YOSHIHIRO MIZUTA

On the boundary limits of harmonic functions with gradient in L^p

Annales de l'institut Fourier, tome 34, nº 1 (1984), p. 99-109 <http://www.numdam.org/item?id=AIF 1984 34 1 99 0>

© Annales de l'institut Fourier, 1984, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON THE BOUNDARY LIMITS OF HARMONIC FUNCTIONS WITH GRADIENT IN L^P

by Yoshihiro MIZUTA

1. Introduction.

Let u be a function harmonic in the half space

$$\mathbf{R}_{+}^{n} = \{ x = (x_{1}, \dots, x_{n}) ; x_{n} > 0 \}$$

and satisfying the condition :

$$\int_{G} |\operatorname{grad} u(x)|^{p} x_{n}^{\alpha} dx < \infty$$
 (1)

for any bounded open set $G \subset \mathbf{R}^n_+$, where p > 1 and $\alpha .$ $For <math>\xi \in \partial \mathbf{R}^n_+$, $\gamma \ge 1$ and a > 1, set

$$T_{\gamma}(\xi, a) = \{x \in \mathbf{R}^{n}_{+}; |x - \xi| < a x_{n}^{1/\gamma} \}.$$

The existence of nontangential limits of u, that is, the limit of u(x) as $x \longrightarrow \xi$, $x \in T_1(\xi, a)$, was studied by Carleson [1] $(n = p = 2 \text{ and } 0 \le \alpha < 1)$, Wallin [10] $(p = 2 \text{ and } 0 \le \alpha < 1)$ and Mizuta [6] in the present situation.

Recently Cruzeiro [2] proved the existence of $\lim u(x)$ as $x \longrightarrow \xi$, $x \in T_{\gamma}(\xi, a)$, for a harmonic function u satisfying (1) with p = n and $\alpha = 0$. The existence of such limits for Green potentials in \mathbb{R}^{n}_{+} was obtained by Wu [11]. Taking these results into account, we give the following theorem :

THEOREM. – Let u be a function harmonic in \mathbf{R}^n_+ and satisfying (1) with p > 1 and $\alpha .$

(i) If $n-p+\alpha > 0$, then for each $\gamma > 1$ there exists a set $E_{\gamma} \subset \partial \mathbb{R}^{n}_{+}$ such that $H_{\gamma(n-p+\alpha)}(E_{\gamma}) = 0$ and

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} u(x)$$
 (2)

exists and is finite for any $\xi \in \partial \mathbf{R}^n_+ - \mathbf{E}_{\gamma}$ and any a > 1.

(ii) If $n-p+\alpha = 0$, then there exists a set $E \subset \partial \mathbb{R}^n_+$ such that $B_{n/p, p}(E) = 0$ and (2) exists and is finite for any $\xi \in \partial \mathbb{R}^n_+ - E$, any $\gamma \ge 1$ and any a > 1.

(iii) If $n-p+\alpha < 0$, then $\lim_{x \to \xi, x \in \mathbb{R}^n_+} u(x)$ exists and is finite for any $\xi \in \partial \mathbb{R}^n_+$.

Here H_d denotes the *d*-dimensional Hausdorff measure, and $B_{\beta,p}$ the Bessel capacity of index (β, p) (cf. [3]). In view of [3; Theorems 21 and 22], one notes the following results :

a) If q > 1 and $n - d \ge \beta q$, then $H_d(E) < \infty$ implies $B_{\beta,q}(E) = 0$;

b) If q > 1 and $n - d < \beta q$, then $B_{\beta,q}(E) = 0$ implies $H_d(E) = 0$.

Recently Nagel, Rudin and Shapiro [7] studied tangential behaviors of Poisson integrals of potential type functions (see Sec. 4, Remark 2). Their results are not applicable to our case unless p = 2.

Remark. – The same result as in the theorem is also valid for a domain Ω for which any function v satisfying

$$\int_{\Omega} |\operatorname{grad} v(x)|^{p} \,\delta(x)^{\alpha} \,dx < \infty, \ p > 1, \alpha$$

can be extended to a function satisfying (3) with Ω replaced by \mathbb{R}^n , where $\delta(x)$ denotes the distance from x to $\partial\Omega$. The special Lipschitz domains in [9; Chap. VI] are typical examples of Ω .

2. Lemmas.

First we note the following result, which follows readily from the fact in [4; p. 165].

LEMMA 1. – Let f be a locally integrable function on \mathbb{R}^n . For $\beta > 0$, we set

$$A_{\beta} = \{ \xi \in \partial \mathbf{R}^{n}_{+} ; \limsup_{r \downarrow 0} r^{-\beta} \int_{B(\xi, r)} |f(y)| \, dy > 0 \},\$$

where B(x, r) denotes the open ball with center at x and radius r. Then $H_{\beta}(A_{\beta}) = 0$.

By [3; Theorem 21] and the result of [4; p. 165], we have

LEMMA 2. - Let f be a locally integrable function on \mathbb{R}^n . For p > 1, we set

$$B_{p} = \{x : \limsup_{r \neq 0} (\log r^{-1})^{p-1} \int_{B(x,r)} |f(y)| \, dy > 0\}.$$

Then $B_{n/p,p}(B_p) = 0$.

Next we prove the following technical result.

LEMMA 3. - Let $c_1 > 0$, $c_2 > 0$, $\gamma \ge 1$, p > 1 and $p - n \le \alpha . Then$

$$\begin{cases} \int_{\{y\,;\,c_1x_n < |x-y| < c_2x_n^{1/\gamma}\}} |x-y|^{p'(1-n)} |y_n|^{-\alpha p'/p} dy \begin{cases} 1/p' \\ &\leq C \begin{cases} x_n^{(p-n-\alpha)/p} & \text{if } n-p+\alpha > 0, \\ (\log x_n^{-1})^{1/p'} & \text{if } n-p+\alpha = 0, \end{cases} \end{cases}$$

where 1/p + 1/p' = 1 and C is a positive constant independent of $x = (x_1, \ldots, x_n)$ with $0 < x_n < 1/2$.

Proof. – Let $x^* = (0, ..., 0, 1)$. By change of variables we see that the left hand side is equal to

$$\begin{aligned} x_n^{1-n-\alpha/p+n/p'} & \left\{ \int_{E_1} |x^*-z|^{p'(1-n)} |z_n|^{-\alpha p'/p} dz \right\}^{1/p'} \\ & \leq C x_n^{(p-n-\alpha)/p} \left\{ \int_{E_2} (1+|z|)^{p'(1-n)} |z_n|^{-\alpha p'/p} dz \right\}^{1/p'} \\ & \text{where } E_1 = \{z, c_1 < |x^*-z| < c_2 x_2^{1/\gamma-1} \}, \end{aligned}$$

where $E_1 = \{z, c_1 < |x^* - z| < c_2 x_n^{1/\gamma - 1}\},\ E_2 = B(0, (c_2 + 1) x_n^{1/\gamma - 1}),$

C is a positive constant independent of x with $0 < x_n < 1$. The required inequalities are established by estimating the last integral.

In the same manner we can prove

LEMMA 4. - Let
$$p > 1$$
 and $\alpha . Then
$$\left\{ \int_{\{y \; ; x_n/2 < |x-y| < |x|/2\}} |x-y|^{p'(1-n)} \; |y_n|^{-\alpha p'/p} \; dy \right\}^{1/p'} \leq C \; |x|^{(p-n-\alpha)/p}$$$

for any $x \in \mathbf{R}_{+}^{n}$, where C is a positive constant independent of x.

Finally we borrow a result from [6; Lemma 4].

LEMMA 5. - Let p > 1, $\alpha and <math>f$ be a measurable function on \mathbb{R}^n such that $\int_G |f(y)|^p |y_n|^\alpha dy < \infty$ for any bounded open set $G \subset \mathbb{R}^n$. If we set

 $E' = \left\{ \xi \in \partial \mathbf{R}^{n}_{+}; \int_{\mathbf{B}(\xi, 1)} |\xi - y|^{1-n} |f(y)| \, dy = \infty \right\} ,$ then $B_{1-\alpha/p,p}(E') = 0.$

Remark. - If $p - \alpha > n$, then one sees that E' is empty.

3. Proof of the theorem.

Take q such that q = p if $\alpha \le 0$ and $1 < q < p/(\alpha + 1)$ if $\alpha > 0$. Then Hölder's inequality implies that

$$\int_{G} |\operatorname{grad} u(x)|^{q} \, dx < \infty$$

for any bounded open set $G \subset \mathbf{R}_{+}^{n}$. Hence the function

$$v(x) = \begin{cases} u(x_1, \dots, x_{n-1}, x_n) & \text{for } x_n > 0, \\ u(x_1, \dots, x_{n-1}, -x_n) & \text{for } x_n < 0, \end{cases}$$

can be extended to a locally q-precise function w on \mathbb{R}^n in view of [8; Theorem 5.6] (for q-precise functions, see Ohtsuka [8; Chap. IV] and Ziemer [12]). Define

102

$$\mathbf{E}' = \left\{ \xi \in \partial \mathbf{R}^n_+ ; \int_{\mathbf{B}(\xi,1)} |\xi - y|^{1-n} |\operatorname{grad} w(y)| \, dy = \infty \right\}.$$

Then we have $B_{1-\alpha/p,p}(E') = 0$ on account of Lemma 5. We define A_{β} and B_{p} with $f(y) = |\text{grad } w(y)|^{p} |y_{n}|^{\alpha}$. also By Lemmas 1 and 2, we see that $H_{\beta}(A_{\beta}) = 0$ and $B_{n/p,p}(B_p) = 0$.

First suppose $n-p+\alpha > 0$. Let $\gamma > 1$ be given. We shall show that (2) exists and is finite for any

$$\xi \in \partial \mathbf{R}^n_+ - (\mathbf{E}' \cup \mathbf{A}_{\gamma(n-p+\alpha)})$$

any a > 1. Let $\xi \in \partial \mathbf{R}^n_+ - (\mathbf{E}' \cup \mathbf{A}_{\gamma(n-p+\alpha)})$. Take and N > 1 such that $\xi \in B(0, N)$, and let ϕ_N be a function in $C_0^{\infty}(\mathbf{R}^n)$ such that $\phi_N = 1$ on B(0, 2N) and $\phi_N = 0$ on $\mathbf{R}^{n} - B(0, 3N)$. Set $w_{N} = \phi_{N} w$. Then w_{N} is q-precise on \mathbf{R}^{n} and satisfies

$$w_{N}(x) = c \sum_{i=1}^{n} \int \left(\frac{\partial}{\partial x_{i}} R_{2}\right) (x-y) \frac{\partial w_{N}}{\partial y_{i}} dy \text{ for } x \in \mathbf{R}_{+}^{n},$$

where c is a constant, $R_2(x) = \log(1/|x|)$ if n = 2 and $R_2(x) = |x|^{2-n}$ if $n \ge 3$. In fact, since w_N is continuously differentiable on \mathbf{R}_{+}^{n} , the right hand side is continuous on \mathbf{R}_{+}^{n} and the required equality holds for any $x \in \mathbf{R}_{+}^{n}$ on account of Ohtsuka [8; Theorem 9.11].

For $x \in \mathbf{R}_{+}^{n}$, we write

$$w_{N}(x) = w_{N,1}(x) + w_{N,2}(x) + w_{N,3}(x),$$

where

$$w_{N,1}(x) = c \sum_{i=1}^{n} \int_{B(x,x_n/2)} \left(\frac{\partial}{\partial x_i} R_2\right) (x-y) \frac{\partial w_N}{\partial y_i} dy,$$

$$w_{N,2}(x) = c \sum_{i=1}^{n} \int_{B(x,|\xi-x|/2) - B(x,x_n/2)} \left(\frac{\partial}{\partial x_i} R_2\right) (x-y) \frac{\partial w_N}{\partial y_i} dy$$

$$w_{N,3}(x) = c \sum_{i=1}^{n} \int \left(\frac{\partial}{\partial x_i} R_2\right) (x-y) \frac{\partial w_N}{\partial y_i} dy.$$

$$v_{\mathbf{N},3}(x) = c \sum_{i=1}^{\infty} \int_{\mathbf{R}^n - \mathbf{B}(x, |\xi - x|/2)} \left(\frac{\partial}{\partial x_i} \mathbf{R}_2 \right) (x - y) \frac{\partial w_{\mathbf{N}}}{\partial y_i} dy.$$

Y. MIZUTA

Since w_N is harmonic on $B(0, 2N) \cap \mathbb{R}^n_+$, $w_{N,1}(x) = 0$ for $x \in B(0, N) \cap \mathbb{R}^n_+$. It follows from our assumption $\xi \notin E'$ that $\int |\xi - y|^{1-n} |\operatorname{grad} w_N(y)| \, dy < \infty$. Hence Lebesgue's dominated convergence theorem gives

$$\lim_{x \to \xi, x \in \mathbf{R}^n_+} w_{\mathbf{N},3}(x) = c \sum_{i=1}^n \int \left(\frac{\partial}{\partial x_i} \mathbf{R}_2\right) (\xi - y) \frac{\partial w_{\mathbf{N}}}{\partial y_i} dy.$$

For $w_{N,2}$ we apply Hölder's inequality to obtain by Lemma 3, $|w_{N,2}(x)|$

$$\leq \text{const.} \left\{ \int_{\{y; x_n/2 < |x-y| < |\xi-x|/2\}} |x-y|^{p'(1-n)} |y_n|^{-\alpha p'/p} dy \right\}^{1/p'} \\ \times \left\{ \int_{B(x, |\xi-x|/2)} |\text{grad } w_N(y)|^p |y_n|^{\alpha} dy \right\}^{1/p}$$

$$\leq \text{const.} \left\{ x_n^{p-\alpha-n} \int_{B(\xi, 2ax_n^{1/\gamma})} |\text{grad } w(y)|^p |y_n|^{\alpha} dy \right\}^{1/p}$$

for $x \in B(0, N) \cap T_{\gamma}(\xi, a)$. Since $\xi \notin A_{\gamma(n-p+\alpha)}$, $\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} w_{N, 2}(x) = 0.$

Thus $\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} u(x) = \lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} w_{N}(x)$

$$\lim_{x \to \xi, x \in T_{\gamma}(\xi, a)} w_{N,3}(x),$$

which is finite.

If $n-p+\alpha = 0$, then we can prove that (2) exists and is finite for any $\xi \in \partial \mathbb{R}^n_+ - (E' \cup B_p)$, any $\gamma \ge 1$ and any a > 1.

If $n - p + \alpha < 0$, then E' is empty, so that similar arguments yield the required assertion with the aid of Lemma 4.

4. Remarks.

Remark 1. - If p > n, $p - \alpha - n > 0$ and u is a locally *p*-precise function on \mathbb{R}^n_+ satisfying (1), then u(x) has a finite limit as $x \longrightarrow \xi$, $x \in \mathbb{R}^n_+$, for any $\xi \in \partial \mathbb{R}^n_+$. Remark 2. – Nagel, Rudin and Shapiro [7] studied tangential behaviors of functions of the form

$$(\mathbf{P}_{x_n} * (\mathbf{K} * g))(x'), \ x = (x', x_n) \in \mathbf{R}_+^n,$$

where P is the Poisson kernel in \mathbb{R}^{n}_{+} , K is a nonnegative kernel, which is radial and decreasing, and g is a function in $L^{p}(\mathbb{R}^{n-1})$. The function in our theorem has a boundary value in the Lipschitz space $\Lambda_{\beta}^{p,p}(\mathbb{R}^{n-1})$ with $\beta = 1 - (\alpha + 1)/p$ locally, provided $-1 < \alpha < p + 1$ (cf. [9; Chap. VI, §§ 4.3, 4.5]). We do not know whether functions f in $\Lambda_{\beta}^{p,p}(\mathbb{R}^{n-1})$ can be written as f = K * g, where K is an appropriate kernel function which is determined independently of f and $g \in L^{p}(\mathbb{R}^{n-1})$.

If
$$g \in L^{p}(\mathbb{R}^{n})$$
, $\beta = 1 - (\alpha + 1)/p$ and $-1 < \alpha < p - 1$,

then

$$F(x') = \int g_{1-\alpha/p} ((x', 0) - y) g(y) dy$$

belongs to $\Lambda_{\beta}^{p,p}(\mathbf{R}^{n-1})$, where g_{ϱ} denotes the Bessel kernel of order ϱ (cf. [9; Chap. VI, § 4.3]). Hence $u(x) = P_{x_n} * F(x')$ satisfies

$$\int_0^\infty \left[x_n^{k-\beta} \left\{ \int_{\mathbf{R}^{n-1}} \left| \left(\frac{\partial}{\partial x_n} \right)^k u(x', x_n) \right|^p dx' \right\}^{1/p} \right]^p x_n^{-1} dx_n < \infty,$$

where k is an integer greater than β , in view of [9; p. 152]. This implies, by the observation given after Lemma 4' in [9; Chap. V], that u satisfies

$$\int_{\mathbf{R}^n_+} |\operatorname{grad} u(x)|^p \, x^{\alpha}_n \, dx < \infty. \tag{1}$$

Thus our theorem is applicable to this function u.

Remark 3. – In case $p - \alpha - n = 0$, our theorem gives the best possible result as to the size of the exceptional set as the next proposition shows.

PROPOSITION. - Let E be a compact set in $\partial \mathbf{R}_{+}^{n}$ with $B_{1-\alpha/p,p}(E) = 0$, where p > 1 and $-1 < \alpha < p - 1$. Then there exists a function u which is harmonic in \mathbf{R}_{+}^{n} and satisfies (1)' such that $\lim_{x_{n} \to 0} u(x', x_{n})$ does not exist for any $(x', 0) \in E$.

Proof. - Since $B_{1-\alpha/p,p}(E) = 0$, we can find a nonnegative function $f \in L^p$ such that

$$F(x') \equiv \int g_{1-\alpha/p}((x', 0) - y) f(y) dy = \infty$$

for any $(x', 0) \in E$. As seen above, $P_{x_n} * F(x')$ satisfies (1)'.

Take a_1 , b_1 and c_1 such that

$$0 < a_1 < 1$$
, $0 < b_1 < c_1 < 1$

and $P_{a_1} * F_1(x') > 1$ for $(x', 0) \in E$, where

$$F_1(x') = \int_{\{b_1 \le |y_n| \le c_1\}} g_{1-\alpha/p} \left((x', 0) - y \right) f(y) \, dy.$$

We proceed inductively and obtain $\{a_j\}$, $\{b_j\}$ and $\{c_j\}$ such that $0 < a_{j+1} < a_j$, $0 < c_{j+1} < b_j < c_j$, $P_{a_k} * F_j(x') < 2^{-j}$ if k < j and $(x', 0) \in E$ and $P_{a_j} * F_j(x') > j + \sum_{k=1}^{j-1} M_k$ if $(x', 0) \in E$, where

$$F_{j}(x') = \int_{\{b_{j} < |y_{n}| < c_{j}\}} g_{1-\dot{\alpha}/p} ((x', 0) - y) f(y) dy$$
$$M_{k} = \max \{F_{k}(x'); (x', 0) \in \partial \mathbb{R}^{n}_{+}\}.$$

and

$$u(x', x_n) = \sum_{j=1}^{\infty} (-1)^j \mathbf{P}_{x_n} * \mathbf{F}_j(x').$$

Define

Then one sees easily that
$$\{u(x', a_j)\}$$
 does not converge as $j \longrightarrow \infty$ for any $(x', 0) \in E$. Since u satisfies (1)' and is harmonic in \mathbb{R}^n_+ , u is the required function.

Remark 4. - Let p > 1, $p - n < \alpha < p - 1$ and $\alpha > -1$. Then we can find a function u harmonic in \mathbb{R}^{n}_{+} and satisfying the following conditions:

(i) u has a finite nontangential limit at 0;

(ii) $\limsup_{x \to 0, x \in T_{\gamma}(0, a)} u(x) = \infty$ for any $\gamma > 1$ and any a > 1;

(iii)
$$\int_{\mathbf{R}^{\eta}_{+}} |\operatorname{grad} u(x)|^{p} x_{n}^{\alpha} dx < \infty$$
.

To see this, let $x^{(j)} = (2^{-j}, 0, \ldots, 0 \text{ and define})$

$$f_{j}(y) = \begin{cases} a_{j} |x^{(j)} - y|^{-1} & \text{if } y \in B(x^{(j)}, 2^{-j-2}) - \mathbf{R}_{+}^{n}, \\ 0 & \text{otherwise,} \end{cases}$$

where a_i is a positive number determined later. Setting

$$u(x) = \int (x_n - y_n) |x - y|^{-n} f(y) \, dy \, ,$$

where $f = \sum_{j=1}^{\infty} f_j$, we note the following facts :

a)
$$u(0) \leq \int |y|^{1-n} f(y) \, dy \leq C_1 \sum_{j=1}^{\infty} a_j;$$

b) If $x = (2^{-j}, 0, ..., 0, x_n)$ and $0 < x_n < 2^{-j-1}$, then $u(x) \ge C_2 a_j \log(2^{-j}/x_n)$;

c)
$$\int f(y)^p |y_n|^{\alpha} dy \leq C_3 \sum_{j=1}^{\infty} a_j^p 2^{-j(n-p+\alpha)}$$
,

where C_1 , C_2 and C_3 are positive constants independent of x and j.

Now we choose $\{a_j\}$ so that (a) and (c) are finite but $\limsup_{j \to \infty} ja_j = \infty$. Then (a) implies that u has a nontangential limit at 0, and (iii) follows from (c) and [5; Lemma 6](*). By (b) and the construction of $\{a_j\}$, (ii) is fulfilled. Thus u satisfies (i), (ii) and (iii).

Remark 5. – If p > 1 and $\alpha = p - n > -1$, then for each $\gamma > 1$ there exists a function u harmonic in \mathbb{R}^{n}_{+} such that :

(i) u has a finite nontangential limit at 0;

(ii) $\limsup_{x \to 0, x \in T_{\gamma'}(\xi, a)} u(x) = \infty$ for any $\gamma' \ge \gamma$ and any $\alpha > 1$.

iii)
$$\int_{\mathbf{R}^n_+} |\operatorname{grad} u(x)|^p x_n^{\alpha} dx < \infty$$
.

In fact we modify above f_i by setting

$$f_{j}(y) = \begin{cases} a_{j} |x^{(j)} - y|^{-1} & \text{if } y \in B(x^{(j)}, 2^{-j-2}) - B(x^{(j)}, 2^{-\gamma j}) - \mathbb{R}_{+}^{n}, \\ 0 & \text{otherwise,} \end{cases}$$

^(*) One notes that the conclusion of [5; Lemma 6] is true in case p > 1and $-1 < \alpha < p - 1$ if g in the lemma has compact support.

Y. MIZUTA

and consider $u(x) = \sum_{j=1}^{\infty} \int (x_n - y_n) |x - y|^{-n} f_j(y) dy$. Then as in Remark 3 we can choose $\{a_j\}$ such that (i), (ii) and (iii) hold.

Remark 6. - Let p > 1 and h be a positive function on the interval $(0, \infty)$ such that $\lim_{r \to 0} h(r) (\log r^{-1})^{p-1} = 0$. Define for $\xi \in \partial \mathbb{R}^n_+$,

$$T_{h}(\xi) = \left\{ x \in \mathbf{R}_{+}^{n}; \log \frac{|x-\xi|}{x_{n}} \le h(|x-\xi|)^{-1/(p-1)} \right\}.$$

If u is a function harmonic in \mathbf{R}_{+}^{n} and satisfying (1) with $\alpha = p - n > -1$, then $\lim_{x \to \xi, x \in T_{h}(\xi)} u(x)$ exists and is finite for any $\xi \in \partial \mathbf{R}_{+}^{n} - (\mathbf{E}' \cup \mathbf{B}_{h})$, where

$$\mathbf{B}_{h} = \left\{ \xi \in \partial \mathbf{R}_{+}^{n} ; \limsup_{r \downarrow 0} h(r)^{-1} \int_{\mathbf{B}(\xi, r) \cap \mathbf{R}_{+}^{n}} |\operatorname{grad} u(x)|^{p} x_{n}^{\alpha} dx > 0 \right\}.$$

BIBLIOGRAPHY

- L. CARLESON, Selected Problems on exceptional sets, Van Nostrand, Princeton, 1967.
- [2] A.B. CRUZEIRO, Convergence au bord pour les fonctions harmoniques dans \mathbf{R}^d de la classe de Sobolev W_1^d , C.R.A.S., Paris, 294 (1982), 71-74.
- [3] N.G. MEYERS, A theory of capacities for potentials in Lebesgue classes, *Math. Scand.*, 26 (1970), 255-292.
- [4] N.G. MEYERS, Continuity properties of potentials, Duke Math. J., 42 (1975), 157-166.
- [5] Y. MIZUTA, On the existence of boundary values of Beppo Levi functions defined in the upper half space of Rⁿ, Hiroshima Math. J., 6 (1976), 61-72.
- [6] Y. MIZUTA, Existence of various boundary limits of Beppo Levi functions of higher order, *Hiroshima Math. J.*, 9 (1979), 717-745.

- [7] A. NAGEL, W. RUDIN and J.H. SHAPIRO, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math., 116 (1982), 331-360.
- [8] M. OHTSUKA, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima Univ., 1973.
- [9] E.M. STEIN, Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton, 1970.
- [10] H. WALLIN, On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc., 120 (1965), 510-525.
- [11] J.-M. G. WU, L^P-densities and boundary behaviors of Green potentials, *Indiana Univ. Math. J.*, 28 (1979), 895-911.
- [12] W.P. ZIEMER, Extremal length as a capacity, *Michigan Math.* J., 17 (1970), 117-128.

Manuscrit reçu le 2 novembre 1982.

Yoshihiro MIZUTA, Department of Mathematics Faculty of Integrated Arts and Sciences Hiroshima University Hiroshima 730 (Japan).