JOHN ERIK FORNAESS M. OVRELID Finitely generated ideals in $A(\omega)$

Annales de l'institut Fourier, tome 33, nº 2 (1983), p. 77-85 http://www.numdam.org/item?id=AIF_1983_33_2_77_0

© Annales de l'institut Fourier, 1983, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **33**, 2 (1983), 77-85.

FINITELY GENERATED IDEALS IN $A(\Omega)$

by J. E. FORNÆSS and N. ØVRELID

1. Let $\Omega \subset C^2(z,w)$ be a bounded pseudoconvex domain with smooth boundary containing the origin and let $A(\Omega)$ denote the set of continuous functions on $\overline{\Omega}$ which are holomorphic in Ω . In the special case when Ω is the unit ball, A. Gleason [4] asked the following:

The Gleason Problem : If $f \in A(\Omega)$ and f(0,0) = 0, does there exist g, $h \in A(\Omega)$ such that f = zg + wh?

This was solved affirmatively by Leibenzon, see [5], in the ball case and by Henkin [5], Kerzman-Nagel [6], Lieb [9] and Øvrelid [12] in the strongly pseudoconvex case. Beatrous [1] solved the problem for weakly pseudoconvex domains under the extra hypothesis that there exists a complex line through 0 which intersects the boundary of Ω only in strongly pseudoconvex points. In this paper we discuss the real analytic case.

MAIN THEOREM. – Let $0 \in \Omega \subset \subset C^2(z,w)$ be a pseudoconvex domain with real analytic boundary. If $f \in A(\Omega)$ and f(0) = 0, then there exist g, $h \in A(\Omega)$ such that f = zg + wh.

The main difficulty is that the Levi flat boundary points, $w(\partial \Omega)$, can be two-dimensional. This means that the projection of $w(\partial \Omega)$ into the space of complex lines through 0 (a \mathbf{P}^1) can be onto. Thus no such complex line avoids $w(\partial \Omega)$ and therefore Beatrous' theorem does not apply. (On the other hand, if $w(\partial \Omega)$ is one-dimensional, then of course the Main Theorem is a direct consequence of Beatrous' result.)

To handle this difficulty we study the structure of $w(\partial \Omega)$. We show (Proposition 3) that except for a one-dimensional subset, $w(\partial \Omega)$ consists

of R-points. The R-points were first studied by Range [11] who proved sup norm estimates for $\bar{\partial}$ at such points. We give a precise definition of Rpoints in the next section. Their main property is that they allow holomorphic separating functions. In particular we thus show in this paper that the Kohn-Nirenberg points [8] constitute an at most one-dimensional subset of $\partial\Omega$. Next we choose a complex line through 0 intersecting $w(\partial\Omega)$ only in R-points. Then, one has good enough $\bar{\partial}$ -results to complete the proof along the same line as Beatrous.

The Main Theorem can still be proved if we replace $A(\Omega)$ by various holomorphic Hölder- and Lipschitz-spaces and if we replace z and w by arbitrary generators of the maximal ideal at 0 in these spaces. This requires several hard $\overline{\partial}$ -estimates. Therefore, in order to keep the length of this paper down, the authors have decided to postpone these generalizations to a later paper. We will then also show how these techniques can be used to prove that bounded pseudoconvex domains with real analytic boundary in C² have the Mergelyan property (see [3]).

2. We will make a detailed discussion of the weakly pseudoconvex boundary points $W = w(\partial \Omega)$ of a bounded pseudoconvex domain Ω with smooth real analytic boundary in C². First we need a stratification of W into totally real mainfolds.

LEMMA 1. – There exist pairwise disjoint real analytic manifolds $S_0, S_1, S_2 \subset \partial \Omega$ with the following properties :

(i) Each S_j consists of finitely many j-dimensional totally real real analytic manifolds,

(ii) $W = S_0 \cup S_1 \cup S_2,$

(iii) S_1 is closed in $\partial \Omega - S_0$; S_2 is closed in $\partial \Omega - (S_0 \cup S_1)$ and

(iv) Each connected component of S_2 consists of points of the same finite type only.

Here finite type is in the sense of Kohn [7].

The sets S_0 , S_1 and S_2 are actually semi analytic. During the proof we will use repeatedly standard facts about semi-analytic sets. The reader can consult Lojasiewicz [10] for details.

Proof. – Let r be a real analytic defining function for Ω . (For example, one can choose r to be the Euclidean distance to $\partial\Omega$ outside Ω ,

but close to $\partial\Omega$, and the negative of the Euclidean distance in $\overline{\Omega}$ close to $\partial\Omega$.) Also let s be a real valued real analytic function defined on a neighbourhood of $\partial\Omega$ vanishing at a $p \in \partial\Omega$ if and only if p is a weakly pseudoconvex boundary point. (One can for example let

$$s(z,w) = \partial^2 r / \partial z \ \partial \bar{z} . |\partial r / \partial w|^2 - 2\operatorname{Re} \partial^2 r / \partial z \ \partial \bar{w} . \partial r / \partial w . \partial r / \partial \bar{z} + \partial^2 r / \partial w \ \partial \bar{w} . |\partial r / \partial z|^2).$$

Hence the weakly pseudoconvex boundary points, W, is the common zero set $\{r=s=0\}$ of global real analytic functions.

Using real coordinates, x + iy = z, u + iv = w, we can identify as usual $C^{2}(z,w)$ with $R^{4}(x,y,u,v)$ with complex coordinates

$$X = x + ix', \quad Y = y + iy', \quad U = u + iu', \quad V = v + iv'.$$

Then r, s have unique extensions to holomorphic functions R(X,Y,U,V)and S(X,Y,U,V) respectively. The complexification M of $\partial\Omega$ is then given by $\{R=0\}$ which is a complex manifold since $dr \neq 0$. From now on we will consider only points of M. In $M, \Sigma := \{S=0\} \cap M$ is a complex hypersurface, hence has (complex) dimension 2.

Let p be any point in $W \subset \Sigma$. Since Σ and M are closed under there exists holomorphic complex conjugation, a function $h = h_p(X, Y, U, V)$ defined in a neighbourhood of p in C⁴ which, when restricted to M, generates the ideal of Σ at every point of Σ in that neighbourhood, and such that h is real valued at points in $C^2 = R^4$. The function h has a nonvanishing gradient (on M) at regular points of Σ . Since Im $h \equiv 0$ on $\partial \Omega$ it follows that W is given by $\{r = \operatorname{Re} h = 0\}$ near such regular points of Σ and that $\partial \Omega \cap \operatorname{reg} \Sigma$ is a pure 2-dimensional real analytic manifold. By Diederich-Fornæss [2] $\partial \Omega$ cannot contain a complex manifold. This implies that $\partial \Omega \cap \operatorname{reg} \Sigma$ is totally real at a (relatively) dense set of points. A point in $\partial \Omega \cap \operatorname{reg} \Sigma$ is totally real if and only if $\lambda := (\partial r)_{(z,w)} \wedge \partial (\operatorname{Re} h_p)_{(z,w)} \neq 0$ there. Here derivatives are taken in C². This condition does not depend on p since different (Re h_p)'s only differ by real multiples on $\partial \Omega$.

Let $S' \subset W$ be the (at most) one-dimensional closed real analytic set consisting of $\partial \Omega \cap \operatorname{sing} \Sigma$ and the zeroes in W of the coefficient of λ . By Lojasiewicz [10], W - S' consists of finitely many connected, pairwise disjoint semi-analytic sets, C_1, \ldots, C_ℓ . Each C_j is a two dimensional totally real real analytic manifold whose closure \bar{C}_j is also a semi analytic set, and $\bar{C}_j - C_j \subset S'$.

Locally, there exists a holomorphic vector field

$$\mathbf{L} = a \,\partial/\partial z + b \,\partial/\partial w \neq \mathbf{0}$$

with real analytic coefficients tangent to the boundary, i.e. L(r) = 0 on $\partial\Omega$. The type of a point $p \in \partial\Omega$ is then given as the smallest integer 2k for which $(\partial r, L^{k-1} L^{k-1} [L, L](r))(p) \neq 0$. This number is independent of the choices of r and L. Let n_j be the maximum type of points in C_j , and let T_j consist of all boundary points of type $> n_j$. Then T_j is a real analytic set. In particular, $\bar{C}_j \cap T_j$ is a semi analytic set of dimension at most one. Then $S_2 := \cup C_j - T_j$ is a pure 2-dimensional totally real real analytic manifold with finitely many connected components on each of which the type is constant. Also, $W - S_2$ is a closed semi analytic set in C^2 of dimension at most one, and can hence be written as $S_0 \cup S_1$ where S_0 is a finite set of points and S_1 is a relatively closed 1-dimensional real analytic manifold in $W - S_0$ with finitely many connected components. This completes the proof of Lemma 1.

Range [11] introduced a convexity condition which is satisfied by many weakly pseudoconvex boundary points.

DEFINITION 2. – Let $D = \{\rho < 0\} \subset \subset C^n$ be a domain with C^{∞} boundary. A point $p \in \partial D$ is an R-point (of order m) if there exists a neighbourhood U of p and a C^{∞} function

$$F(\zeta,z): (\partial D \cap U)(\zeta) \times U(z) \to C$$

such that

- (i) F is holomorphic in z,
- (ii) $F(\zeta,\zeta) \equiv 0$ and $d_zF \neq 0$ and

(iii) $\rho(z) \ge \varepsilon |z-\zeta|^m$ whenever $F(\zeta,z) = 0$, $\varepsilon > 0$ some constant.

Using the Levi polynomial

$$\mathbf{F}(\zeta,z) = \sum_{j=1}^{n} \frac{\partial \rho}{\partial \zeta_j} (\zeta)(\zeta_j - z_j) - \frac{1}{2} \sum_{i,j=1}^{n} \frac{\partial^2 \rho}{\partial \zeta_i \partial \zeta_j} (\zeta)(\zeta_i - z_i)(\zeta_j - z_j)$$

one immediately obtains that strongly pseudoconvex boundary points are R-points of order 2.

PROPOSITION 3. – Every point in S_2 is an R-point.

In the proof of the proposition we will need two elementary inequalities.

LEMMA 4. - Let $p_k(s,t) := (s+t)^{2k} - s^{2k} - 2kts^{2k-1}$ for $s, t \in \mathbb{R}$, $k \in \{1,2,\ldots\}$. Then there exists a constant $c_k > 0$ such that

 $p_k(s,t) \ge c_k(s^{2k-2}t^2+t^{2k})$ for all s, t.

Proof. – For each fixed s, $q_s(t) = (s+t)^{2k}$ is a convex function of t and $T_s(t) = s^{2k} + 2ks^{2k-1}t$ is an equation for the tangentline through $(0,s^{2k})$. Hence,

$$p_k(s,t) = q_s(t) - T_s(t) > 0$$

whenever $t \neq 0$. Since

$$p_k(s,t) = t^2 \left[\binom{2k}{2} s^{2k-2} + O(t) \right]$$
 and $s^{2k-2} t^2 + t^{2k} = t^2 [s^{2k} + O(t)]$

it follows that there exists a $c_k > 0$ such that

$$p_k(s,t) \ge c_k(s^{2k}t^2 + t^{2k})$$

for all (s,t) on the unit circle and hence by homogeneity for all (s,t).

LEMMA 5. – Let $k \in \{1, 2, ...\}$ and $\delta > 0$, $\delta < 4^{-k^2}$ be given. Then $y^{2k} + \delta \operatorname{Re}(z^{2k}) \ge 2^{-k} \delta |z|^{2k}$ for every complex number z = x + iy.

Proof. – Expanding Re z^{2k} , we get

$$y^{2k} + \delta \operatorname{Re}(z^{2k}) \ge y^{2k} + \delta x^{2k} - \operatorname{R}(z)$$

with $R(z) = 2^{2k-1} \delta y^2 \max(|x|,|y|)^{2k-2}$. Elementary computation gives $y^{2k} \ge 2R(z)$ when $|x| \le 2^k |y|$, while $\delta x^{2k} \ge 2R(z)$ otherwise. In any case,

$$y^{2k} + \partial \operatorname{Re}(z^{2k}) \ge \frac{\delta}{2}(x^{2k} + y^{2k}) \ge 2^{-k} \,\delta(x^2 + y^2)^k,$$

so the lemma follows.

To simplify our computations it is convenient to change coordinates locally so that S_2 becomes a plane.

LEMMA 6. – Let $p_0 \in S_2$. There exist local holomorphic coordinates z = x + iy, w = u + iv in a neighbourhood U of p_0 , such that in U,

(i) S_2 is given by y = v = 0, and

(ii) $\partial \Omega$ is tangent to the plane v = 0 along S_2 .

As a consequence $T_n^c \partial \Omega$ is given by w = 0 along S_2 .

Proof. – Local coordinates satisfying (i) are constructed by choosing a real analytic parametrization $F: W \to S_2$ near p_0 , with W open in \mathbb{R}^2 . Since S_2 is totally real, the prolongation \tilde{F} of F to complex arguments is invertible near p_0 , and we set $(z(p),w(p)) = \tilde{F}^{-1}(p)$. Then (ii) means that the vector field $\frac{\partial}{\partial y} = J \frac{\partial}{\partial x}$ is tangential to $\partial \Omega$ on S_2 , i.e. $\left(\frac{\partial}{\partial x}\right)_p \in T_p^c \partial \Omega$ when $p \in S_2$. Now $L = TS_2 \cap T^c \partial \Omega$ is a real analytic line field on S_2 , and we just have to choose a parametrization F where the curves u = const. are integral curves of L to complete the proof.

When v = -V(x,y,u) is a local parametrization of $\partial\Omega$, Ω is given near p_0 by $\rho = v + V(x,y,u) < 0$, provided $\partial/\partial v$ points out of Ω . We may write

$$\rho = v + g(x,y,u) = v + \sum_{\ell=2k}^{\infty} a_{\ell}(x,u)y^{\ell}$$

for some k > 1 and $a_{2k} > 0$, since Ω is weakly pseudoconvex of constant type on S_2 .

After these preliminary remarks we can prove Proposition 3. To show that $p_0 \in S_2$ is an R-point, choose at first a neighbourhood $U = U(p_0)$ of p_0 on which $a_{2k}(x,u) > a > 0$. We will shrink U whenever necessary without saying so each time.

For $\zeta = (z_0, w_0) \in U \cap \partial \Omega$, we write $z = z_0 + z'$, $w = w_0 + w'$, w' = u' + iv' etc., and Taylor-expand ρ around ζ . Since $\rho(\zeta) = 0$ we get

 $\rho = v' + g_x(\zeta)x' + g_y(\zeta)y' + g_u(\zeta)u' + a_{2k}(x_0, u_0)p_k(y_0, y') + \mathbf{R}$

where the remainer R satisfies an estimate

$$|\mathbf{R}| \leq C (|z'| + |w'|)^2 (|y_0| + |z'| + |w'|)^{2k-1}$$

in U with C independent of ζ .

The linear function $\tilde{w} = (g_y(\zeta) + ig_x(\zeta))z' + (1 + ig_u(\zeta))w'$ has imaginary part \tilde{v} equal to the linear part of ρ , so by Lemma 4 $\rho \ge \tilde{v} + ac_k(y_0^{2k+2}y'^2 + y'^{2k}) - |\mathbf{R}|$ in U.

Set $F_{\zeta}(z,w) = i\tilde{w} + \varepsilon(y_0^{2k-2}z'^2 + z'^{2k})$, with $0 < \varepsilon < 4^{-k^2}c_ka$. On the zero set of F_{ζ}

(1)
$$\tilde{w} = i\varepsilon(y_0^{2k-2}z'^2 + z'^{2k}), \text{ and in particular} \\ \tilde{v} = \varepsilon(y_0^{2k-2}\operatorname{Re}(z'^2) + \operatorname{Re}(z'^{2k})).$$

Applying Lemma 5 this gives $\rho \ge 2^{-k} \varepsilon (y_0^{2k-2} |y'|^2 + |z'|^{2k}) - |\mathbf{R}|$.

Since g_x , g_y and g_u are small near the origin, it follows from (1) and the definition of \tilde{w} that |w'| < |z'| on $\{F_{\zeta}=0\} \cap U$ whenever $\zeta \in U$. Thus

$$\begin{split} \rho &\geq 2^{-k} \varepsilon (y_0^{2k-2} |z'|^2 + |z'|^{2k}) - c' |z'|^2 (|y_0| + |z'|)^{2k-1} \\ &\geq \tilde{\varepsilon} (y_0^{2k-2} |z'|^2 + |z'|^{2k}) \\ &\geq 2^{-k} \tilde{\varepsilon} |(z,w) - \zeta|^{2k} \,. \end{split}$$

It follows that $F(\zeta_{n}(z,w)) := F_{\zeta}(z,w)$ satisfies Range's condition in Definition 2 with order m = 2k. This completes the proof of Proposition 3.

3. We can now prove the Main Theorem. Let Ω be a bounded pseudoconvex domain in C² with real analytic boundary: By Lemma 1 the weakly pseudoconvex points $w(\partial \Omega)$ can be stratified by real analytic sets S₀, S₁ and S₂ where S_j has dimension j, j = 0,1,2. Proposition 3 gives that S₂ consists only of R-points. We need the following $\overline{\partial}$ -result by Range [11].

THEOREM 7. – Let $\mathbf{D} \subset \subset \mathbf{C}^2$ be a pseudoconvex domain with \mathbf{C}^{∞} boundary. Assume that \mathbf{D} has a Stein neighbourhood basis. If λ is a $\bar{\partial}$ -closed (0,1)-form with uniformly bounded coefficients on \mathbf{D} whose support clusters on $\partial \mathbf{D}$ only at R-points, then there exists a continuous function g on \mathbf{D} with $\bar{\partial}g = \lambda$ on \mathbf{D} .

This theorem applies as it is shown in [2] that $\overline{\Omega}$ has a Stein neighbourhood basis.

By rotation of the axis we may assume that the z-axis does not intersect $S_0 \cup S_1$. In particular, if $\varepsilon > 0$ is small enough, $F_{\varepsilon} := \{(z,w) \in \partial \Omega; \varepsilon/2 \le |w| \le \varepsilon\}$ consists only of R-points.

Following Beatrous [1], if $f \in A(\Omega)$ and f(0) = 0, we can write $f = zg^1 + wh^1$ in a small neighbourhood of 0. On the set $\{(z,w) \in \overline{\Omega}; |z| > \varepsilon\}$ we can write $f = zg^2 + wh^2$ with $g^2 = f/z$ and h = 0, ε arbitrarily small. Solving an additive Cousin problem we obtain the decomposition $f = zg^3 + wh^3$ on the set :

$$\bar{\Omega}_1 = \{(z,w) \in \bar{\Omega}; |w| < \varepsilon\},\$$

with g^3 , h^3 holomorphic and continuous up to the boundary. On the set

$$\bar{\boldsymbol{\Omega}}_2 = \{(z,w) \in \bar{\boldsymbol{\Omega}}; |w| > \varepsilon/2\}$$

we have the decomposition $f = zg^4 + wh^4$ where $g^4 = 0$ and $h^4 = f/w$. Where the two sets overlap, we get the equation

G :=
$$(g^3 - g^4)/w = (h^4 - h^3)/z$$
.

We need holomorphic functions G_1 , G_2 with continuous boundary values on $\overline{\Omega}$, $\overline{\Omega}_2$ respectively so that $G = G_1 - G_2$ on the intersection. This reduces in a standard way to solving a $\overline{\partial}$ -problem for a form with support in $\overline{\Omega}_1 \cap \overline{\Omega}_2$. Hence Theorem 7 shows that such G_1 , G_2 exist.

We then obtain the decomposition f = zg + wh, $g, h \in A(\Omega)$ by letting

$$g = \begin{cases} g^3 - wG_1 \text{ on } \overline{\Omega}_1 \\ g^4 - wG_2 \text{ on } \overline{\Omega}_2 \end{cases}, \qquad h = \begin{cases} h^3 + zG_1 \text{ on } \overline{\Omega}_1 \\ h^4 - zG_2 \text{ on } \overline{\Omega}_2 \end{cases}.$$

This completes the proof of the Main Theorem.

BIBLIOGRAPHY

- F. BEATROUS, Hölder estimates for the ∂-equation with a support condition, Pacific J. Math., 90 (1980), 249-257.
- [2] K. DIEDERICH and J. E. FORNÆSS, Pseudoconvex domains : Existence of Stein neighbourhoods, Duke J. Math., 44 (1977), 641-662.
- [3] J. E. FORNÆSS and A. NAGEL, The Mergelyan property for weakly pseudoconvex domains, *Manuscripta Math.*, 22 (1977), 199-208.
- [4] A. GLEASON, Finitely generated ideals in Banach algebras, J. Math. Mech., 13 (1964), 125-132.
- [5] G. M. HENKIN, Approximation of functions in pseudoconvex domains and Leibenzon's theorem, Bull. Acad. Pol. Sci. Ser. Math. Astron. et Phys., 19 (1971), 37-42.

- [6] N. KERZMAN and A. NAGEL, Finitely generated ideals in certain function algebras, J. Funct. Anal., 7 (1971), 212-215.
- [7] J. J. KOHN, Boundary behavior of ∂ on weakly pseudoconvex manifolds of dimension two, J. Diff. Geom., 6 (1972), 523-542.
- [8] J. J. KOHN and L. NIRENBERG, A pseudoconvex domain not admitting a holomorphic support function, *Math. Ann.*, 201 (1973), 265-268.
- [9] I. LIEB, Die Cauchy-Riemannschen Differentialgleichung auf streng pseudokonveksen Gebieten : Stetige Randwerte, Math. Ann., 199 (1972), 241-256.
- [10] S. LOJASIEWICZ, Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, 19 (1965), 449-474.
- [11] M. RANGE, On Hölder estimates for $\partial u = f$ on weakly pseudoconvex domains, Cortona Proceedings, Cortona, 1976-1977, 247-267.
- [12] N. ØVRELID, Generators of the maximal ideals of A(D), Pac. J. Math., 39 (1971), 219-233.

Manuscrit reçu le 16 juillet 1982. J. É. FORNÆSS.

N. ØVRELID, Universitetet i Oslo Matematisk Institutt Blindern Oslo 3 (Norway).

Princeton University Department of Mathematics Fine Hall - Box 37 Princeton, N.J. 08544 (USA).