,u) with S(y,u)
constant (up to analytic equivalence) is a smooth submanifold. By the
above assumption ii) on F, there are only a finite number of strata {SJ .
Lastly, let n: C^4 -> C4 denote the projection along C x {0}. Then,
we have the following geometric condition for finite efi/-determinacy.

PROPOSITION 9.1. — For the unfolding F above, suppose there is a
neighborhood V of 0 in C^ such that n is a submersion on each S ;nV.
Then, there is a neighborhood V^ of 0 in 0 such that the germs
FI (., u): C5, 0 -> C, 0 are finitely ^/-determined for u € U. In particular,
fo is finitely ^/-determined.

Proof. — The proof is analogous to that of proposition 4.2 of [4,1].
We choose neighborhoods Ui of 0 in 0 and V^ °f 0 m C5 so that
U^ x Ui c: U and Fi(U2 xUi) c: V. We define a parametrized family
of mappings ^ : C -> C"^ by i^(y) = (y,u), for u e U. For a given
M € U I , there is a neighborhood V^ of 0 in C so that („(¥„) c= V. By
the assumption on TtKS^nV), fJV,, is transverse to each S;. Then, ^ is
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i

also transverse to {0} x 0; hence ^ is transverse to Fi . Also, if f^Fi
denotes the pull-back map then f?F;i = Fi(., lOIFr^VuX {"})• Lastly,
by the same argument used| in proposition 4.2 of [4,1], („ transverse to the
{SJ implies that i^Fi is multi-transverse to contact orbits off of
F^^OyU) n £(T\), which is a finite set in a compact neighborhood of
(O,M) . Thus, on a small enough punctured neighborhood of (0,u), F^ (. ,u)
is infinitesimally stable by [19, V]. Thus, the germ F(.,M) is finitely sf-
determined by the geometric characterization of Mather and Gaffney
referred to in [4,1]. D

Remark. - For a real analytic germ F: R5^, 0 -> R^.O, if its
complexification satisfies the hypothesis of proposition 9.1, then the same
conclusion holds for F by the geometric characterization.

Now by Theorem 3.23 of Knorrer's thesis (also see remark 2 after
theorem 3.1 in [17]) the versal unfolding of a pair of generic quadrics,
viewed as an unfolding by the moduli parameters of the negative versal
unfolding / of /o, satisfies the conditions of proposition 9.1 (the proof of
this uses simultaneous uniformization of Riemann surfaces). Thus, by
proposition 9.1 we can conclude.

THEOREM 9.2. — The negative versal unfolding of a germ /o defined by
a pair of generic quadrics is finitely ^/-determined. Hence, it is C°-versal and
the versal unfolding is a topologically trivial unfolding of the negative versal
unfolding.

Remark. — In this theorem, the C°-versality follows from corollary 4
of [4,1] rather than Theorem 4 of [4, II].

TABLE l

germs defining
unimodal surface

singularities

{y^—x2,xy•\•z^-\-w2)
(yz — x^^xy + xz2 •+• w2)
(yz — x2^ + z4 + w2)
(yz-x2,y2^-z3^w2)

{yz-x2,y2-\-xz2-{•w2)
(yz — x2 + w2,^ + z3)
(xw + yz.z2 — yw 4- x3)
(jcw + yz.z2 — yw + yx2)

weights of
functions
(d^d,)

(16.18)
(12, 14)
(10. 12)
(10,12)
(8, 10)
(8. 9)

(11,12)
(9, 10)

weights of
variables

(x, y, z, w)

(8, 10, 6, 9)
(6, 8,4, 7)
(5. 6, 3, 6)
(5. 6.4, 6)
(4. 5, 3, 5)
(4.5.3,4)
(4.5,6.7)
(3,4.5,6)

Milnor
number

9
10
11
10
11
11
10
11

Simple
Curve

i5
i<5
i8
iel
lei
18

Here the first six singularities are obtained from curve singularities by adjoining
w2. The notation for the curve singularities is that of Mather [19, VI] or also [22].
These curves also appear in the list of simple singularities of Giusti [11] using
different notation.
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