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FINITELY GENERATED IDEALS IN A(ft)

by J. E. FORN^SS and N. 0VRELID

1. Let ft c c= C^z.w) be a bounded pseudoconvex domain with
smooth boundary containing the origin and let A (ft) denote the set of
continuous functions on D which are holomorphic in ft. In the special
case when ft is the unit ball, A. Gleason [4] asked the following:

The Gleason Problem : If fe A (ft) and /(0,0) = 0, does there exist g ,
h e A(ft) such that f = zg + w/i ?

This was solved affirmatively by Leibenzon, see [5], in the ball case and
by Henkin [5], Kerzman-Nagel [6], Lieb [9] and 0vrelid [12] in the strongly
pseudoconvex case. Beatrous [1] solved the problem for weakly
pseudoconvex domains under the extra hypothesis that there exists a
complex line through 0 which intersects the boundary of ft only in
strongly pseudoconvex points. In this paper we discuss the real analytic
case.

MAIN THEOREM. — Let 0 eft ere C2(z^) be a pseudoconvex domain
mth real analytic boundary. If f € A(ft) and f(Q) = 0, then there exist g ,
h e A(ft) such that f = zg -h w/i.

The main difficulty is that the Levi flat boundary points, w(3ft), can
be two-dimensional. This means that the projection of w(3ft) into the
space of complex lines through 0 (a P1) can be onto. Thus no such
complex line avoids w(3ft) and therefore Beatrous' theorem does not
apply. (On the other hand, if w(3ft) is one-dimensional, then of course the
Main Theorem is a direct consequence of Beatrous' result.)

To handle this difficulty we study the structure of w(5ft). We show
(Proposition 3) that except for a one-dimensional subset, w(3ft) consists
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of R-points. The R-points were first studied by Range [11] who proved
sup norm estimates for 3 at such points. We give a precise definition of R-
points in the next section. Their main property is that they allow
holomorphic separating functions. In particular we thus show in this paper
that the Kohn-Nirenberg points [8] constitute an at most one-dimensional
subset of 30. Next we choose a complex line through 0 intersecting
w(3ft) only in R-points. Then, one has good enough 3-results to
complete the proof along the same line as Beatrous.

The Main Theorem can still be proved if we replace A (ft) by various
holomorphic Holder- and Lipschitz-spaces and if we replace z and w by
arbitrary generators of the maximal ideal at 0 in these spaces. This
requires several hard ^-estimates. Therefore, in order to keep the length of
this paper down, the authors have decided to postpone these
generalizations to a later paper. We will then also show how these
techniques can be used to prove that bounded pseudoconvex domains with
real analytic boundary in C2 have the Mergelyan property (see [3]).

2. We will make a detailed discussion of the weakly pseudoconvex
boundary points W = w(<9ft) of a bounded pseudoconvex domain 0
with smooth real analytic boundary in C2. First we need a stratification of
W into totally real mainfolds.

LEMMA 1. — There exist pairwise disjoint real analytic manifolds
So» Si, 82 c: 3ft with the following properties :

(i) Each Sj consists of finitely many j-dimensional totally real real
analytic manifolds,

(ii) W = S o u S i U S a ,
(iii) Si i5 closed in 90, - So; S2 is closed in 8Q - (So u Si) and
(iv) Each connected component of S^ consists of points of the same finite

type only.

Here finite type is in the sense of Kohn [7].

The sets So, S^ and S^ are actually semi analytic. During the proof
we will use repeatedly standard facts about semi-analytic sets. The reader
can consult ^ojasiewicz [10] for details.

proof. — Let r be a real analytic defining function for ft. (For
example, one can choose r to be the Euclidean distance to 80, outside ft,
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but close to 50, and the negative of the Euclidean distance in O, close to
30.) Also let 5 be a real valued real analytic function defined on a
neighbourhood of 30 vanishing at a p € 30 if and only if p is a weakly
pseudoconvex boundary point. (One can for example let

5(z,w) = S ^ / S z S z . ^ r / S ^ 2 -2Re S^/Sz 3w. 3r/3w. 3r/3z
+ 3^/3^3^. |3r/3z|2).

Hence the weakly pseudoconvex boundary points, W, is the common zero
set {r=5=0} of global real analytic functions.

Using real coordinates, x -h iy = z , u + iv = w, we can identify as
usual C^z.w) with R^(x,y,u,v) with complex coordinates

X = x + fx', Y = y + f/, U = u + (V, V = v -h «/.

Then r, 5 have unique extensions to holomorphic functions R(X,Y,U,V)
and S(X,Y,U,V) respectively. The complexification M of 30 is then
given by {R=0} which is a complex manifold since d r ^ O . From now
on we will consider only points of M. In M, £ : = {S=0} n M is a
complex hypersurface, hence has (complex) dimension 2.

Let p be any point in W c: £. Since Z and M are closed under
complex conjugation, there exists a holomorphic function
h = /ip(X,Y,U,V) defined in a neighbourhood of p in C4 which, when
restricted to M, generates the ideal of Z at every point of £ in that
neighbourhood, and such that h is real valued at points in C2 = R4. The
function h has a nonvanishing gradient (on M) at regular points of £.
Since 1m h = 0 on 30 it follows that W is given by {r=Re/i==0} near
such regular points of £ and that 30 n reg £ is a pure 2-dimensional
real analytic manifold. By Diederich-Fornasss [2] 30 cannot contain a
complex manifold. This implies that 30 n reg £ is totally real at a
(relatively) dense set of points. A point in 30 n reg £ is totally real if and
only if ^ : = (3r)(^ A 3 (Re hp\^ + 0 there. Here derivatives are taken
in C2. This condition does not depend on p since different (Re hp)'s
only differ by real multiples on 30.

Let S7 c: W be the (at most) one-dimensional closed real analytic set
consisting of 30 n sing £ and the zeroes in W of the coefficient of X.
By t^ojasiewicz [10], W — S' consists of finitely many connected, pairwise
disjoint semi-analytic sets, Ci , . . . , Q. Each Cj is a two dimensional
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totally real real analytic manifold whose closure C, is also a semi analytic
set, and C, - C, c: S'.

Locally, there exists a holomorphic vector field

L = a 8/8z -+- b 8/8w + 0

with real analytic coefficients tangent to the boundary, i.e. L(r) = 0 on
8£l. The type of a point p e 80, is then given as the smallest integer 2k
for which (8r,Lk~lLk~l[L,L](r))(p) ^0 . This number is independent
of the choices of r and L. Let rij be the maximum type of points in Cj,
and let Tj consist of all boundary points of type > rij. Then Tj is a real
analytic set. In particular, Cj n T^ is a semi analytic set of dimension at
most one. Then 82 := u C, — Ty is a pure 2-dimensional totally real real
analytic manifold with finitely many connected components on each of
which the type is constant. Also, W — 82 is a closed semi analytic set in
C2 of dimension at most one, and can hence be written as So u Si where
So is a finite set of points and Si is a relatively closed 1-dimensional real
analytic manifold in W — So with finitely many connected components.
This completes the proof of Lemma 1.

Range [11] introduced a convexity condition which is satisfied by many
weakly pseudoconvex boundary points.

DEFINITION 2. - Let D = {p<0} c=c= C" be a domain with C°°
boundary. A point p e 3D is an R-point (of order m) if there exists a
neighbourhood U of p and a C°° function

F(i;,z): (3DnU)(0 x U(z) -̂  C

such that
(i) F is holomorphic in z ,

(ii) F(^,0 = 0 and d,P ^ 0 and
(iii) p(z) ^ elz—^ whenever F(^,z) = 0 , e > 0 some constant.

Using the Levi polynomial

F^)- i^W-^)-1 £ .̂ (0(̂ X,-̂ )7=1 ^s/ z i , j=i ^Si ̂ j

one immediately obtains that strongly pseudoconvex boundary points are
R-points of order 2.



FINITELY GENERATED IDEALS IN A(ft) 81

PROPOSITION 3. — Every point in 83 is an R-point.

In the proof of the proposition we will need two elementary
inequalities.

LEMMA 4. - Let pk(s,t): = (s-t-Q2* - s21" - 2fe^s2k~ l for s, ( e R ,
fee {1,2, . . .} . Then there exists a constant c^ > 0 such that

Pk(s,t) ̂ (s^-^-K^) for all s , t .

Proof. — For each fixed s, qs(t) = (s+O2^ is a convex function of t
and T,(r) = 52* + 2^5^-1 ( is an equation for the tangentline through
(0,5^). Hence,

Pfc(s,0 = qs(t) - T,(Q > 0

whenever t + 0. Since

^(5,0 = ^{(2^^^^^ and s^^^+r^ =^+0(0]

it follows that there exists a c^ > 0 such that

P,(5,0^ C^t^t^)

for all (s,Q on the unit circle and hence by homogeneity for all (s,t).

LEMMA 5. - Let ke {1,2, . . .} and 8 > 0, 8 < 4-^ be given. Then
y^ + 8 Re(z2k) ^ 2-k8|z|2k for every complex number z = x -\- iy.

Proof. — Expanding Re z2*, we get

y^ -h 8Re(z2k) ^ ^2k + 8^ - R(z)

with R(z) = 22 k~ l 6y2 max (I^IJ^I)2*"2. Elementary computation gives
^2k ^ 2R(z) when |x| s$ 2k|}/|, while 8^ ^ 2R(z) otherwise. In any
case,

y^ + aRe(z2*) ^ 8 (x2* + y2^ ̂  2-k 8(x2+^2)k,

so the lemma follows.

To simplify our computations it is convenient to change coordinates
locally so that S^ becomes a plane.
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LEMMA 6. - Let po e $2. There exist local holomorphic coordinates
z = x + iy, w = u -h iv in a neighbourhood U of po, such that in U,

(i) 83 f5 ^?n by y = i; = 0, and
(ii) 5Q is tangent to the plane v = 0 aton^ 83.
As a consequence Tp 8^1 is given by w = 0 along 82.

Proof. - Local coordinates satisfying (i) are constructed by choosing a
real analytic parametrization F : W -> 83 near po, with W open in R2 .
8ince 83 is totally real, the prolongation F of F to complex arguments is
invertible near po, andweset (z(p),w(p)) = F-^p). Then (ii) means that

the vector field — = J — is tangential to 3Q on 82, i.e. (—} e T 3Qy ox \^x/p
when p e 83. Now L = T8a n T 5ft is a real analytic line field on 83,
and we just ha veto choose a parametrization F where the curves u= const.
are integral curves of L to complete the proof.

When v = - V(x,^,u) is a local parametrization of 8S1, 0 is given
near po by p = v + V(x,}/,u) < 0, provided 8/8v points out of 0. We
may write

00

p == v + g(x,y,u) = v + ^ fl,(x,M)/
^=2Jk

for some k > 1 and ^k > 0» since ft is weakly pseudoconvex of
constant type on 83.

After these preliminary remarks we can prove Proposition 3. To show
that po e 82 is an R-point, choose at first a neighbourhood U = U (po)
of po on which a^(x,u) > a > 0. We will shrink U whenever
necessary without saying so each time.

For ^ = (zo,Wo) e U n 30, we write z = ZQ + z', w = WQ + w',
w' = u' + n/ etc., and Taylor-expand p around (;. 8ince p(Q = 0 we
get

P = ^ + <^(0^ + gy(W + ^KV + ^Oco^oWjw') + R

where the remainer R satisfies an estimate

|R| < Cdzl+KD^l^ol+M+M)^-1'

in U with C independent of ^.
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The linear function w = (^(0+f^(0)z' 4- (1 +^(0)w' has
imaginary part ? equal to the linear part of p, so by Lemma 4
p > S+aCfcO^2/2-^)-- |R| in U.

Set F^(z,w) = fw 4- eG^-^+z'^), with 0 < e < 4-^a. On the
zero set of F^

w = leO^^z^+z'2^, and in particular
u v = eO^-^z'^+ReCz^)).

Applying Lemma 5 this gives p > 2-k£(^2k-2|/|2+|z'|2k) - |R|.

Since ^, gy and ^ are small near the origin, it follows from (1) and
the definition of w that H < |z'| on {F^=0}nU whenever i ;€U.
Thus

p ^ 2-ke(^k-2|z/|2+|z'|2k) - cWl^l+M)2'"1

> £(^~21^12+M2k)
^ ̂ -^(z^-g^.

It follows that F(^,(z,w)) :== F^(z,w) satisfies Range's condition in
Definition 2 with order m = 2fe. This completes the proof of
Proposition 3.

3. We can now prove the Main Theorem. Let Q be a bounded
pseudoconvex domain in C2 with real analytic boundary: By Lemma 1
the weakly pseudoconvex points w(50) can be stratified by real analytic
sets So, Si and S2 where Sj has dimension j , j = 0,1,2. Proposition 3
gives that S2 consists only of R-points. We need the following 3-result by
Range [11].

THEOREM 7. — Let D c: c: C2 be a pseudoconvex domain mth C°°
boundary. Assume that D has a Stein neighbourhood basis. If 'k is a in-
closed (Q,l)-form with uniformly bounded coefficients on D whose support
clusters on 8D only at R-points, then there exists a continuous function g
on D with ^g = ^ on D.

This theorem applies as it is shown in [2] that D has a Stein
neighbourhood basis.

By rotation of the axis we m.ay assume that the z-axis does not intersect
So u S^ . In particular, if e > 0 is small enough,
Fg: = {(z,w) € 5n;£/2$|w| ̂ e} consists only of R-points.
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Following Beatrous [I], if /eA(ft) and /(O) = 0, we can write
/ = zg1 + \vh1 in a small neighbourhood of 0. On the set
{(z,w)eD;|z|>£} we can write / = zg2 -h wA2 with g2 = f / z and
h = 0, e arbitrarily small. Solving an additive Cousin problem we obtain
the decomposition / = zg3 + w/i3 on the set:

DI = {(z,w)eft;|w|<e},

with g3, h3 holomorphic and continuous up to the boundary. On the set

^2 = {(z,w)(=D;|w|>e/2}

we have the decomposition / = zg4 + vv/i4 where g4 = 0 and
A4 = //w • Where the two sets overlap, we get the equation

G:=(g3-g4)/w=(h4-h3)/z.

We need holomorphic functions G^, G^ with continuous boundary
values on D, Q^ respectively so that G = Gi - G^ on the intersection.
This reduces in a standard way to solving a 3-problem for a form with
support in ^ n ^2 • Hence Theorem 7 shows that such Gi, €3 exist.

We then obtain the decomposition / = zg + w/i, g,^eA(n) by
letting

^ f^3 - wGi on QI pi3 + zGi on ̂
g ~ [ g 4 - wG^ on Q/ [^ - zG^ on D/

This completes the proof of the Main Theorem.
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