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A RESULT ON EXTENSION
OF C. R. FUNCTIONS

par M. DERRIDJ and J.E. FORNASS

1. Introduction.

We prove here a result on extension of C.R. functions, given locally
on the boundary of an open set of C”, of the form {9 <c}, where
the Hessian of ¢ satisfies some conditions. This result will be esta-
blished, by reducing the problem to one consisting of solving a 9-
problem with compact support (see [6], see also [2] [9]) in inter-
sections of domains defined by functions the Hessian of which may
degenerate in some sense.

Of course, it is essential to note that one has not necessarily one
positive eigenvalue for the Levi form of the domain defined by
{¢ <c}, near the point considered; for this case is solved by
H. Lewy a long time ago [8], and generalized by R.O. Wells [10].
Let us mention also in this area, far from being complete, the fol-
lowing works [1] [3] [9]). We should mention also even in higher
codimension, the method of construction of discs the boundary of
which lie in 02, or in the given manifold M ([5], [7], and the
use of a recent result of Baouendi-Tréves [3], on the approximate
Poincaré Lemma. But this construction seems to be very hard in
the case where the Levi form degenerates.

2. Notations and definitions.

Let us recall some notations and definitions used in [6]. Let
¢ be a real, C? function in C". For every multi-index J, with
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a2¢
2, 02;%; jey

[JI=q +1, g <n—1, consider the matrix Let

\; ; be continuous functions for i€J, such that

Bzup
> *_aa, =Y, N () g l?
i.je3 02;0Z; - !

for any vector a = (q;, i €J) (observe that N\;; is not necessarily
non negative).

Now, for every multi-index I, with |I] = q, define
)\1(‘9) = Z )\i(“)(‘P)
i€l
where (iI) is the ordered multi-index obtained by adding i to I.

N(9) = inf N(9).

3. Extension of C.R. functions.

Now, using a result in [6], we have the following:

THEOREM 3.1. — Let w be defined near z,€0w, by
w={p<c}t with ¢ a C* function. Assume the following:

a) )\qﬂ (p) = |h|, where h is a holomorphic function near z,,
h#0.

b) For every neighborhood V of z,, there exists a positive
function ¢y, of class C? such that:

wN{py >11CV, oy(z)) >1, Niy(ey) = Ik,

Let f be a (0,q) form which has the form f= h*g with
supp(g) CUNw, 09g=0 in U, g€L*U), U being a
neighborhood of z, .

Then there exist a neighborhood V of z, and u€Lf . _,,
such that ou =fin V, supp(u) CwNV,

Proof. — The theorem 4.1 in [6] works if we prove the following

LEMMA 3.2. —If 0<q <n—2, then
N, = [(n = @)(n —q — D] A, .
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More precisely, for every choice of \,., depending on the
N.,y’s, 131 =q + 2, there existssucha A, .

Proof. — Let Mj', Af*', A,,, be as above in the defi-
nition of A ,;, choose a multi-index J, |[J|=qg +1. Let S,
denote all multi-indices K, |K|=¢g+ 2, so that JCK §;
contains of course (n —q — 1) elements.

1
If €T, let \; ; be defined by A;; = ———— oy,

i 7,

n—q -1 KES;

Moreover A;, A
show that

are defined as in the above procedure. We must

q

02¢p  _
)y e VR A T AL (*)
e azi azj 1] i_E‘.l 7, 7 7]

Forevery K€S;, K = (kJ), choosing ¢, = 0, one always has

2
DA P TR
i jes 9z, 0z jer

Adding up these inequalities over K € S;, one obtains

az‘p - Q ~\
(n—q-1 2 — 62 2 (Y M) 141
i,i‘-G‘K 9z; az/ o j‘gl (KESj & ) !

and (*) follows.

To show that A\, = [(n — @)/(n — q — DI\, it suffices to

n —
show for each 1, |I]=gq, that >\,>>\q+,.n_—qf_l-
Computing, one obtains
I "
A= 2 Nigp = ] Z Z )\?,K
3 n—4q—1igr kesy,
1 ~ +1 1 ) +1
= 58 My =——ro- 5
n-q-1 gZgs2 YK n—g -1 101 HED
KDI J=q+1
i€K-1 12

1 1
=—S\ 7\?“?————? )\+1

"—4—11‘;1 n—q-1 ;35 4
n—q

=n—q—l -
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CoROLLARY. — If Hess(yp) = |k, then )\q = |h|, for
gsn—1.

Now the lemma shows that if A, ., = |hl, then X\, > |h|.
Then the hypothesis of theorem 4.1 in [6] are fulfilled and the theo-
rem follows.

Now we wish to establish a result on extension of C.R. func-
tions given locally, near z,€0w on dw, with w = {p <c}.

THEOREM 3.3. — Assume the hypothesis of theorem 3.1 with
q = 1. Assume moreover that, for every neighborhood U of z,,
one has UN {h; = 0} NC&+@, for every component h, of h.

Let f be a C.R. function on 0w, near z,, of class ct.
Assume also that dw is C*. Then there is a holomorphic func-
tion ? in VNw, continuous in VN & such that TImev =f,
where V is a neighborhood of z, .

Before the proof, we need some lemmas.

LEMMA 3.4. — Let g=(z—1)h be two holomorphic func-
tions on A= {|z|<1}CC. Assume g is bounded and that
g(e'®/e? — 1 is uniformly bounded a.e. Then h is bounded.

Proof. — Assume, say [g(¢‘?)| <1 and |g(e’®)|/[e?® —1|<1.
. 1 — ref®
For 0<r<1, 0ER, let ¥ = Pp—)
and i0

- — Zore iy
)\rew(z) (z—Dh (1 =T e ) .
Since we only have scaled the variable near z =1, N remains
bounded. Therefore, its maximum is given by the maximum of its
radial limits (a.e.). Except at z = 1, the radial limit of the second
factorisat most 1. So |A| < 2.

Now, the subgroup of the automorphisms of the unit disc
fixing 1 acts transitively, hence {— re’® ¥} = A and the lemma
is proved.

LEMMA 3.5. — Let D CCC be a domain with C* boundary,
N\ :D' — C a holomorphic function defined on D'DD, N#0.
Assume h is holomorphic in D, that h extends continuously to
D\{\ = 0} and that hisp\{r=0} extends continuously to dD.
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Then, if \h is bounded on D, h is also bounded in D .

Proof. — We may assume A =II(z — a]-)mj, where {aj} is
a finite set of points on dD. We may also assume D = A since
the result is local and biholomorphic maps between C? domains

are Lipl. Then hA. H (z—a) ) is bounded on A, and &

j=1
extends continuously to D— {al.}, while & |y5_ (4} extends
continuously to oD .

We may finally assume as well that there is only one 4, = 1,

say (z — 1) m(fgi (z — aj) ’h) is bounded. The above lemma
0

. "jo ! mj
gives (z — 1) ( n (z- a].) ’h) bounded. Now we apply
i #Jo
successively the same lemma to get that 4 is bounded.

Now we have the following.

PROPOSITION 3.6. — Let w CC C", with C* boundary, z,€ dw,
N £ 0, a holomorphic function in a neighborhood U = U(z,). As-
sume h€ O(wNU), NAHEC(wNU) hlawﬁu_{)\zo}EC(aw N U).
Then heC(wNU).

Proof. — It suffices to show that % is continuous at z,, assum-
ing that A(z,) = 0. Let h eCOwnN U) the continuous extension
of hlygnu- _{r=0} We may assume h(zo) = 0. Hence we need to

show that lim |A|= 0.

zZEw
z—>2z9

Let L be a complex line intersecting {\ = 0} at z,. We
may assume LN {A=0}= {z,}, except for points far away.
Also we may assume LN w is a nice C*> domain in L (near Zy) .
Applying the above lemma to L' N w, for small translates L’ of
L, it follows that |, is bounded for all L'. Since the above
values are uniformly bounded in L', % is uniformly bounded in
w, near z;.

Consider now a boundary point p of L'Nw =V CL' near
z, in some linear coordinates in L', we may assume p = 0 and
T@V), = {Re7=0}.

Now consider functions of the form e‘K\Fh in V for K
large. This bounded holomorphic function in V is very small on
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oV, if K large enough. Hence e~KVT p is small everywhere. So
|A| is small near p. This is sufficiently uniform in L' and p to
prove that lieg:n |h| <e, forevery €>0.

zZEew

z2—2z9

PROPOSITION 3.7. — Assume f is continuous on w N U(z,)
and holomorphic on w N U(p). Assume furthermore that there
exists a continuous function g on 0wNU(z,) such that
flawnug) = A8, Where X is a holomorphic function in U(z,)
satisfying the following:

a) {A=0}NU(z,) isirreducible, and \ is irreducible on U(z,)
b) A=01NU@E)Nla+0¢.

Then there exists a continuous function f' on & NU(z,),
holomorphic on wNU(z,) such that f=Xf" on &@NU(zy).

Proof. — Define ¢ : {A=0}NU(z,) — C by

‘pzf on {A:O}ﬂU(ZO)ﬁCJ_
=0 on {)\=0}0U(Zo)ﬁc<3-

Applying Rado’s theorem, it follows that ¢ is holomorphic on the
regular points of {A = 0} N U(z,). Since ¢ =0 on a non empty,
relatively open set, it follows moreover that ¢ = 0 on the regular
points of {A=0}NU(zy). This implies that f vanishes on
{A=0}NwnNU(zy). So we can write f=\f', for some ho-
lomorphic function f', in wNU(z,).

So we obtain that f' is a holomorphic function with the fol-
lowing properties:

a) f' isholomorphicin w N U(zy)

b) Af' is continuous in @ N U(z,) and ' |awnu-{x=o} which
is equal to g extends to continuous function on 8w . So by the pre-
ceding proposition f’ iscontinuousin w N U(z,) .

Proof of the theorem 3.3. — Let f be a C* C.R. function on
the C* boundary dw, near Z,. One can extend f toa C! function
F whose 0 vanishestoorder 1 on dw.

- (n*3F =3(hF) on @NU
Now consider 9F, and g = (

0 on U—-w
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we have
a) g is 0 closedin U(z,), g = h*g, g€C°
b) supp(g) C w NU(z,).
So, applying theorem 3.1, there exists a function u in a neighborhood
V of z,, such that
ou = g in V
*) supp(u)) Cw NV
u€L*(V).
From the hypoellipticity of 9, the function u is, in fact, C°. So,
we obtain from (*)
h*F — u is holomorphic in w NV, continuousin @ NV
and h*F —u |y, ~y = H*f.
Now, if we write h? = Hc}!z?", h; irreducib’l::, we are using the pro-
position inductively: IIh,'F —u =TIh," f, for some f, holo-

morphic in w NV, continuous in w N V. Now it is easy to see
that f is an extension of f, which ends the proof of the theorem.
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