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BROWNIAN MOTION AND TRANSIENT GROUPS

by Nicolas Th. VAROPOULOS (*)

0. Introduction.

Let M be a complete connected Riemannian manifold and let
{(o(0;r>0}^gn be the Brownian motion on M starting at some fixed point
m e M (cf. [1] for the construction of that motion; in [2] the readers can
find an overall review of some of the general facts on potential theory and
diffusion on a manifold). For some fixed continuous Brownian path co e Q,
we can join co(0 (for some fixed t > 0) with m by a minimal geodesic
y(t) and obtain a closed loop V(t). Such a minimal geodesic will in fact
be unique unless co(0 e C(m) = the cut locus of m which is a closed set of
measure zero on M. If y(t) is unique then F(t) determines a unique
element in 7ii(M;m) the fundamental group based at m. That element I
shall also denote by F(t) = r^(Q. The Brownian motion determines thus
a process with values on 7ii(M) which is some kind of « generalized
random walk ». The starting point of this paper was my effort to determine
when the above « Brownian walk » on Tii(M) is transient and when it is
recurrent. In other words decide whether Brownian motion wind's itself
more and more as time goes on or whether it comes back infinitely often
close to its starting point and unwound.

I shall start with a precise definition, and to avoid the complications
that arise from the cut locus, I shall pass to the universal covering (simply
connected) manifold a : M -^ M with its induced Riemannian structure
and I shall also assume that M is compact. Let us fix m e M such that
a(m) = m and let {co(0;t>0} denote the Brownian motion on M
starting at m.

(*) Part of this research was done while the author was a visitor at McGill
supported by the Natural Science and Engineering Research Council of Canada
(A8548), and also a visitor to Rutgers supported by NSF Grant MCS 81-02073.
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DEFINITION. — 7 shall say that the Brownian motion on M does not wind
on M if the motion {&(t),t>0} is recurrent on Kl. This implies that for all
oeQ there exists ^-f-h oo a sequence such that co(r,)———>m and

./—> 00

r^(tj) = 1 e7Ci(M;w) is the homotopically trivial loop.

I shall say that Brownian motion winds on M if the motion {&(t),t>0}
is transient on id. This implies that for all coeQ and all Pczn^ finite
subset of the fundamental group we can find T > 0 s.t. the loop F^t) ̂  F
for almost all t > T.

[The almost all in t arises from the cut locus. Indeed observe that if we
denote by G(Jc,y) the Green's function on Ki, which exists by our
hypotheses, then

E,.{Leb mes [r;6(0 e a-1 [C(m)]]} = | G(m,x) d^(x)
Ja^COn)

V denotes Riemannian volume element].

Our problem is therefore to decide whether Brownian motion is
recurrent or transient on Kl. It will turn out convenient to consider a
more general problem.

Let G be a discrete group generated by the finite set of generators
{g 1^82 9 ' ' ' ^ p ] \ ^y element geG can then be written as

(0.1) ^=^2...^; ^ = ± 1 ;

we shall denote by \g\ = infn the inf being taken under (0.1). I shall also
denote by:

y(n) = CnTd{g(=G;\g\^n}

the growth function of the group. A different set of generators { / i i , . . .,AJ
will of course give a different | | and y . But the new and the old satisfy
the simple relation:

A - 1 Igl"̂  < ̂  ̂  A Igl̂ ; Vg e G

for some A > 0.

Let now G be a finitely generated group; I shall say that G is a
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transient group if there exists p. a symmetric

(i.e.^-^^^VgeG)

probability measure on G s.t.

H(Qr})^Ce-< geG

^ ^({1}) < + oo (1 = identity of G)
n=0

for some C, c > 0 where \i" denotes the n = convolution power of p..
It will turn out that if G is a transient finitely generated group then
every probability measure p on G s.t. [i({g}) > Ce"^12 (g e G) for some
C, c > 0 satisfies

f ^({1})< + 0 0 .
n=0

The above definition is but a formulation of the transience of the random
walk on G determined by the transition probability Pg(h) = [i({gh~1}).
My definition of a transience on a group differs from the classical one only
on the square exponential estimate. The reader at this stage should consult
some of the classical literature in the subject (eg. [3], [4]) cf. Appendix.

I shall now state some of the theorems of this paper.

Let ]Ct -+ M a normal Riemannian covering mapping and let G be
the group of deck transformations. [By normal we mean that there exists
N <17ti(M) a normal subgroup of 7Ci(M) so that G ^ TI^/N and that
G is transitive on the fiber.]

THEOREM 1. — Let 1%, M and G be as above and let us suppose that
M is compact. Then Brownian motion on 1% is transient if and only if G is
a transient group.

The story at this point takes a rather interesting twist:
Start from any finitely generated discrete group G. It is possible

then to find ]Ct -^ M a normal Riemannian covering for which G is
exactly the group of deck transformations. Indeed let
M = MQ # Mo # ... # MQ be the gluing together of Mo ^ S1 x S2^
times with itself; we have 7ti(M) ^ Z* ... *Z = Z*" the n = free power.
Since G is the quotient of Z*" for some n the assertion follows.
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Using then the necessary condition proved in [2] for the transience of
Brownian motion on a manifold we obtain :

THEOREM 2. — A necessary condition for the transience of the finitely
generated group G is that the growth function y(n) of G should satisfy

^ . n
^<^'

If we assume that M is positively curved then we can obtain a better
result:

THEOREM 3. — Let M, id and G be as above and let us assume that
M is compact and that Ric(M) ^ 0 then G is transient if and only if

00 ...
v^ n

^<+(x>

where y denotes the growth function of G.

This theorem was proved in [5].

In the same (technical) spirit of theorem 1 we can examine the
amenability of G.

Towards that end let us denote by S the Laplace-Beltrami operator of
M, let

top sp.(S) = sup {^ e Sp S},

notice that top sp(S) ^ 0. We have

THEOREM 4. — Let us suppose that M, M and G are as above and that
M is compact. Then G is amenable if only if:

topsp(S) = 0.

After I wrote this paper I found out that the above theorem has been
proved recently in [14].

As a corollary we obtain the well known facts that:
(i) M compact with negative sectional curvature implies that n^(M)

not amenable.
(ii) Ric(M) ^ 0 implies that Tti(M) amenable.
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Before I embark with the proofs I would like to point out that a
reasonable conjecture is that a finitely generated group is transient if and
only if

^ n
Z -T\ < + °°-n=i y00

The only if is the content of Theorem 2.

The above conjecture holds when G can be embedded as a discrete
subgroup of a connected Lie group (cf. [14]). The conjecture also holds
when G is soluble (cf. [15]) and thus also it holds if we assume that the
growth of G is polynomial (cf. [6]) i.e. if we assume that there exist some
C and q s.t. y(n) ^ Cn4 V n e Z . Fairly trivially also the conjecture
holds when G is not amenable (cf. [4]).

At the end of this paper (§ 7 and 8) I finally show how the methods
developed adapt to cope with some non compact manifolds M.

I shall restrict myself to one specific example that was examined
recently by Lyons-McKean [12]. In that example M is the complex plane
minus two points and the metric is any conformal metric (e.g. the Poincare
metric or the flat metric which is not complete). M -> M is the covering
obtained by the group of deck transformations G = 7ii/[^i,7ti] == H^(M).
(The homology group.) The transience of Brownian motion on M (which
is now a conformal invariant) is what was proved in [12]. In § 8 I offer an
alternative proof of that fact.

1. S-operators.

Let us fix (X,dx) a measure space and G a discrete group. We shall
consider then (Q;rfco) = (X,dx) ® (G',dg) the cartesian product where
dg is the discrete normalized Haar measure on G. For every
1 ^ p ^ + oo we can then identify L^Q) with LP(X;B) the space of
B-valued L^-functions where B is the Banach space LP(G). This allows

us to identify the canonical scalar product between L^D) ( i = 1,2; with

— 4- — = 1) with
Pi Pi )

(1.1) < F i , F 2 > = f (P,(x),¥,(x))dx
h
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with FfeL^XiL^G)), F,(x) e l/^G), xeX and (•,•) the scalar
product between I/^G) and I/^G).

Let now K(x,}QeM(G), (x.yeX) be a measurable function on
X x X with values in M(G) = ^(G) that satisfies

sup f.||K(x^)|| dy ^ 1

sup f||K(x,)0||Ac^ 1

where || || indicates the M(G) total mass norm. It is evident that K
induces a norm decreasing operator on L°°(Q) by the formula

KF(x)= f P(yrK(x,y)dy
Jx

where * indicates the convolution operator on G (observe that F(^);
KF(x) e L^G), Vx,^ € X). It is also clear that the transposed operator
of the above K with respect to the scalar product (1.1) is of the same form
and is given by a new kernel K*(x,^)eM(G) where
K*(x,>Q = KCv,x) (x,yeX) and where " is the operation on ^l(G) that
is defined by y({g}) = y({^~1}). It follows therefore that K(x,y)
also induces a norm decreasing operator on 1^(0) and therefore by the
Riesz-Thorin theorem on all the 1 (̂0) spaces.

DEFINITION. — / sail say that K a norm decreasing operator on all the
LP(Sl) spaces is an S-operator if it is given as above by some kernel
K(x,^)eM(G) that satisfies

(i) K(x,^)^0 Vx^eX

i.e. positive in the order relation of M(G).

(ii) f \\K(x,y)\\dy= 1 V x e X
Jx

(iii) f \\K(x,y)\\dx= 1 V^eX.
Jx

If in addition K(x,y) satisfies
(iv) K(x,}0=^,x).

/ shall say that K is a symmetric S-operator. It is clear that K is
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symmetric if and only if it is self adjoint on L^Q). The following order
relation mil be introduced on the space of S-operators : We shall say that
KI » K.2 for two S-operators K^ and K^ if there exists some
0 < a ^ 1 such that :/

K,(x,y) ̂ aK^) Vx^eX

in the order relation of ^1(G).

The following obvious proposition is critical.

PROPOSITION. — Let KI , K.2 be two S-operators and let the L^-
operator norm of K^ be 1 (||KJ|=1) for some fixed 1 =s£ p ^ + oo. Then
if KI » K2 we also have HK^H = 1.

Proof. — By our hypothesis there exists some 0 < a < 1 such that:

Ki = aK^ + (l-oO^^——^ = ^2 + (i-^^

and it is clear that K.3 is also an S-operator and therefore satisfies
||K3|| ^ 1. It follows by convexity that unless HK^H = 1 we could not
have ||KJ| = 1.

2. Operators on covering Riemannian manifolds.

Let id, M be two Riemannian manifolds and id -+ M a normal
Riemannian covering (i.e. a local isometry). Let G be the discrete group of
deck transformations. We can then identify the measure space (!V[;riV)
with the product space (M;dV) x (G,dg) [where dV and d^f are the
canonical volume elements of M and id respectively]. We shall abusively
say then that T an operator on L^lVl^V) is an S (or symmetric S)
operator if it becomes such an operator after the above identification. Such
an operator is easily seen to commute with the action of the group G on
L^M^V).

Notice that the above identification is not unique but depends on the
choice of the fundamental domain D c= id. We shall fix such a domain
D. When M is compact we shall choose D to be compact and a nice
subset of id with a nice boundary.



248 NICOLAS TH. VAROPOULOS

Examples.

(i) Any bimarkovian G-invariant kernel on fA i.e. any

K(^)^0 (JC,J)GM)
that satisfies :

^K(x,y)dV(y)= 1, Vx e M

JK(x,J))rfV(Jc)= 1, V J ^ e M

^(g^gy) = ̂ (x,y), V^ e G; jc, y e M

is an S-operator, in fact it is easy to see that every S-operator is of that
form. If in addition R(J^) = fL(y,x) then it is a symmetric S-operator.

(ii) More specifically when M is compact the Heat diffusion Kernel
Pt(x,y)(t>0;x,yeM) on M is a symmetric S-operator. p,(x,y) is by

definition the minimal positive solution of — - A- = 0 that satisfies
8t y

pt^ ^ T78^^ ^cf' ̂  ̂ - The non trivial fact that is needed here is that
under the hypotheses that M is compact [or more generally that
Ric(M) ^ - A (some A ^0); or even more general conditions cf. [2]]
we have:

pt(x,y) d^(y) =1 , W > 0, x e M .

i.e. that heat diffusion is conservative.

(iii) Let k(x,y) be a scalar valued S-kernel on M i.e. k(x,y) ^ 0

J fe(^o ̂ ) d\(y) = jfe(x,^) d\(x) = 1, Vxo, y^ e M

and let ueM(G) be a fixed probability measure on G. We can then
define K = f c ( x ) a , an S-kernel on fA, by K(x,y) = k(x,y).[i. If
k(x,y) = k(y,x) and u = ^ then fc ® u is a symmetric S-kernel.

Let us now assume that M is of finite volume, by renormalization we
can then assume that

Vol(M) = 1.



BROWNIAN MOTION AND TRANSIENT GROUPS 249

I shall then (fix some fundamental domain D) define two mappings

I : ^(G^IANMV); P: LAM^-^G) ( l^p^+oo)

by:
I/(X)=/te), for xe^D, J c e M , ^eG; V/e^(G)

P F ( ^ = [ F(5c)riV(x), geG, VFeL^(M;dV).
J^D

The above two mappings are clearly norm decreasing.

PROPOSITION. — Let M, M and G be as above and let K be an S-
operator on L^M^V). Then the operator k = P o K o I is given on
^(G) by the convolution of a probability measure KeM(G) [i.e.
k(f) = / ̂  K] further more if the operator »K is symmetric then the
measure K is symmetric [i.e. K = K] .

Proof. — Indeed k is obviously positive norm decreasing on all the
^(G) ( l^p^+oo) translation invariant and also satisfies fe(l) = 1
(Alt. p(/)|| =||/||, VO^/e^ (G) ) .

Further more P and I are transposes of each other so k is self adjoint
on <f2 as soon as K is symmetric. The proposition follows.

3. The spectrum of the Laplacian and amenability.

I shall give here a first illustration of the notions introduced in § 1 and 2
by giving the proof of Theorem 4.

Let M -> M be a normal Riemannian covering and let G be the
group of deck transformations. Let S be the Laplacian of M and let us
assume that topsp. (X) = 0. By basic spectral theory this implies that the
operator norm on L^MirfV) of p((x,y), the heat diffusion kernel, is
equal to 1. (i.e. ||pd| = 1 for ( > 0). Now, if we assume that p,(x,y) is
conservative (cf. § 2, Example (ii)) which is certainly the case if M is
compact [in fact much weaker conditions will ensure this] then we are in the
situation of § 2, Example (ii) with a symmetric S-operator of norm 1.

Let now 1 = i(x,y) = 1 (Vx,^ e M) be the function that is identically
equal to 1 and let K = 1 (g) n be the S-kernel defined from the
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probability measure neM(G) of compact support as in §2 Example (iii).
[We assume, as we may, that Vol(M) =1.]

It is then clear that p, » K ((> 0) and this with the proposition in § 1
implies that ||K|| = 1. The upshot is that p, as a convolution operator on
^(G) has norm 1. This implies the amenability of G (cf. [7]).

Conversely let us assume that topsp. (S) < 0 and that therefore
\\pt\\ < 1 (t>0) as an l^-operator. Let also k = P o p ^ o ! be the
operator defined in § 2 it follows that \\k\\ < 1 and from this it follows that
K the probability measure it defines on G by the proposition in § 2 has
convolution operator norm less than 1. G is therefore not amenable
(cf. [7]).

Remark. — The above argument holds as soon as pt(x,y) is
conservative and M has finite volume.

4. The Hilbert space argument.

Most of this section is taken out from [8].
Let H be a real Hilbert space and let A, B be two invertible

operators on H that satisfy the following conditions :

0 < <A;c,x> ^ <Bx,x>; <Ax,^> = <x,A^>, Vx,^ e H

then we have:

LEMMA [8]. — With A and B as above we have

<B- lx,x> ^ A-^.x), V x e H .

Proof. — Fix x e H and set

^ = A"^, ^2 = B-l^
we then have

(B-^,^2 = <j^A^>2 ^ <A^,^><A^2>
^ <A^i,^><B^^2> = (A-^XB-^X).

The lemma follows.

Let now Ti, T^ and T3 be three contractions on H (i.e. ||T,|| ^ 1,
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i = 1,2,3) and let us assume that T2 is symmetric

(i.e. <T^> = <x,T^>: x,yeH)

that satisfy
T, =aT2+( l -a)T3

for some 0 < a < 1.

It is clear then that for all 0 ^ \ < 1 we have

0 ^ <(I-^T2)(p,(p>
0 < (l-aHllcpll2-^^] = <(l-U\)(p,(p> - a<(l-5iT2)(p,(p>

for all (p e H. It follows therefore that in the previous lemma we can set

A = aO-XT^), B = (I-^TO

and conclude that:

(4.1) f ^<T';(p,(p> < 1 f ^<T5(p,(p>
n=0 a n=0

for all (p e H.

If now we assume that / e H is a fixed element of the Hilbert space for
which :

(4.2) <T?/,/> ^ 0; <T^,/> ^0, n = 0,1, . . .

we can let ^ -> 1 in (4.1) and conclude that:

(4.3) £ <T?/,/> ^ 1 f <TV,/>
n=0 a n=0

we shall apply the above when T ,̂ i = 1,2,3 are S-operators and T^ a
symmetric one. Any /eL2^) that is non negative (i.e. /(co) ^ 0,
VCD e Q) satisfies the conditions (4.2) and we deduce therefore at once:

PROPOSITION. — Let KI, K^ be t^o S-operators such that K^ is
symmetric and K^ » K^. Then there exists some a > 0 s.t. for any non
negative /eL2^) we have:

Z wfjy^^i <KV;/>.
n=0 a n=0



252 NICOLAS m VAROPOULOS

Proof. — There exists some 0 < a < 1 for which K.i ^ aK^ and for
K — aK

which therefore K^ == aK^ + (l-a)K3 with K3 = —————2- The
inequality (4.3) therefore applies.

5. The Greeifs function.

Let M be a Riemannian manifold, let dV denote its canonical volume
element and pf(x,y) its heat diffusion kernel. Let

G(xjQ= [ p,(x,y)dt
Jo

be the Green's function on M. For every 9 > 0 I shall also define :

pe oo
He(x,^) = pt(x,y)dt; G^y) = ^ P^e(^^)-

Jo n=l

Both G and GQ could be identically = 4- oo. But if G(x,y) < + oo
for some pair x,y e G then for every fixed XQ e M we have
G(xo,y)eL^(M,dV(y)) (for this classical fact, cf. [2] or the general
literature).

We have

f He(x,y) d\(y) =9, Vx e M
JM

and (with the possible interpretation + oo = 4- oo) we also have :

(5.1) G(x,p) - He(x^) = p^y) dt•f) - fJe

Ge(x,z)He(z,y)d^(z), V x , ^ e M

fP o> 1 /•nP
(5.2) G,(x,y)d6= ^ - p^,y)dt,

n=l n jnv.

x,yeM, P > a > 9 .

An immediate consequence of (5.1) is that if G(x,y) < 4- oo then
Ge(xo,^) e L^(M;dV(y)) for all XQ e M [observe that He(x,^) > 0, Vx,
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y e M] a converse assertion can be obtained with the use of (5.2). Indeed
we obtain

\G,(x,y)d6= \ H^(t)p^y)dt
J<x JO

with
X^(0=[£l/n;^/P<n^/a]

and the obvious estimate Xa.p(0 ^ l°g P/0^ f01' large t shows that the
uniform boundedness of Ge for 9 e [a,?] in some interval implies the
existence of the Green's function on M. More explicitly let us assume that
(p(x), v|/(y) ^ 0 are continuous non zero functions that satisfy

nGe(xj0(p(x)vl/00 dV(x) dV(y) ^ K, V9 e [oc,P]

for some K > 0 and 0 < a < P. Then the Green's function exists on
M. We shall need this fact in the next section.

6. The transience of Brownian motion.

In this paragraph I shall need the following deep estimate on the Heat
kernel of a Riemannian manifold.

Estimate [9], [10]. — Let M be a complete connected Riemannian
manifold and let us assume that the curvature of IVl is uniformly bounded
and that the injectivity radius is bounded from below.

For all 0 < a < P then there exists C > 0, s.t.
1 .̂  _^_

(6.1) -^e l ^ p,(x;y) ̂  Ce c^ ; x , y e ^ l , te[a,P]
V-/

3 = 3(5c,^) is the distance on M between the points x, y , and Co > 0
only depends on 1VI and not on a and P.

The above estimate holds in particular when ]̂ l -> M covers a
compact manifold. Let us assume that we are in this situation and that G
is the deck transformation group of 1V[-> M. The following two estimates
are then critical but very easy to obtain (cf. [11]):

3(xo,x,) < C,\g\ + €4
\g\ ^ C^(x^) + €3
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where g e G , XQ^D (= some fixed compact fundamental domain) and
Xy e gD, and where C, (1 ^ i ^ 4) are positive constants independent of
g , XQ, and Xy. Let now 1% -»- M be a normal Riemannian covering
mapping with G as a group of deck transformations and M compact (G is
then automatically finitely generated). Let us assume that n is a symmetric
probability measure on G that satisfies

\i({g})^Ce-^2, f ^({1})< + oo
w=0

for some C, c > 0. It follows then from the general theory that

(6.2) v({g}) = f ^({g}) < + oo, V^eG.
n=0

i.e. that v is a measure on G (cf. [4]).

Let l(x,y) = 1 , VX,} / (=M and let K = 1 ® n the symmetric S-
kernel that we can construct as in §2 Example (iii).

It then follows from (6.1) and our hypothesis on |x that:

pQ(x,y) » K(x,y) V6 e [a,P]

for some 0 < a < P. This is because for x e g D , yehD we have
SC^)^-^!.

The proposition in § 4 applies and we deduce therefore from (6.2) that
00

Z <PnJJ> <K; Oe[a,P]
n = l

for all / that are positive, bounded and of compact support on Ki, and
some K > 0 that depends on /. This and the final remark in § 5 implies
that Brownian motion is transient on ]Q[, and proves one half of
Theorem 1.

Remark. - Observe that if we make on ^ the additional hypothesis
that it is of compact support then we do not need in the above proof the
estimate (6.1).

Conversely now let us assume that Brownian motion is transient and
that H is some probability measure on G s.t. [i({g}) ̂  Ce-^2 for some
C, c > 0. Let K(x,y) = 1 (g) ^ be the S-kernel constructed as before.
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By the estimate (6.1) it follows then that K » pe for some 9 > 0. By
00

the use of § 4 we conclude that ^ <H"/,/> < +00 for all / positive and
n=0

of finite support on G. The second half of Theorem 1 follows.

We have at the same time proved the assertion that was implicit in the
definition of recurrent groups.

7. The construction of a discrete Random walk.

Let G be a discrete group, let a^, a^ e G be a couple of generators of
G, which we shall keep fixed throughout, and let a^^a^a^eG.
Let also D be the disjoint union of the three copies of the non negative
integers D .̂ = {x}} (i== 1,2,3,7=0,1,...) where we identify
x^ == x^ = x^ = x (but keep all the other points distinct).

We first define on D the random walk that sends any point x} with
7 ^ 0 , to one of the two points x}_ i , x)+ ^ with probability 1/2 each and
sends the point x to one of the three points x{, x^, x^ with probability
1/3 each.

Let then © = D x G and let us define a new random walk on © by
giving the transition matrix P(9,9/) (9,9'e©)

P((^), OW) = P(d,df)^({g-lg'})

where p (d,d') is the transition matrix of the random walk we just defined
on D and n^eM(G) is a measure on G

'̂ = | (8a,+8,-i) for d , d' e D,, i = 1,2,3.

The above matrix P is not symmetric (nor is p on D) but we can
symmetrize it.

More explicitely let XeM(D) be given by ^({x}) = 3/2, ^({d}) = 1,
Vd ^ x e D and let I = K ® h e M(©) where h is the discrete Haar
measure on G. Let also F: Co(©) -> Co(©) be the linear
transformation

F/(0)= E P(e,9/)/(9/) /eCo(©)
9'eQ
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\ is then a symmetrizing measure in the sense that

f P/(9)^(9) ̂ (9) = f /(9)P^(6) ̂ (9), /, ^ e Co(©).
Je J©

Or, which amounts to the same thing, F induces a self adjoint linear
transformation on L^O;^). Indeed the kernel of P on L2((^k) is
Q(9,9') = P(9,9/)l(9/)-l and it is easily seen to be symmetric
Q(9,9') == Q(9',9). Q in fact induces a symmetric S-operator on (0;rfX).

The question arises whether the above random walk is transient or not.
It all depends, of course, on G and the two generators a^, a^, but I
know of no good general answer to that.

PROPOSITION. — Let G = Z2 and a^ = (1,0), a^ = (0,1) be the two
canonical generators. Then the above random walk is transient.

The proof is elementary I shall only give the outline : We clearly have
CP^^y) ̂  — n = 1,2,... .

^/n

Let us now denote by ^ (i== 1,2,3) the number of edges (steps if you
prefer) of the original random walk on D that lie on D, (we start that
walk at x). Then conditional that at time 2n we are back at x the
probabilities P [n^=2k^, n^=2k^\\cond.] are independent of k^, k^ for
all fei + k^ ^ n. This follows from a repeated (but not entirely trivial)
application of [13]III.^ and it is a good Feller type of exercise.

These two facts put together give us at once the estimate :

Q^[(x,l),(x,l)] ^ -^

(for some small £ > 0) where by 1 I denote the identity of G. The
proposition follows.

The above proposition shows that G can be a non-transient group and
yet give rise to a transient random walk on ©.

If we know however that G is transient in the sense that there exists a
symmetric probability measure \i on G with supp [i finite for which

00

^ (A" ( { ! } ) < + oo then it is easy to see that our random walk on © is

transient.
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The best way to see that is to go back to the original random walk on
D which at t == 0 starts at x and consider
0 = To < TI < • • • < T^ < • • • the successive return times to the point
x . Denote by g^ e G the random group element defined by
9(Tn) = (x,gn) [I denote here by 9(m) the position of the random walk
on © = D x G at time t = m\. g^ performs a translation invariant
symmetric random walk on G. Let F denote the probability distribution
of g i . It is easy to see that Gp (supp r) = G. From this and our
hypotheses on G if we use the machinery of § 4 we conclude that

00

^ r"({l}) < + oo . Our assertion follows. [It is worth observing that the
n=l

original argument of [8] was devised to cope with a situation just as above.]
r can in fact be computed very easily, it is the sum of three Cauchy
distributions on the each of the three subgroups Gp(a^i = 1,2,3 of G.
The Cauchy distribution fails to have a first moment and this explains the
apparent discrepancy between our proposition and what has just been said.

8. The Riemann surface.

Let M be the Riemann surface that we obtain by removing three
points z, (i = 1,2,3) from the unit sphere of R 3 . Let B1 c: M be three
small disjoint ponctured discs centered at z^ (f = 1,2,3). I shall give on
each B1 the flat metric ds2 = sin"2 [d(z,Zf)] ds2, [to help you see that the
above ds2 is flat observe that the length of all small circles centered at z^
is the same!] where ds2 and d(z,z^) denote the metric and the angular
distance induced by R3, I shall then extend the definition of ds2 to the
rest of M so as to obtain a smooth complete conformal Riemannian
manifold. M looks like a sphere with three straight pipes welded to it. The
main point of the above metric is that its restriction to each B1 is flat. I
shall now subdivide each B1 into regions

(8.1) B;, = {z e B1; a;,1^ < d(z,z,) ^ o^}; n = 1,2, . . . .

and for convenience, I shall denote the complement

C=M\u{B; , ; f= l ,2 ,3 ,n= l ,2 , . . . }

by BQ for any i = 1,2,3 . A proper choice of the above subdivision and a
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possible renormalization of the metric will ensure me that:

Vol(C) = 3/2; Vol(By =1 ; i = 1,2,3, n = 1,2,....

Let now Kt -+ M be a covering of the above surface and let G be the
deck transformation group. We must think of G as a quotient of Tti(M)
this allows us to identify two generators of G, say a^ and 02, which
correspond to the loops of 7ti(M) that go once around z, (i = 1,2) in a
clockwise direction. I shall fix then a fundamental domain in 1% by cutting
M from Zi (i = 1,2,3) to some fixed u^B1 u B2 u B3 along great
circles. Using that fundamental domain I shall then identify id with
M x G. From the subdivision (8.1) of M I can obtain then a subdivision
of 1%

f^; g e G , i= 1,2,3, n = 1,2,. . .
U G ; g e G .

The above subdivision of 1̂ 1 allows me to define two mappings

T: L2^;^)-^ L^Q;^); T*: L^®;^)-> L2^;^)

where © and Sk are as in the previous paragraph.

T/[(4,,)]=^J^/(m)^(m)

T*/(m)=/[(4,^)] if meg^.

The above two mapping are clearly norm decreasing they are adjoint to
each other and TT* = I 8Q.

Using the two generators a^i = 1,2) of G defined above I can then
define 0(9,9') as in the previous section and also K = T*QT. K is then
asymmetric S-operator on L2^) (in the sense of § 2). The best way to
see that it is an S-operator is to extend the definition of T and T* to
L^l^p^+oo) and observe that K (together with its adjoint) is positive,
norm decreasing and has Kl = 1.

Let now p^(x,y)(x,ye'S/i) be the heat diffusion kernel on Kl at
time t = 1. We have then :

^

PROPOSITION. — If we aenote by K again the kernel of the operator
T^QT on Kl we then ha\e p^ » K.
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Proof. - By looking at the Geometry of M and of the subdivision
(8.1) we see from the definition of Q that there exists some A > 0 such
that:

fK(^)=0; x,ye^ 3(x,J)) > A
[|K(x,j))|<A

where 3 denotes the distance on id induced by our metric ds2 on M.

The proposition then follows from the estimate:

inf{pi(x,JQ; 3(x,JQ <A} > 0.

The above estimate is a consequence of the estimates of § 6, but of
course in this case a direct proof can be given by the standard argument of
following Brownian motion through a chain of discs and using the Markov
property.

THE LYONS-MCKEAN THEOREM. — The transience of Brownian motion on
Kl when G = ni/Dii,7tJ ^ Z2 follows at once from the above proposition
together with the proposition in § 7 and the machinery developed in § 4 and
§5.

9. Concluding remarks.

Without proofs I shall state here some further partial results that can be
obtained in the context of § 8 (using the same methods).

PROPOSITION. - Let ^ -> M be the Riemann surfaces as in § 8, let G
be the deck transformation group and let us assume that Brownian motion is
transient on Kl. Then :

oo ^
(i) ^ ——. < + oo where y(n) is the growth function of G,

n = o Y W
(ii) For every [i probability measure on G that satisfies

[tW^Ce-^2 (geG)

for some C, c > 0 we have

E^+oo.
n=i Jn



260 NICOLAS TH. VAROPOULOS

It is tempting to conjecture that both (i) and (ii) are also sufficient
conditions for the transience of Brownian motion on M. This however I
have not been able to prove.

Appendix.

Let G be a group that is finitely generated and that is transient in the
sence of § 0 i.e. there exists |A() e P(G) a symmetric probability measure
on G such that \io({g}) ^ Q?-^12 (VgeG) for some C, c > 0 and
such that

Z nr({i}) < + ^;
then G is also transient for the more standard definition (or for any other
reasonable definition). Indeed we have :

PROPOSITION. — Let G be as above, let g ^ , . . . , g^ e G be a finite set of
generators of G and let v e P(G) a probability measure on G that satisfies
v(gf1) > 0 (/ '==1,.. .,fe) then \ve have

f v*"({l})< + 0 0 .
n=0

Proof (I shall be brief). — Let v be as above, then the measure
X = e~leve¥(G) satisfies

MQr}) ^ ̂  {g^e-^ > -1- e-^2; \/g e G, (g + e)
A. OC

for some A, a > 0. From this and what we have already proved it
follows that

f ^"({l}^ + 00.
n=0

It remains to observe that:

f v*" ^ C f ̂
n==0 n=0

r - ^ (^for some numerical C > 0. Expand X,*" = e " ^ —— and
substitute]. L "=o P '
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