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AN EXTENSION OF DELEEUWS THEOREM
TO THE N-DIMENSIONAL ROTATION GROUP

by A. H. DOOLEY (*) and G. I. GAUDRY

Introduction.

In his paper on extension, restriction and periodification of Fourier
multipliers, deLeeuw [7] proved the following result:

THEOREM. — Let <S> be a bounded continuous function on (—00 , oo).
Suppose that, for every \ > 0, the function (p^:

^n)=^\

on Z is a multiplier of^L^T), p being fixed in the range [l,oo]. Suppose
also that

Urn sup Hcp^lL == K < + oo.
\^ •

Then <S> is a multiplier of ^L^R), and \W\^ < K.

The aim of this paper is to establish an analogue of this theorem for the
pair of groups S0(n+l) and M(n) — the group of rigid motions of R".

The group M(n) will play the role of R, while the role of the circle
group T will be taken by the rotation group.

(*) Research supported by the Australian Research Grant Scheme.
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An earlier result of this kind was established for the groups SO (3) and
M(2) by R. L. Rubin [8]. While our methods have some general features
in common with his, there are substantial novelties. The principal of these
is that we identify the essential structural link between the two groups via a
family of so-called contraction maps from M(n) to S0(n + 1). There
results a natural passage from harmonic analysis on the one group to that
on the other. Crucial to this is a formula which shows that irreducible
representations of M(n) are approximable by those of S0(n + 1). Such
a formula is naturally obtained by realizing irreducible representations of
S0(n -h 1) by the Borel-Weil theorem (using holomorphic induction). The
approximation result, along with the basic representation theory, are to be
found in Dooley and Rice [2].

The theorem of deLeeuw has been extended to the noncommutative
setting in ways other than those initiated by Rubin. Cf. Clerc [1].

Definitions and notation. Except where otherwise explained in this paper,
we adopt the standard definitions and notations of abstract harmonic
analysis given in Hewitt and Ross [3], [4].

1. Representation theory and harmonic analysis
for the group M(w).

The group M(n) is the semi-direct product R" xSO(n), in which
S0(n) acts on R" by rotation. Let e^, ...,^ be the standard basis
vectors in R", and denote by SO(n-l) the subgroup of S0(n) that fixes
e^. Let T"'"1 denote a maximal torus of S0(n — 1), and fix a choice
P_ of positive roots of SO(n-l) on T"1"1 as in [2]. To each character a
of T"1"1 and each positive number R, we associate a unitary
representation co^p of M(n). The representation space of CD^R is denoted
Jf"; it is the same for all R > 0. We denote by T""1 the set of
aet"'"1 such that (da,p) ^ 0 for all p e P _ . The space ^f" is
nontrivial iff a e t^"1.

1.1. DEFINITION. - The space Jf01 (=Jfa(SO(n)) consists of those
functions f in L^SC^n)) such that

(1) f(st) = a(t)/(s) (5 e S0(n), t e T"-1);
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(2) for every 5eSO(n), the function u-^f(su) on SO(n-l) is
« holomorphic » with respect to P - .

Let da be the representation of S0(n— 1) induced from the character
a as in §2. The representation co^p is that induced from the
representation or, (g) ^R<(?"1•> of SO(n-l) x R". Its action on the space
^f" is given by the formula

(3) K,R(x,0/](5) = e-^'^t^s)

((x,r)6M(n), 5€SO(n)). Cf. [2].

Plancherel measure on the p.o.t. dual of M(n). The set
X = {(O^R: aeP""1, R>0, Jf'^O}} does not comprise all of the
irreducible representations of M(n). Its elements are said to be
representations of principal orbit type. The set X carries the Plancherel
measure p, on the dual of M(n). The measure \JL is given by the formula

(4) d^R) = c^-1 dRd^-

in which €„ denotes the surface measure of the unit sphere in R", and dg,
denotes the dimension of the representation space of the irreducible
representation of SO(n-l) obtained by holomorphic induction of the
character a from T'""1 to SO(n-l). Cf. § 2. A convenient reference for
formula (4) is Kleppner and Lipsman [6], p. 473.

Haar measure on M(n). This is just the product of Lebesque measure on
R" and normalized Haar measure on S0(n); the group M(n) is
unimodular.

Fourier multipliers on M(n). Let X and \SL be as above.

1.2 DEFINITION. — If 1 ^ p < oo, and 0 is an operator-valued
function on X, \ve say that I) is a Fourier multiplier of LP(M(n)) if

(i) for each (O^R? ^(^a.ii) ls a bounded operator on Jf;
(ii) the norms ||<I>((O^R)|| are uniformly bounded;

(iii) for each a, the function R-^I)((O,R) is (Bochner) measurable;
(iv) there exists a number B > 0 such that

(5) f Tr {O((O,,R)/(CO,.R)^(CO,,R)} ̂  < B||/||,||̂
Jx

for (say) all f, geC,(M(n)).
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The smallest number B for which (5) holds is called the norm of <S>,
and is denoted |||0|||p.

Remark. - It can be shown that, if 0> is a Fourier multiplier of
LP(M(n)), then there is a bounded linear operator T^ on LP(M(n)) such
that

(WT(co^) = 0(co )̂/(o)̂ )

for (say) all /e C, and all a, R.

The operator T<o commutes with right translations. A converse
assertion can be established equally easily.

Note that ]||<&|||p = ||TJ|̂  and that |||0|||p is, strictly speaking, only a
semi-norm.

2. Representation theory and harmonic analysis
for the group S0(n -h 1).

Identify the subgroup SO(n-l) of SO (n 4-1) with the set of rotations
of R^1 that fix both ^ and e^^. The elements of (SO(n-l) can be
thought of as block matrices in which the bottom-right 2 x 2 block is the
identity matrix. If T"*"1 is a maximal torus in SO(n-l), and T denotes
the set of block (n-hl) x (n-hl) matrices of the form

^(n-Ox^-l)

cos 9 — sin 6

sin 9 cos 6

then T = T"'"1 x T is a maximal torus in SO(n-hl).

Let Y be the character of T"1 which projects each element of T"1 onto
its bottom-right 2 x 2 rotation matrix. Then the set of characters of the
maximal torus is the same as the set of functions of the form ay^, in which
a is a character of T"1"1 and k is an integer.

The dual of S0(n+1) can be obtained in the following way. For each
character a of T'""1 and each integer fc, consider the character ^ = ay*
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of the maximal torus T of S0(n+l). Its differential d% is do. -h k d y ,
an element of ^, the dual of the complexification of the Lie algebra of
T. Let a choice ^ of positive roots for (gotc) be made as in [2], and

split ^ as P- u P + , where P- is the set of roots for SO(n-l)
chosen above, and P+ is the complementary set, viz.

P+ = {± M?+i-2,.n-2, + ^+l.n : 0 < ̂  W - 1}

if n + 1 = 2w, with the addition of i^+i.n if n is even.

Let (X,Y) denote - K(X,Y) , K the Killing form on 9c • Then

(6) (rfX,p) ^ 0 for all pe^

iff

(7)
f(i) (Ax,p) S? 0 for all peP- ; and
[(ii) k > kQ(d), where

feo (a) = max |(da, u^i- 2q,n - iq)\.
0<q^m—l

To see the equivalence of (6) and (7) notice that (dy,p) = 0 for all p e P- ,
so (1) is immediate from (6). To obtain (ii) from (6), notice that
(dy,Un+i,n) = 1 anc! use the description of P+ given above.

The condition (6) is necessary and sufficient for the representation of
SO(n-hl) holomorphically induced from % to be nontrivial.

For each character % = ay* satisfying (6), let Jfa^(SO(n+l)) denote
the representation space of the representation a^ induced
holomorphically from /. The main facts about o^ and 3^^ that we
shall use are as follows. (See Dooley and Rice, loc. cit.).

(a) Each Jf^ is a finite-dimensional invariant subspace of
L^SC^M +1)); and o,̂  is the restriction of the left regular representation
to ^«.k.

(b) There is a function ^ on S0(n+l) that takes the value 1 on
S0(n) = {^€SO(n+l ) : g^n-n = ^n+i} a^ maps Jf^ pointwise into
•^a.k +1 •

(c) It follows from (b) that the sequence of restriction spaces
(^a^iso^))^ forms an increasing sequence of finite-dimensional S0(n)-
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invariant subspaces of ^"(SC^n)). It is shown in [2] that [J ^akiso(n) ls

k=kQ
dense in ^f(x(SO(n)).

(d) It follows from (c) and (7) that the representation space ^(S0(n))
of CD^R is nontrivial if and only if (da,p) ^ 0 for all positive roots p of
SO(n-l); i.e. iff the representation o, of SO(n-l) induced from a is
nontrivial.

Plancherel measure on the dual of SO(n-hl). This is the discrete
measure that assigns to each irreducible representation a,^ the mass
^<x k = ^o L » ^ dimension of ^f, ̂ . By the Weyl dimension formula ([4],
p.'139)

^ , n (^x+s^p)(0) d = 11 . c , . ?
x p>o (8,P)

8 denoting - ^ p e t^.
2 p>-o

At a later stage we shall need a relationship between the Plancherel
measures on the duals of our two groups. Crucial to the establishment of
this relationship is the following lemma.

2.1 LEMMA. — Let 5C = ay* be as above, mth % satisfying (6). Denote
by a^ = a^fc (resp. aj the representation of S0(n4-l) (resp. SO(n-l))
induced holomorphically from / (resp. a) and by d^ (resp. dy) their
dimensions. Then

(9) fe-^^A^/l +0^

as k -> -h oo, A being a positive number independent of a and k.

Proof. — Write < I > + = P _ u P - ^ as above. Notice that P+ contains
(n—1) elements, that

^ P=(^-l)^i.n
P € P +

and that
(^i.n,P)=0 if p e P _ .
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Thus, setting 5- = . ^ p and using (8), we obtain
^ peP-

no^ ^ ~ n O^5-^) rr Jfe(^p)±(^^,Jy1^) "a,*— 11 —7s——\—' 11 \———7c—^———+ 1 ?•
peP- (8-,P) pep, [ (8,P) j

since (Ax.i^^) = 0 , and (dy,u^) = 0 if l ^ q < p < n + l .

Now the first product in (10) is precisely d,, since P_ is a set of
positive roots for SO(n-l). Furthermore (dy,p) = 1 for all p e P + ,
and so

(11) <fc=^Q(a,k)

where

Q(a,k)=n1 (ka^b,),1=1

the numbers a, being positive and independant of fc,a. Dividing both
"-i / k \ n-i

sides of (11) by ]"[ a* + T ) we deduce (9)' with A = ]"[ a,-1.1=1 \ ^/ i=i

Haar measure on S0(w4-l). With each element ^6SO(n+l),
associate the point ^^ ge^^ of S" having spherical coordinates say
6i» • . . , 9 n , 9 ^ , 0 ^ Qj < 7c(/=2, . . . ,n ) , 0 ^ 61 < 2n. For each 7,
denote by 59. the rotation of R""^ which acts only in the (^+1,^.)-
plane, and rotates ^.+1 towards ej through angle Qj. Let r. be the
rotation s^ . . . s^, and h = r^€SO(n), so that g = r^h. The
procedure just described gives a well-defined way of writing ^ as a product
r^h, where /ieSO(n) and r^ is determined by the point ^ of S". It is
known, and simple to verify, that

(12) f f(g)dg= f f f(r^h)dhd^
JSO(n+l) JS" Js0(n)

the integrations on the right side being with respect to normalized Haar and
surface measures.

Fourier multipliers on S0(n+l). The definition of Fourier multiplier
of L^SC^n+l)) is that given in (35.1) of Hewitt and Ross [4]. Their
definition can be easily reformulated in the shape of an appropriate
« Parseval-type » inequality like that given for M(n) above.
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3. Elementary Lie theory: contractions.

The Lie algebra of the group M(n) is isomorphic (as a vector space)
with R" © so (n), and the Lie product is determined from the following
formulas:

(1) [R^R"]^};
(2) [X,Y] = XY - YX = [X,Y]̂

for all X,Yeso(n);

(3) [M,X] = X(u) (u e R", X e so(n)).

In the formula (3), X(u) is the result of applying the matrix (mapping) X
to the vector u.

On the other hand, the Lie algebra of SO(n-l-l) is the set so(n+l)
of real antisymmetric matrices with the standard Jacobi product. Note that
eo (n-hi) is isomorphic as a vector space to R" © so(n): to be specific
think of so (n) as the subspace of so(n-hl) supported in the upper-left
n x n block, and of R" as the subspace of elements carried by the bottom
row and (n-^-\)st column.

There is a natural sense in which the Lie product in m(n) is the limit of
the Lie products in a family of vector-space-isomorphic copies of so (n+1).
Viz. we let {(pj denote the family of mappings of so(n+1) == R" © so(n)
onto itself given by the formulas

(p,(i i©X)=^©X.
A<

It is simple to check that

(1) ^ (p,-1 {[(p,(S),(p,(T)L^J = [S.TL,,

for every pair (S,T) of elements of R" © so(n). The relation (1) captures
the essence of the statement that the Lie algebra of M(n) is a contraction
of that of S0(n + 1).
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\

Lie anti-derivatives: the mappings TC^ . For each ^ > 0, there is a
canonical mapping 71̂  from SO(n-hl) onto M(n) whose Lie derivative is
the mapping q>^. It is given by the formula

(2) 7^(x,0 = expso(n+i)^).^

We examine in the next section the way the mappings n^ intervene in
the transfer (in the limit) of the harmonic analysis on (copies of) the group
S0(n-h 1) to that on the group M(n). Full details of the representation-
theoretic side of these matters are to be found in [2].

4. Transferring analysis from SO(Ji-hl) to M(n).

In the case n = 2, the space Jff^ ^ = Jt^,, k ls easily identified with the
space of trigonometric polynomials of degree at most k, a subspace of
jf" = jf° = L^T). This renders the subsequent analysis particularly
simple. Cf. [8]. In the general case, it is necessary to show that the natural
mapping R^ of Jf,^(SO(n-hl)) into Jf01 (which arises by restriction to
S0(n)) is one-one. Moreover, the restriction mappings and their inverses
figure in all of our results dealing with the transfer of analysis from
SO (n-1-1) to M(n), in particular, in the analogue of deLeeuw's theorem
itself.

Injection of the spaces ^a.k mto ^a- Let a be a character of T1""1

and fc be a fixed integer. The functions in J^k(SO(n+l)) are
continuous, so we may consider the restriction mapping

(1) R^/^YISOW

of ^f,^ into Jf". We proceed to show that the mappings Rj^ are one-
one. Actually, what we do is quite general, applying to a general compact,
connected Lie group G with maximal torus T.

To prove that the mappings R^ are one-one, we introduce the
complexification G° of G and the canonical complex structure in gc
defined by the mapping J:J(X+iY) = - Y + fX(X,YeQ).



120 A. H. DOOLEY AND G. I. GAUDRY

4.1 DEFINITION. —Let u be a C00 function on G0. We say that f is
holomorphic if

Xu = - f(JXfu

for all X e Qc • (XM denotes the derivative of u in the direction X.).

Consider now the connected Lie subgroups H, U and B of Gc

corresponding to the Lie subalgebras tc, 'n4' and b = tc -+- r^ of gc- It
is known [8, Ch. VIII, § 4] that B = H x U. Therefore, if / is a character
of T, we can consider its natural extension ^' to a homomorphism of H
into C*, and then the one-dimensional representation of B, also
denoted yj, given by the formula

x'(M==xW.

4.2 DEFINITION. — Let S^ denote the space of holomorphic functions u
on Gc such that

(2) u(zb) = xW-W

for all zeGC, h e B .

Recall that the space ^f^(G) comprises those C°°-functions / on G
such that

(3) W-tWfW (xeG^eT)

and

(4) ^ f(x exp 5X,) + i ̂  f(x exp sX^.o = 0

for all X^ -h 1X2 e r(4 ' . Notice also that every C°°-function / on G has a
unique holomorphic extension u to G0.

4.3 LEMMA. — Let ^ be a character of the maximal torus T of the
compact connected Lie group G, and suppose that f is a C^-function on
G. Then fc ^f^ iff its holomorphic extension to Gc belongs to S^.

Proof. — If u € S^, then U(G satisfies (4) in view of (2) and the fact
that ^ is constant on U. The converse is equally easily established.
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4.4 THEOREM. - Let /€Jf,,k(SO(n-hl)), and suppose that /= 0 on
S0(n). Then /= 0.

Proof. - Denote by / the character ay*, by G the group SO(n-j-l),
and by K the subgroup S0(n). Let u be the holomorphic extension of /
to Gc. By Lemma 4.4, M € < ^ . Since f= 0 on K, it follows that u = 0
on K^. On the other hand, u satisfies (2). So u = 0 on K^B.

It remains to show that K^B contains a neighbourhood of the identity
in Gc. This follows from the fact that the set K^B, being the image of
the direct product K0 x B, under a mapping of constant rank, is a
submanifold of G°; its tangent space is lc + b; and tc •+• b is equal to
9c, because it contains the elements u^ - 24 - iMn +1. n - 24 and
^..n-H-24 - lMn-H.n+1-24 (0<q<m-l).

4.5. COROLLARY. - The restriction mapping R^ of Jf,^ into Jf01 is
one-one.

Approximation of representations. A careful examination of the proof of
Lemma 6 of [2] shows that Theorem 1 of that paper can be recast in a form
more adapted to our present needs, as follows.

4.6 THEOREM. - Let a e t""l, and suppose j ^ 70 (a). If C is a fixed
compact subset of R", U G^/SO(n+l)), S > 0, and

E(k^x) = ||RkCT^(7c,(x,0)i|^U - (^(x.ORfcUll^soo.))

then there exists ^o > 0 suc^ ^flr

(5) ?iE(k,^,;c,r,) < D,
k

a fixed number, for all \ ̂  ^o» ^ k ^ j such that - < S, and all
A>

(x,t)eC x S0(n).

Remark. - In view of Theorem 4.4, the quantity E(k^,x,t) can be
written as

(6) ||R,a». k(7c,(x,0)Rk-1 u - ̂  ̂ (x,t)u\\

for u € ^ajisooo • The statement (5) can be thought of as implying an
« approximate intertwining » between the representations CD, 4. and the

mappings CT^ ̂ 07^ .
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The mappings n^ in spherical coordinates : approximation of ffaar
measures. Adopting the notation explained for (12) of§ 3, but with s^ e )
in place of Se,, . . . s^, we express the action of expso(n+i) on the
subspace R" of so(n+l) as follows.

4.7 LEMMA. - Let x = Ru be a (nonzero) point of R", where u is a
point on S""1 with spherical coordinates (81, .. . ,9^_i ) . Then

Ru
(7) expscx^i)

-Rt/
= 5(9l<•••.e„_l,o) !S(9,...,R)S(9^,...,e„_l,o)•

Proof. — It is merely a matter of checking that the one parameter
mappings defined by the two sides of (7) have the same derivative at 0.

D

4.8 COROLLARY. — Let X. be positive and suppose that x is a point of
R" such that \\x\\ < 'kn.

Then for every t e S0(n)

(8) 7tx(^0 = s^

Approximation of Haar measures.

— 5(el,...,9„_l,|M|A)s(9l,...,e„_l,o)r•

4.9 DEFINITION. - Let f be a function in C,(M(n)), and suppose that
X > 0 is so large that

supp/£B,= {(x,t):\\x\\<Kn}.

Observing that the mapping n^ is a one-one mapping of B^ onto
SO(n-hl), denote by f^ the function on SO(n-t-l) such that

(9) AOTC,=/ .

4.10 THEOREM. - Let f be a given function in C,(M(n)). Then

f A - f /=0(?L-2)
JSO(n+l) JM(n)

(10) Cn^ A
JSO(n+l)

as K -^ -h oo , €„ denoting the surface measure of the unit sphere S", the

bound in the 0(k~2) term depending only on \f\.
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Proof. — The relation (10) can be verified by using (8) and (9) along
with (12) of §2, writing the integral over S" in (12) for f^ in terms of
spherical coordinates. Cf. Lemma 5.7.

5. The multiplier theorem.

Denote by P^ the orthogonal projection of the space ^f" onto
^(X^ISO^)'

5.1 THEOREM. — Suppose that 1 ̂  p < -h oo. Let <1> be a function on
the p.o.t. dual X of M(n) such that

(i) for each aeT^"1 , the function R-> <S>((S)^) is a bounded
continuous function with values in ^(Jf);

(ii) for each 'k > 0, the function (p^ : (p^a,^) = R^PfcOOo^Rfc

(aet""1,^^^)) is a Fourier multiplier of 17(80(^+1)), and

Ill^lllp < K

for all (sufficiently small) ' k . Then <S> is a Fourier multiplier of LP(M(n)).

The proof will be broken down into a succession of steps, presented in
the form of Lemmas. We beging noting that, in proving that <1> is a
Fourier multiplier of LP(M(n)), it will be enough to establish the existence
of a number B such that inequality (5) of Definition 1.2 holds for all
f,geCc(M(n)) which are linear combinations of functions of the form
F ® h, in which F e C<.(R"), and h is a trigonometric polynomial on
S0(n). In the remainder of this paper, we shall simplify the notation by
omitting the mappings Pj, from the various formulas. It will be apparent
from the context that for example, Rj^o^RRk should be read as
R^P,®^.

Trigonometric polynomials being linear combinations of entry
functions, it will be convenient to choose a complete family of irreducible
representations of S0(n) that are related to the spaces Jf,.k? as follows.

For each aet"1"1, and integer k ^ 0, the space Jf,,k(SO(n+l)) is
defined, though trivial unless aeT""1 and k ^ feo(a). In any event

wta,0|SO(n) c ^a.tlSCKn) c • . • c ̂ a .
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5.2 LEMMA. - If a + P, then ^ 1 ̂ .

Proof. - If /eJf" and geJf^ , then

f /(5)^(5)d5= f f f(st)g(st)dtds
Js0(n) JSOQi) Jl^-'

= f /(s)^)ff o(OP(OA)ds
Js0(n) \Jrm-\ /

=0,

in view of the T"'"1-in variance property of the functions in Jf"
(resp. JfP). ^

Consider now the left regular representation of S0(n). The space
L2(SO(n)) can be thought of as being decomposed

f ® ^©fL 2 ® © ^r),
\ a / \ a /

the index a ranging over

t';-1 = {aeT^iOta^S^peP-}.

Each of the summands in the first bracket decomposes:

e^" = ^a.O|SO(n) © (̂ ^a,l|SO(n) S) ^a l̂SCKn)) © • • •

where the summands are chosen to be S0(n)-invariant. It follows therefore
that we can choose a complete family of irreducible unitary representations
of S0(n) that falls into natural sub-families : those that act in (minimal)

subspaces of L2 0 (© e^f"); and, for each a, those that act in subspaces
a

of Jf". Given a, the minimal invariant subspaces of Jf" can be chosen
to lie in Jfo,oiso(n) or in one of ^-mso(n) ® ^ajiso(n) O'=0, 1, . . . ) .

5.3 LEMMA. — Let f be a function in Cc(M(n)) of the form f = F ® h,
with F e C^R"), and h a trigonometric polynomial on S0(n). Then the
family of operators Rj^C^.k^*T1 vanishes off a fixed finite-dimensional
subspace of the span of the spaces ^^so(n) -> anc^ls zero ^cept for finitely
many a.
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Proof. - Using the notation of (12), § 2, we have that if
(pe^(SO(n+l)),

(1) Rj^.Wd^P) = R» f F(S(e,,,..,e,_,,^(S(e,,..,e ,)0
J S" x S0(n)

a<x,k(S(el....,9„_l)O^A(P

= R* F(s(el,...,9„_l,^)Kk(S(el,..,9„_l))^
Js"

fc(s(ep...,9„_l)0^.k(0(pA.
Js0(n)

The function

L ^,,,e,_pOCT^(0(pA
(")

is in Jfa.k» ^d its restriction to S0(n) is the same as

^(ei,...,9^,)0^,k(0(Rk(p)A.
Js0(n)

This is because R^k(t)^) = a,^(ORk(p for all reSO(n). In other
words, we can write the last integral in (1) as

(2) Rfc-1 | h(s,t)a^,(t)R^dt,
Js0(n)

9 denoting (9i, . . . , O^i). But for every 6, the function Pe: t -^ h(se0
is a trigonometric polynomial on S0(n) whose spectrum is in a fixed finite
set of irreducibles of S0(n) (independent of 9). Furthermore, o.^(0 is
just p(Q, p denoting the left regular representation. In view of the
discussion concerning a specific choice of a complete family of irreducibles
of S0(n), given above, and of the orthogonality relations, it is clear that

the integral in (2) is nonzero only if R^cp belongs to @ ^f^so(n)» say, S
PeS

being finite and j ^ 0 fixed, both determined by the spectrum of h.
D

In order to simplify the presentation of the remaining argument, we
introduce further notation.
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5.4 DEFINITION. — For each X > 0, character aeT"*"1, and integer
k ^ 0, wife

(3) T^=Rfc(a^o7iOR,-1.

For each (x,t)eM(n), T^^(x,0 is an operator on ^a,fc|so(n) (this space
being possibly trivial).

5.5 LEMMA. — Z^( / te 05 in 5.3. TTi^n
(i) /or all a, fe, ' k ,

/(T,.k.0= [ f(x^^(x,t)dxdt
JM(n)

vanishes off a fixed finite-dimensional subspace of the span of the spaces
Jfpj(so(n)» an^ l5 ^^ but for finitely-many a;

(ii) t^ saw^ i5 ^ru^ o/ /(CO^R) /or a?( R > 0.

Proo/ - (i) Suppose that (pe^f,^. Then by Corollary 4.8,

(4)/(T,,k,,)(Rfc<P) = F(x) ^(OR^,fc(expso(^i)(^)0(p^A
JR" Js0(n) V"/

= [ + w iwr'^iwi f ^e
Jo Js"-i

h(t)R^^k(S(^...^_^wSQlt)^ dt
J S0(n)

(in which 9 = (9i, . . . , Qn-i) ls identified with a point of S""1). The
formula (4) can be rewritten

/

(5) A^O(R»(P)= {+00 fdy \ dQR,p(s^ .,e ,,,A))
Jo Js"-i

/l(Op(se-lt)(pA.
Js0(n)

Now if ueSO(n).
p(u)(p = R^pCM)!̂ ].
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So the last integral in (5) is equal to

(6) R,-1 f ^(Op^OR^A.
Js0(n)

The remainder of the proof is just like the closing Stages of the proof of
Lemma 5.3, and shows that (6) vanishes except when R^cp belongs to a
finite-dimensional space determined by the trigonometric polynomial fe .

(ii) This follows in a straightforward way from 1.1 (3). D

5.6 LEMMA. — Let f be as in 5.3, and suppose that aeT"^"1. Then if
S > 0, there exist KQ > 0 and a positive integer jo such that

(7) l̂l/Kp -/(T,,̂ )I|̂

kis uniformly bounded for all ^ ^ ^o, and all k ̂  jo such that - ̂  S.
A»

Proof. — Choose the compact set C c R" so large that / is supported
in C x S0(n). Then

(8) /(co,, k) - /(T,, ̂  ,) = | /(x,QK *^0 - ̂  k. x0c,0] dx dt.
JCxSO(n) x

In view of Lemma 5.5, the operators in (8) are zero on the complement of
say e^^so(n)» a fmite-dimensional space. It is therefore sufficient to
estimate

^\\f^)u-f(^^)u^

for u e ^a,;oiso(n) • The existence of a uniform bound for these quantities
follows from Theorem 4.5.

D

5.7 LEMMA. - Let f be as in 5.3. Then

||c^RJ,(a.,,)R,-1 -/(T,.A^) = 0(?i-2)

as K -^ -h oo , uniformly mth respect to a, k.
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Proof. - In view of Lemmas 5.3 and 5.5, it will suffice to prove the
estimate

WRj^^R^u -7(To^N2 = 0(5i-2)
\.

for a fixed u in say ^,;oiso(n).

The first-term within the norm signs can be written, using spherical
coordinates and invariance of Haar measure on S0(n), as

c ?i" r2" r"
^ = -n— \ dQ^ \ sin 62 dQ^ . . .

cn JO Jo

| sin"-1^^ [ A(^,..,e^(9;,..,e^ ,,o)0
J0 Js0(n)

^a. k(S(6i, .. .,e^(9i1,.. .,e^_i,0)ORfc' ̂  A.

If supp/c {(x,r):||x|| ^ A}, and TeSO(n), then A(S(e,,..,9^T) = 0
unless ̂  ^ A. Therefore if we change variables by setting 9^ =" \\x\\j\,
we get

(* 2n /•A /|| n\

i.=^-1 rfe,... sin'-(i^) ^11
JO Jo \ A- /

A(^(^,0)RkCTa, k (n,(x,r))Rfc-1 u A
Js0(n)

= f211 d9i . . . [A W-1 + [?,--i sin"-1 f1!^) - |M["-1] f ...
•'0 •'0 \ A / Js0(n)

=A^,x)" + f2'' ̂  ... fA [5i1-1 sin"-1 f̂ !)
Jo Jo \ A /

-INI''-l]<f|M| f ...
Js0(n)

The error term can be estimated by

(io) r de , . . . r c w^- diMi f 1^,01
Jo •'0 A' Js0(n)

sup^,)\\\.k^(x,t)u\^dt.



DELEEUW'S THEOREM 129

Since u € ^a,^iso(«)» w<e ca^ write, for k > Jo,

(11) R,a,,, (7C ,̂0)R,- ̂  = R,a», ,(^(x,0)v|^(R^ u)
=Rp(^(x,r))^-7o(R,^M),

R denoting restriction to S0(n), and p the left regular representation.
Since ||\H|^ ^ 1, it is clear from (11) that

(12) SUp ||T^(X,OM||2 ^ SUp \\R^^(n^t))R^U\\^

and the right-hand side of (12) is independent of a and k since the a^j
are unitary. It follows that the expression (10) is 0(X~2) uniformly with
respect to a, k as ^ -> + oo.

D

5.8 LEMMA. — Let f and g be functions on M(n), each a finite linear
combination of functions of the form F ( x ) f c , where FeC^R") and h is a
trigonometric polynomial on S0(n). If S > 0, there exist ^o > 0, an
integer j^ ^ 0 , and a constant K = K(/,^) such that

(13) |Tr {A/((D^(co,p} - c2^ Tr{R,-lAR,A(a,,^(a^)}|

^ K\\A\\^(- + c^-1!!/^,,)!^)

for all aet"^"1, ^ ^ ^o and all k ^j\ for which - ̂  S.
A<

Proo/. - Write

(14) Tr {A7(o)^(o)^)} = Tr{A[7(co,^) - c^RJ^a^^R.-^^tco^p}

+Tr {^[c^Rj^^R^m^) - ̂ (R^^a^.^R,-1]}

+ c^2" Tr {AR,A(a.. ,)̂ (a,. ,)R,-1}.

It suffices to estimate appropriately the first two terms on the right of
(14). In doing so we shall use a number of inequalities from [4],
Appendix D, concerning the von Neumann norms ||. \\^ .
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NOW

(15) |Tr {A[/(co., p - c^Rj^ ,)R, (̂(o., ?})

^ l|A||̂ .)llA»..t) - c^Rj^^^^M^k)^.
A. A,

By Lemmas 5.6 and 5.7, there exist ;o > 0 ^d ^o > 0 such that the right
side of (15) is bounded by

(16) ^ l|A||||^(^p||,^^ IIAIHI^pll^ (Lemma 5.5 (ii))

^^-l|A||||^||i

for all a e t^"1, ^ ^ ̂  and j ^ 70 such that 7 ^ S.
A

For the second difference, we have the estimate

(17) |Tr {A[c^"R,A(a,, ,)R,- ̂ (o)^) - c^R^^a,, ,)R,- ̂ j

^ ||A|| llc^R^^a^^R,-1!!^!^^? - c^R^^^R,-1!!^

^ I!3- IIAIIIIc^Rĵ a^^R,-1!!^ (Lemmas 5.6 and 5.7).

But for all a, k and K > 0, we may choose a finite-dimensional space
M = M(X,a,k) such that

IV^a..)̂ 1 = PMRJX^R^PM,

PM denoting orthogonal projection onto M; and thanks to Lemma 5.3,
we may assume that dim M ^ D, a fixed number, for all a, fe, X,. Hence

(18) l|c^R,A(a., ,)R,-1!!̂  ^ c^T |̂|A(a,. ,)||̂

under the same conditions as for (16). The inequality (13) comes from
combining (15)-(18).

D
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In order to be able to make effective use of Lemmas 5.2-5.8, we employ
an appropriate summability process. This has the effect of reducing the
discussion to one in which <D has compact support. We shall use the
results of J.-L. Clerc [1] concerning Riesz means.

Let - p(a/) denote the eigenvalue, corresponding to the character
ay^eT"^, of a fixed bi-invariant Laplacian on SO(n-t-l). Then
according to [I], the family of functions

{fi-^pn (R>.)R2
f+)^ketH

is a uniformly bounded family of multipliers of ^L^SC^n-t-1)) for every
q: 1 ^ q < oo , N denoting the dimension of S0(n+1). We shall also
need the fact [l,p. 152] that

^1(0^) = <fedy-hrfa+8,fedy-hda-h8> - <8,8>

8 denoting one-half of the sum of the positive roots, and <., . > the
Cartan-Killing form. Hence,

(19) ^(ay^) = k2 + M + B,

where A and B depend only on a.

5.9 LEMMA. — (a) In order to prove Theorem 5.1, it mil suffice to
establish the existence of a constant B such that

r + 0 0 / RA ^+00 / T^2\ N

^.-Jo ^"T-S-.
(20) S d, dRR"-1 1 -—)

aet'"-1 JO \ ^ /+

Tr{<I>(co^)/(c),,R)^((»,,R)} < Bll/11,,1^1,,,

for all f, g having the form specified in Lemma 5.8, and all sufficiently large
S > 0,

(b) The left side of (20) is a positive scalar multiple of

( udry''^'^ 1
llm" S <k I1 ~ w). ̂  ̂ ^.p^p^-p}\-^ +00
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Proof. — (a) is a simple consequence of the dominated convergence
theorem.

(b) The idea here is to replace the integral by Riemann sums, but with

( ^(o^A / k2 \^ ~ ^2o2 ) replacing the quantity ( 1 — ^ ^ j that wouldA s 7+ \ /l s /+
naturally appear; and also to replace djc"~1 by Ad,^ (Lemma 2.1). We
begin by studying the relationship between the former two quantities.

Thanks to (19), we have that

(21)

=^|A^BJ^,

say, Ci denoting a fixed number, dependent only on a. Therefore, if
k2

^<1 '

fi[
k2}^h

( , ^(aYk)^
\ \1^1 I\ ^ ^ /+

^
k2

^S2

1

(22) ^):-(•-^)):^-0©
uniformly with respect to S ^ 1, as 'k -^ + oo. On the other hand, it
follows from (19) that

^k) ̂  ̂  k2

for all but finitely many fc , say for k ^ feo • If. therefore, ^(ay^) < ^2S2

and k ^ ko» ^en

(23) ^S2 > - k2;
4

hence (21)

^ ^i ^Y ^^ ^^Y < c 3 -o f^(24) [l ~ x2s2^ - ̂  - -Fs^ ^ is - °W

uniformly with respect to S ^ 1, as X, -^ + oo.
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We deduce from (22)-(24) that

k2 \^•^'•^(•-^-(•-^nr
^ Tr(l>((o., ?/(«). p^(».p

^"m.o(0,I(Q'-l^Tr(••"Jk^2^S
»2S

^ .I!"1, 0 (̂ ) f dR R""' ITr{<I>((o^)A<a.R)^KR)}l
\ / •/ 0

= 0.

One can prove in a similar, but simpler, fashion that

( II/TW^^ /AA""1 1
(26) ̂ ^ ^^.(Q I

Tr{$<(o.,p/((o^((o.,p}

/ LlfaYlt)\N 1
= A ̂  H1 - -F^ <. ̂  Tr{(D(o)^)/(o),p^(o),p},

A denoting the constant appearing in Lemma 2.1.

The statement (b) follows from (25), (26), Lemma 5.5 and the definition
of Riemann integral.

Proof of Theorem 5.1. - Let / and g be as in the statement of
Lemma 5.8. Now there is a finite set E such'that f(^p) = 0 for all
a ^ E. By Lemma 5.8 and (23),

""-, .£ S ̂  (l - ̂ H?)" ITr{0«...p/(«,p,(«,..p}?l-» +00

- cy Tr{R,- ̂ (o^pRj^CT,, ̂ (CT.,»)}|

(27) ^ Hm ^ ^ <, t|Tr{...}-c^2 '•Tr{...}|
*• '°0 O t 6 E yo«k<2)lS /-

< C , H m y S ^f^^-iiiy^^V/».V'-'«,t;ll<p2
^^..E/o,^ ^ Y^
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Now, by Lemma 2.1,

j 2\S Kn-l /l \

(28) £ £ ^T<Dsup^^T=0^
^ 2^S ^n-1

(28) £ £ —— < D sup d, ^
a e E JQ^k^2\S /v a e E 1

as X- -^ 4- co. Furthermore,

a e E JQ^k^2\S A< a e E 1 A> W

(29) £ £ ^ ||A(CTA
a e E ^^fc^2^S A'

1 / \ 1 / 2 / +00 \11/2 / _ +a) \ l /2

?..JIA(^..)11^^, E Z <. E Z<JIA(^.X2
A- \ a e E ; o ^ f e ^ 2 X S / \ a e E ;o ^

^^^IIAIL

by the Cauchy-Schwartz inequality and the Peter-Weyl theorem. Yet
Theorem 4.10 implies that ||/J|2 =0(^~"/2) as X -> + oo; so it follows

from (28) and (29) that the error estimate in (27) is in fact lim 0 (-) == 0.v-/
Finally,

(30) ̂ ^(l-^c^

T^R^^pA^^CT^)}!

< lim cW\^(f,)W\,,,
3l-» + oo

V

^s(A) denoting the function on S0(n+l) such that

^MK.) = (i - ̂ ))N A(o,,).

Since the Riesz-mean operators <$^s are uniformly bounded, the last
expression in (30) is estimated by

lim c^KWMp' = W\f\\M^
\~* + 00

by Theorem 4.8.
D
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