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DEGREE OF THE FIBRES OF AN ELLIPTIC
FIBRATION

by Alexandru BUIUM

1. Statement of the results.

Let f: X —> B be an elliptic fibration over the complex field
i.e. a morphism from a smooth complex projective surface X to
a smooth curve B such that the general fibre F of f is a smooth
elliptic curve and no fibre contains exceptional curves of the first
kind. Consider the following subsets of Pic(X):

N, = {£€Pic(X), £= O0x(D) for some effective D}
N, = {# €Pic(X), £ isspanned by global sections}
N, = {£ €Pic(X), £ isample}

» = (£ EPic(X), £ isveryample}

and let n,,n,,n,, n, be the minima of the non-zero intersection
numbers (£.F) when £ runs through N_,N;,N, and N, res-
pectively. In [3] p. 259, Enriques investigates the possibility of find-
ing a birational model of X in the projective space P® such that
the fibres of f have degree n,. His analysis suggests the following
problem: find the minimum possible degree of the fibres of f in
an embedding of X in a projective space. In other words: find n, .
There obviously exist inequalities: n, <n,<n, and n, <n,.

Let m denote the maximum of the multiplicities of the fibres
of f. The aim of this paper is to prove the following propositions:

ProPOSITION 1. — Equality n, = n; holds if and only if
n,=2m.
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PROPOSITION 2. — Equality n, = n

a
n, = 3m.

o holds if and only if

The statements above are consequences of the following more
precise results:

THEOREM 1. — There exists a constant C, depending only of
the fibration such that for any effective divisor D on X which does
not contain in its support any component of any reducible fibre and
such that D is either reduced dominating B, orample, the following
conditions are equivalent:

1) (D.F)=22m.
2) Ox(D) ® f*L is spanned by global sections for any L € Pic(B)
with deg(L) = C, .

3) O4,(D)® f*L is spanned by global sections for some
L € Pic(B).

THEOREM 2. — There exists a constant C, depending only on
the fibration such that for any ample sheaf £€ Pic(X) the following
conditions are equivalent:

1) (#.F)=3m.

2) £® f*L is very ample forany L € Pic(B) with deg(L) =C, .

3) £® f*L isvery ample for some L € Pic(B).

Our proofs are based on Bombieri’s technique from [2]. Therefore
the main point will be to prove that certain divisors on X are nume-
rically connected.

2. Two lemmas.

LEMMA 1. — Let D be an effective divisor on X which does not
contain in its support any component of any reducible fibre. Suppose
D is either reduced or ample and put T =D +a,F, +...+a,F,
where F, are distinct fibres and a;€Q, a;>0 for 1<i<p.
Suppose furthermore that a; + ...+ a, = 2. Then we have:

1) If (D.F)>=2m then T is 2-connected.

2)If (D.F)=3m and D is integral and ample then T is
3-connected.
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Proof. — Suppose T =T, + T, where T, > 0 and

T, =D, + A,
D,+D,=D
A+ A, =A=aF +..+qF,.

We get
(T,.T,)=(D,.D,) + (D,.A)) + (D,.A)) + (A,.A)).

If in addition D is integral we may suppose D, = 0. Since by [6]
ample divisors are I-connected it follows that in any case (D,.D,) > 0.
On the other hand we have (D,.A,) >0 and (D,.A,) = 0 because
any common component of D and A must be a rational multiple
of a fibre. We may write A, =Z, +...+Z, where Z, <gqF,
for 1 <i<p. Weget

A A)=(A—-A,.A)= —(Ag) =— (Zf) —...—(Z:).

By [1] p. 123 we have (Z,-z) < 0 for any i. Suppose first that there
exists an index i such that (Zf) <0. By [5], (Zf) = —2, conse-
quently (T,.T,) = 2. If an addition D is integral and ample then
A, #0 (because otherwise T, = 0) hence (D;.A;)=>1 and we
get (T,.T,))=3.

Now suppose (Z2) =0 for any i. Then by [1] p.123, we must
have Z, = ¢;,F; where ¢;, €Q, 0<¢;;, <ga,, hence

A =cyFi+...+ ¢, F,
where ¢;; + ¢;; =a;. If both D, and D, dominate B we get
(D,.F)=1 for k=1,2 hence
(T,. T,))=2D,.A) + D A 2cpy + ...t cpy ey +oo ot oy
=a +...taq,>2
and we are done. If D, =0 for k=1 or k=2 then A, #0
hence there exists an index i, such that ¢; , > 0. Now if m,
denotes the multiplicity of F, we have ¢, , = 1/my = 1/m.
0 0

Consequently we get (T,.T,)=(A;.D)=> c,ok(D. F)=D.F)/m
and we are done again, Finally if D, ¥ 0 and D, does not dominate
B weget (T,.T,)=(D,.D,) = (D.D;) = (D. F)/m and the lemma
is proved.

LeMMA 2. — Let m,,..., m, denote the multiplicities of the
multiple fibres of f. Then for any reduced effective divisor D not



272 A. BUIUM

containing in its support any component of any reducible fibre we
r

have (D?) = —(D.F) (x(0x) + X, (m; — 1)/m)).
j=1

Proof. — We may suppose D =D, +....+ D, where D,
are integral, distinct, dominating B. For any i=1,...,¢ let E,
be the normalization of D,. By adjuction formula and by Hurwitz

formula we get:
(Df) + (D;.K) =2p,(D,;) -2 = 2p,(E;) — 2 2 [E;: B] 2p,(B) — 2).

Consequently:
t t
©)> ¥ O)>(Y [E:BI)(2p,B) - 2) - ©.K)
i=1 i=1
= (D.F) (2p,(B) - 2) — (D.F) (2p,(B) — 2 + x(©)

r
+ 2 (m;—1)m)
i=1
because of the formula for the canonical divisor K (see [4] p. 572)
and we are done.

3. Proofs of Theorems 1 and 2.

Suppose m,Y,,...,m, Y, are all the multiple fibres of f each
having multiplicity m;, 1<j<r and take b/ € B such that
m/Y, =f *(b,). By the formula for the canonical divisor K we
may write

Ox(K) = f*M® 04 ( 2. (m; — 1Y,
j=1 !

where M € Pic(B), degM) = 2p,(B) — 2 + x(Ox).

Furthermore for any points x,x;,x, on X denote by
p:i—* X and ¢q:X—> X the blowing ups of X at x and
{x,,x,} respectively and let W, W, , W, be the corresponding
exceptional curves. Put y = f(x), ¥, = f(x,), ¥, = f(x,;).

Proof of Theorem 1. — To prove 1) == 2) it is sufficient
by [2] to prove that H'(X, p*04(D)® p*f*L® 04 (~W) =0
for any x € X hence by Bombieri-Ramanujam vanishing theorem
[2] to prove that the linear system
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A= |p*04x(D -K)® p*f*L® (9.).((—2W)|

contains an 1l-connected divisor with selfintersection > 0. Now by
Lemma 2 the selfintersection of A is

(D?) — 2(D.K) + 2(D.F) deg(L) — 4> 0

provided deg(L) > «; where «, is a constant depending only on
the fibration. Now by Riemann-Roch on B we get that

ILOM ' ® Op(=b, —... b, —29)|#

provided deg(L) —degM)—r —2 =p,(B). Hence there exists a
constant «, depending only on f such that for deg(L) = a, we
may find a divisor b€ |L® M™'| with b+ ...+b,+2y<b.
It follows that

G=p*D+f* —2 (m—-1Y)-2WEA.
j=1

r
Now for deg(L) — deg(M) — 2 (m, - 1)/m, = 2 the divisor
r j=1
D+f* —3 (m—1)Y, must be 2-connected by Lemma 1.
. j=1
It follows by a standard computation that in this case G is 1-
connected. Hence we may choose C, = max {a,, a,, a3} where

oy = degM) + Z (m, - l)/m/ + 2 and we are done.
j=1

2) == 3)is obvious.

To prove 3)== 1) we may suppose that L is trivial and that
D has no common components with Y, where mY is some fibre
of multiplicity m . We only have to prove that (D.Y) = 2. Suppose
(D.Y) = 1. By Riemann-Roch on the (possibly singular) curve Y
we get
h°(0y (D)) = h%wy(— D)) + deg(Oy (D)) + x(Oy)

= h%Oy(-D)) + 1

because the dualizing sheaf wy is trivial. Now since ©y(— D)C 0Oy
we get H°(0y(—D)) CH°(Oy). Since by [5], H’(O,) consists only
of constants and since Oy (— D) is not trivial we get h°(Oy(—D)) = 0
hence A% ©y(D)) = 1. Since Oy(D) is not trivial, it follows that
Oy (D) cannot be spanned by global sections, contradiction.
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Proof of Theorem 2. — Note that 2) == 3) is obvious and
that 3) = 1) follows easily considering as above a multiple fibre
of the form mY and noting that Y must have degree at least 3
with respect to any very ample divisor because p,(Y) = 1.

Let us prove 1) == 2). Start with an ample £€ Pic(X)
with (L.F)=23m, put o = £® f*L for LEPic(B) and let
us prove first that |C| has no fixed components among the com-
ponents of the reducible fibres of f provided deg(L) =, for
some constant §,. Let Z;, be a component of a reducible fibre
F and look for a divisor in |J1T| not containing Z, in its support.
Note that by [5], Z, is smooth rational with selfintersection
(Zf = — 2. According to [S] there are two cases which may
occur: either (Z,.Z,) <1 for any other component Z, of F,
or F=0b(Z, +Z,) for some natural b where Z, is smooth
rational with (Z2)= -2 and (Z;.Z,)=2. In the first case
put Z=7Z, and choose a point pE€ Z. In the second case, since
b(#.Z,)) +b(L.Z,) =(L.F)=3m > 3b wemust have (£.Z,)=>2
for k=0 or k=1. Put in this case Z=7Z, +Z, — Z, and
take pE€Z,NZ,. It will be sufficient to find a divisor in ||
not passing through p. We have the following exact sequence:

0 — HOI(-Z)) — H°(oR) — H°((9P1(C)) — H'(0(- 2))
where ¢ = (£.2) =2 1. It is sufficient to prove that H!(o1e(— Z)) = 0.
We use Ramanujam’s vanishing theorem [6]. By Serre duality it is
sufficient to prove that

(M(-Z-K)»)>0 and (M(—-Z-K).R)=0

for any integral curve R. Now

OMM(—=Z-K)*) = (L*) +2(2.F)deg(L) —2 - 2(£.2) - 2(2 .K)
> 2(L.F) (deg(L)—1 —d) — 2

where d€Q, K =dF. Consequently the selfintersection is > 0
for deg(L) =d + 2.

To check the second inequality suppose first that R is contained
in a fibore F. We get (M(—Z—-K).R) = (2.R)—(Z.R) =0
because the only case when (Z.R)=2 is F=b(Z, + Z,) and
R =Z,. Nowif R dominates B we get
n(-Z-K).R)=(£L.R)+ (F.R)deg(L) — (Z.R) — (K.R)

> (F.R)deg(L) —(F.R)—d(F.R) =20
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for deg(L) =d + 1, and we are done. Now if B, is chosen also
such that B, = 2p,(B) it follows that JIU is still ample hence by
Theorem 1 the linear system |2® f*L| is ample and base point
free provided deg(L) =B, =§, + C,. By Bertini’s theorem the
above system contains an integral member D. To prove 1) = 2)
it is sufficient by [2] to prove that

H!(X, p* 04 (D) ® p*f*L ® Oy (- 2W) = 0
H!(X, g* 04 (D) ® g*f*L ® O4(~ W, —W,)) =0

for any x,x,,x, €X, provided deg(L)=>g; for some constant
B;; in this case the constant C, =, + §; will be convenient for
our purpose.

Now exactly as in the proof of the Theorem 1 we may find

a constant 3, such that for deg(L) = ; the linear systems
|p*0x(D — K) ® p*f*L ® 04(—3W)|

and
|g*0x(D —K)® g*f*L ® 03(— 2W, — 2W,)|

have strictly positive selfintersections and contain divisors of the
form

G, = p*(D + X aF,) — 3W
and !
G, = q*(D + X bF,) - 2W, - 2W,
i
with q;,5,€Q, g =0, za Y. b; > 2 and where

i
F, are fibres. Then by Lemma l the divisors D + 2 a;F; and

D+ 2 b;F, are 3-connected hence by a standard computation,

G, and G, are l-connected and the Theorem is proved.
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