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EQUIVALENCE OF DIFFERENTIABLE
FUNCTIONS, RATIONAL FUNCTIONS

AND POLYNOMIALS

by Masahiro SHIOTA

1. Introduction.

We consider in this paper when a differentiable function on R" can be
transformed to a (« equivalent») polynomial or a rational function by a
diffeomorphism. Assume n = 1. Then a non-constant C00 function is
equivalent to a polynomial if and only if it is proper, the number of critical
points is finite and the derivative is nowhere flat (R. Thorn [9]). We want to
generalize the dimension. We see in [3], [4] a generalization in another
direction to C-polynomials.

In Section 2 we treat functions on R" with isolated critical points.

THEOREM 1. - A C°° function on ^(^1^4,5) is equivalent to a
polynomial if it is proper, the number of critical points is finite and the Milnor
number of the germ at each critical point is finite.

THEOREM 2. — In the above theorem, if \ve replace the condition on the
Milnor number by one that the germ at each critical point is locally equivalent
to a germ of a rational function, then the function is equivalent to a rational
function.

In the case n = 3, we can change the properness condition in these
results to (*) that the absolute value of the differential is larger than a
positive constant outside a bounded set (theorem 3,4 in §3). This is
impossible for general n. We have a counter-example.

Section 4 deals with the case of dimension 2.

THEOREM 5. - An analytic function on R2 is equivalent to a polynomial,
if it is proper and the number of critical values is finite, or if the above
condition (*) is satisfied.
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We will consider also C°° functions on an affine smooth algebraic
varieties, and we obtain similar results to Theorem 1, 3, 5. For example,
any analytic function on an algebraic variety homeomorphic to S2 or
P2(R) is equivalent to the restriction of a polynomial (theorem 5'").

In § 5, these results are modified to the problem of equivalence to Nash
functions.

The restriction of a polynomial or of a rational function on an algebraic
subset is called briefly a polynomial or a rational function. Any affine
smooth algebraic variety is diffeomorphic to the interior of a compact C°°
manifold with boundary. We call the boundary as the boundary of the
algebraic variety. We remark that the boundary is not unique. For / a C°°
function on a manifold and x a point, /^ denotes the germ o f / a t x .

We remark that the diffeomorphisms of equivalence in the theorems are
chosen analytic, if the given functions are all analytic (see [4]).

The author thanks A. Kawauchi for a helpful discussion.

2. C00 functions with isolated critical points.

DEFINITION 1. — C°° functions /i, /2 on a C00 manifold M are
equivalent if there exists a C°° dijfeomorphism T of M such that
fi ox = /2 . C°° function germs (pi, (p^ at a point a in M are equivalent if
there exists a C°° local dijfeomorphism n of M at a such that
(pi o n = (pa.

DEFINITION 2. — The Milnor number of a germ (p of a C°° function at 0
in R" is the dimension of the real vector space S J ( 8 ^ / 9 x ^ , .. .,3(p/3x^).
Here S^ is the ring of C°° function germs at 0 in R".

The proofs of the results of this paper are based on the following
lemmas (see [3], [4], [11]). The first one is essentially due to J. N. Mather.
Let M be a C°° manifold, and let Xi , . . . , X^ be C°° vector fields on
M.

LEMMA 3. — Let f, g be C°° functions on M and let a^x.t) be C°°
functions on M x [0,1], i = 1, . . . , fe . Assume that

f(x) - g(x) == f; a,(x,t)(tX^(l-t)X^) on M x [0,1]
i= i
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and that a; are near to the zero function in the Whitney topology. Then f
and g are equivalent, and the diffeomorphism can be chosen near to the
identity.

Proof. - Put

P(x,t) = tf(x) + (1 -t)g(x), (x,t) e M x [0,1].

8 k

We regard Y = — — ^ a,Xf as a vector field on M x [0,1]. Then wect f = i
have YF = 0. Consider the integral curve of Y passing each point

k

(x,0) e M x 0. Since ^ a^X, is near to the zero vector field, the curve
1=1

passes the unique'point (y,l) in M x 1. Hence it follows that

g(x)=¥(x,0)=P(y,\)=f(y).

Let the correspondance x -^ y be denoted by n. Then 71 is a
diffeomorphism of M near to the identity and satisfies g = fo n. Here
we remark that if a, = 0 on x x [0,1] then n(x) = x and that if we
assume only that a^ are near to the zero function in the C° Whitney
topology, then n is near to the identify in the C° Whitney topology.

LEMMA 4. — Let f be a C°° function, and let g i , .. .,^k', be linear
combinations of XJ* for i = 1, . . . , k with C°° functions as coefficients
such that also X^gj for all i,j are linear combinations. Then f is equivalent

k'

to f + ^ Ojgj for any small C°° functions aj in the Whitney topplogy.
i=\

k

Particularly f is equivalent to f -(- ^ bijX^fXjf for small C°° functions
*j=i

bij. Here the diffeomorphism can be chosen near to the identify.

Proof. — By the above lemma, we only need to find small C°°
functions c^(x,t), . . . , c^{x,t) such that

(1) Z^. = I c/X,/+(l -OX/ ̂  a^V)
;=1 1=1 \ \J=\ //

on M x [0,1].

By the assumption there exist small C°° functions di(x), d^x),
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ij = 1, . . . , k such that

E^A- = Z W, x/t:^,) = t rf;,x,/.
7 = 1 -/=1 V/-1 / y = i

Hence (1) is equivalent to

(2) Z W = 1 c,(X,/+(l -r) t rf,X,/).
t-1 » = 1 J = l

Denote by C, D, D' the \ x k matrices (c,,...,c,), (^, . . . ,rf ,) ,
the fc x fe matrix (rfy respectively. Then (2) is written as follows:

D/Xi/\ = (C+(1-OCD')/X,A

w} \xj)
Hence it is sufficient to choose a matrix C so that

D = C(I+(I-OD')

where I is the k x k unit matrix. Since I 4- (1-QD' is invertible,
C = D(I+(1-OD')~1 exists and satisfies this equality. Clearly all
elements of C are small C°° functions. Hence Lemma 4 is proved.

We use this in the following form.

LEMMA 5. - With the same f and g , j == 1 , ..., fe', let U c M be a
compact set. Then, for C°° functions a, small in a closed neighborhood of U
there exists a C00 diffeomorphism t which is close to the identity in
Whitney topology such that

k'

/OT = /+ £^, on U.

We can treat the local case in the same way. For example, the next
lemma follows from the remark at the end of Proof of Lemma 3.

LEMMA 4'. - Let f be a germ of a C°° function at 0 in R" critical at

0. Then f is equivalent to /+ ^ b 3 ' for any germs of C°°
i j = i OXi CXj

functions fc,,, with small |fc,,(0)|. Here the Jacobian matrix of the local
diffeomorphism at 0 can be chosen near to the unit.
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The following remark and lemma show the behaviours of proper
polynomials and of some C°° functions at infinity.

Remark 6. — Let /i, f^ be positive proper polynomials on R". Then
there exists T a C°° diffeomorphism of R" such that T is the identity on
a given bounded subset and that /i o T and f^ are equal outside a
bounded subset.

Proof. — We can assume f^(x) = \x\2. Put

B = {xeRn|<x,grad/l(x)>=-|x||grad/l(x)|}.

Here < , > means the inner product of vectors. Then B is semi-algebraic.
Obviously B is the set of points x where grad/i is zero or grad/2 is a
product of — grad/i and a non-negative number. Moreover B is
bounded. We will prove this fact in a more general form in Proof of
Proposition 8, hence here we assume this.

Let K be a sufficiently large number, let g be a C°° function on R"
such that

fO for M ^ K
O ^ g ^ l , g(x)=^ ^ ^^

Put

D == { |x|=K}, D' = {M^K}, D" = {|x|^2K},

v =^grad/i/|grad/J + ^ x,—l\x\ on D\
i = l uxi

Then v is a non-singular vector field on D'. Moreover vf^ vf^ are
positive on D", D' respectively. The integral curves of v define a
diffeomorphism n: D x [0,oo) -^ D' such that

and
/2 o 7t(z,0 = t + K for (z,r) e D x [0,oo)

3/i ore (z,Q > 0 for large (.
8t

As /i o n is proper, there exists also a diffeomorphism 71' of D x [0,oo)
such that

7t'(z,0 = (z,5(z,Q) for any (z,0,
/i o K o K'(z,t) = ( + K for large t
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and that K' is the identity near D x D, where s is a C°° function. Let T
be the extension of n o n' ~1 o n ~1 onto R" which is the identity on
R" — D'. Then the equation f^ o T = /i holds true outside a bounded
set. Hence Remark 6 follows.

LEMMA?. — Z^/i,/2 be positive proper C°° functions on R". Assume
n + 4,5 and that the sets of critical points are bounded. Then the same result
as in Remark 6 holds true.

Proof. — Let a be a larger number than any critical values of /i, /2 •
Put

S"-1 = {xeR' lhc^l} , B = {N^1},
W, = {xeR^^OO^}, i = l » 2 •

Assume that the given bounded subsets are contained in B and that
|/, | < a on B. By the assumption, f^^a) x [0, oo) is diffeomorphic to
{fi ̂ a} ^or i = l , 2 . Hence we only have to prove that W, are
diffeomorphic to S"~1 x [0,1]. It follows from the same reason as above
that (Wf.S""1,/,"1^)) are /i-cobordisms (i.e. 8Wi=Sn~lufi'l(a), and
S^^cW; and /^(^cW^ are homotopy equivalences). Hence, from [2],
the assertion for n ^ 6 follows. This holds true trivially for n = 1 ,2 ,
and for n = 3 because W, can be imbedded in S""1 x [0,oo) ([13] or
[8]).

Proof of Theorem 1. — Let / be the function stated in the theorem. We
assume it to be positive valued. Let S == {si , . . . , s^} be the set of critical
points. It is well-known [11] that by the assumption on the Milnor number,
there exists an integer £ such that /,. is equivalent to /,. 4- any germ of
a C°° function <f-flat at 5» for each i. Here the local diffeomorphism is
chosen orientation preserving. Clearly there exists a polynomial g on R"
such that g — f is ^f-flat at each s,. The local diffeomorphisms of the
equivalences of g,. and /,. are extensible on the global R". Transform /
by the extended diffeomorphism. Then we can assume f = g in a
neighborhood of S. We put

h(x) = n i^-^r, gi = g + h
1=1

where ^ ' is an integer such that 2<f' > £ and W > the degree of g .
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Then g^. — f,. is ^-flat for each f , and we have

g^ = \x\2kr + a polynomial of degree < W .

Hence gi is proper. Apply Lemma 1 to f and gi. Then, from the
beginning we can assume / = g in a neighborhood of S and on {|x| ̂ K}
for a number K . The theorem follows from Proposition 8 below.

THEOREM V. — Let M c: R" be an affine smooth algebraic variety of
dimension n' + 4, 5, and, f be a positive C°° function on M mth the same
conditions as in Theorem 1. Assume that the boundary of M is simply connected
if ri ^ 6 and that any connected component of the boundary is not
dijfeomorphic to P2(R) if n = 3. Then f is equivalent to a polynomial.

Sketch of the proof. — For the proof, we use polynomial vector fields on
M (considering in R") in place of 3/3x,, i = 1, . . . , n which span the
tangent space of M at each point. We see the existence of such vector
fields as follows. Let v^, v^ be polynomial vector fields on R". Then
<y1,^1) ^2 — ^1^2)^1 is a polynomial vector field orthogonal to v^ and
is non-singular at any point where v^, v^ are independent. We call this
operation the orthogonalization. We orthogonalize any polynomial vector
fields U i , 1^2, . . . in the same way. Let g ^ , . . . , g^ be generators of the
ideal of R[xi ' . . . ,xJ defined by M. Since grad^i, . . . .gradg^ on M
span the normal vector bundle of M in R", for any point x of M there
exist a portion h^ , . . . , / ! „ _ „ ' , of g ^ , . . . , gk such that
grad h^, . . . , grad h ^ - n ' , span the normal bundle of M at x in R". Let
FI , . . . , v ^ - n ' , Ui be the orthogonalization of

gradhi, . . . , g r ad^_^ , ^ i = 1, . . . , M .

Then u^, . . . , ̂  span the tangent space of M at x . As there are only a
finite number of selections of h^, . . . , h^-n' in gi ? • • • » <?k» we obtain a
finite number of polynomial vector fields which span the tangent space of
M at each point.

We need also the fact that the set B of points x of M such that the
angle of the vector x and the tangent space of M at x is larger than
given e > 0 is bounded.

We prove this as follows. Let v^, . . . , v^ be polynomial vector fields
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on M which span the tangent space of M at each point. Put

k

B,/ = {(x,^, .. .,0fe) e M x R^j ̂  a^ ^ 0.
i= 1

k k

<^ E ̂ c> ^ e'lxii E ̂ j}
i = l ,= i

for e' > 0. Then B,. is semi-algebraic, and B is the complement of its
image under the projection from M x Rk onto M for some £'. Hence B
is semi-algebraic. We will prove by reduction to absurdity that B is
bounded. Assume it unbounded. As R" is algebraically diffeomorphic to
S"-{apointa} where S" = {x eR^Hx^ 1}, we identify R" with its
image. The germ of B at a is not empty. Hence, considering the germ, we
obtain easily an unbounded one-dimensional semi-algebraic set B' c: B
whose germ at a is connected. Since the subset of B' of points where B'
is not C" smooth is a semi-algebraic set of dimension 0, we can assume
that B' is C01 smooth. Let v be a vector field on B' such that |i;| = 1.
Consider a mapping

x e B ' -^ (x,x/|x|,^) e S" x R" x R\

We see easily that the image is semi-algebraic and of dimension 1. Let B"
be its closure. Then B" n a x R" x R" is of dimension 0, and hence this
consists of one point (a,b,c). This means that (x/|x|,^) tends to (fc.c) as
xeB' tends to infinity. Assume b = (1, .. .,0). Then the germ of B'
at a is contained in {x j+ . . . +x^5x?} for any 5 > 0. On the other
hand, if b + ± c, the germ would be outside {xj+ . . . +x^8x^} for
some 5 > 0. Hence b = ± c. This implies that the angle of the vector x
and the tangent space of B' at x tends to 0 as x tends to infinity. This
contradicts the definition of B. Therefore B is bounded.

We have to modify Lemma 7 as follows.

LEMMA 7'. - Let M' be a simply connected compact C°° manifold of
dimension ^ 5 or a t\vo dimensional connected compact C°° manifold not
diffeomorphic to P^R). Let f^f^ be positive proper C°° functions on
M' x [0,oo). Assume that f,J^ have no critical points. Then there exists
n a C00 diffeomorphism of M' x [0,oo) such that n is the identity on a
given bounded subset and that f^on and f^ are equal outside a bounded
subset.
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We can apply this result to our problem, because M-(a bounded subset)
is diffeomorphic to M' x (0,oo) (M' the boundary of M). The proofs of
Lemma 7 and Theorem 1' proceed in the same manner as the
correspondings. Hence we omit them.

Example. — The positiveness of / in Theorem 1' is necessary. For
example, put

M = {(x,^z)eR3 |z(x24-^2-l)((x-l)2+^2-l)=l}.

Then M is the graph of a rational function defined on

{^y^u {(x-l)^2^!}.

Hence M has 4 connected components. Let M2 be a connected
component of M. Let / be a proper C00 function on M positive on M2,
negative on M — M2. Then / is not equivalent to any rational function.
The reason is the following. Assume that / is equivalent to a rational
function. We can regard the equivalent rational function as defined on the
(x,y)-plane. We write the function as g(x,y) = gi(x,y)lg^(x,y) where
g i , gi are polynomials and have no common factor. Then, 1) the set of zero
points of g^ is a finite set contained in S = {x 2 +^ 2 =l or (x—l) 2 +^ 2 = 1},
2) g2 is divisible by (x2-{-y2-l)a((x-l)2-^y2-l)b for some integers
a , b > 0 and 3) g^|{x2+y2-V)a{{x-\)2^y2-\)b satisfies the same
condition as 1). Let U be the connected component of R2 — S correspon-
ding to M2. By the definition of / and by 1), g^ takes the same sign on
R2 — M2 — S. Hence a and b in 2) are even. Therefore g is negative on
M2. This is a contradiction. Hence / is not equivalent to any rational
function.

PROPOSITION 8. — Let f be a C°° positive proper function on R" mth
the bounded set S of critical points. Let /i 5/2 be smooth rational functions
on R" such that /==/i in a neighborhood of S and on {|X|^K} for a
number K, f^W = S and that f^ satisfies the conditions on gi in
Lemma 4. Then f is equivalent to /i +/2/3 f01' some polynomial f^.

Proof. — We can assume that f^ is non-negative and moreover proper.
The reason is the following. We only have to see f^(x) ^ M'^, \x\ ^ L
for some integers N , L , because (l-Hxl21^2)^^) is proper and has the
same properties as f^. We identify R" as S"-{a point a} where
S" = {xeR^llx^l}. Consider the graphs of f^ and g = \x\~2 in a
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small neighborhood of a. Let Pi , P^ be the respective closures of them.
Then P^, P^ are closed semi-algebraic sets satisfying in a neighborhood
of a x 0

P l n S n x O = a x O o r 0 , P 2 n a x R = a x O .

It is well-known [1] that any two closed semi-algebraic sets are regularly
situated. Consider P^ and S" x 0. Then it follows from the regular
situation [1] that

|r| > dist (x,af for (x,r) e P^

in a neighborhood of a x 0 where N' is a constant, and here dist means
the distance in the metric on S". This argument shows also

\tf ^ dist {x,d) for (x,r) € P^

for some N". These inequalities mean that

fAx)^gw•(x)=\x\-MV•

in a neighborhood of a.

Put
F(x,r)=^(x)4-(l-0/2(^

B,= {(x,t)eRn+l\0^t^\,<x,gT^P(x,t)>
^-£|x||grad,F(x,r)|}

for e > 0, where grad^ = ( ,— ^ . . . , -— ) • Then Bg is a semi-algebraic
\cxl dxn/

set. We want the property that Bg is bounded. Assume it unbounded. We
proved in Sketch of the proof of Theorem 1' that B is bounded. In the same
way we see that there exists an unbounded one-dimensional C*" smooth
semi-algebraic set Bg c= Bg whose germ at a is connected. Here
R" = S" - {a}. Let v be a vector field on B, such that \v\ = 1. Then we
also proved that (yl\y\,Vy) tends to (b,±fr) for some fceR" as ^eBg tends
to infinity. We can assume that the limit is (b,b). Hence, by the definition of
Bg, we have

<i;,,grad,F(^)> < 0 for yeQ,

if 1^1 is large enough.
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First, consider the case /i = f^. Then grad^ F == grad F. Hence the
above inequality means that the restriction of F = /^ on Bg is monotone
decreasing as y tends to infinity. This contradicts the positivity and the
properness of /i. Thus Bg is shown bounded in the case f^ = f^. We
also proved that B in Proof of Remark 6 is bounded.

For general /i,/2» ^ have to modify them. Let 0 < 5 ^ 71/6. We
saw already that the angle of the vector x and grad f^(x) is smaller than
7i/2 + 8 ^ 271/3 for any large \x\. At any point x where the angle is
smaller than 27C/3, we have

IgradQ+M2^! = Kl+N^grad/^plxl^-2/^!
^ max {S^Kl +M2^) grad/21/2, ̂ W^-^} .

Hence, replacing ^ by (l-hM2^ with large p if necessary, we
can assume that Igrad^OOl tends to infinity in an arbitrarily large

polynomial order of \x\ as x -> oo . As — = /i - f^, if we change /i

<9F
^ /i + /2» ̂  degree of — is independent of p . Hence, then the angle

of grad F and grad,, F can be assumed to tends to 0 as x -> oo . Then
the unboundedness of Bg implies it of B^ which is defined similarly by
grad F in place of grad,, F for any e' > e. The boundedness of Bg for
/i =/2 implies that B^ is bounded. Hence Bg is shown bounded.
Assume

B^c={ |x |<K}. (1)

Then for any point x in R" with \x\ ^ K, the angle of the vector x and
Ci grad/i(x) + C2grad/2W is smaller than 27C/3 if c ^ c ^ ^ O and
c! + c! > 0. Particularly the vector fields

ex + Ci grad/i (x) -h c^ grad/2 00

for c, C i , €2 ^ 0 with c 4- c^ -h €2 > 0 are non-singular on {|x|^K}
(2). It follows also that S c: {|x|<K}.

We put H = { | x | ^ f K } for f = l , 2 , 3 . From the assumption,
(/ - /i)//2 ^ of class C°°. Let f\ be a polynomial on R" which is close
to (/-/i)//2 o11 ^3 in the C00 topology. Put

f^WW, A=/3+/'3
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for a large integer p. Compare / and /i + /2/3. Then the difference is a
product of /2 and a C°° function small on Ui . Since /2 satisfies the
conditions on g^ in Lemma 4, we can apply Lemma 5 to /,/i + /2/3 anc!
U == U ^ . Hence there exists a C00 diffeomorphism T of R" which is
close to the identity in the Whitney topology such that

/OT =/i +/2/3 0" U ^ .

Consider the vector fields Y^ = grad/or and Y^ = grad C/i +/2/3) •
They are equal on U^ and Y^ is non-singular on V\. We want to see
that Y^ is non-singular on V\, that the angle of Y^ and Y2 is smaller
than 7i at each point of V\ and that /i + /^/s ls proper. If we can do
this, the proposition is proved as follows. Put

Y = IYJY2 + lY^jYi.

Then we have

Y(/OT), Y(/i+A/3) >0 on U^.

Hence /OT and /^ +/2/3 are monotone on any integral curve of Y in
\J\. Let x be a point of R", C: (—00,00) -> R" be the integral curve
of Y passing x such that C(0) = x . We want to find a point ^(x) in
the curve such that

/OTO^(X)=(/,+/2/3)(X).

If x is in Ui , we put [i(x) = x . If x e U^, let r|i, r(2 be numbers if
exist such that T|i < 0 < r|2,

C(Th),C(r|2)eU,, and C((7h , r^)) c= U^ .
Then

/o T o C(n,) = (/i +/2/3) o C(TI,) for i = 1 , 2,

and /o T o C, (/i +/2/s) o C are monotone on (r|i, 1^2). Hence there
exists uniquely ^3 in Cn^r^) such that

/O T 0 C(Tl3) = (/, +^3) 0 C(0) == (/i +/2/3)(X) .

We put ^(x)=C(r|3). If there is not such ri2, /oToC(r|) and
(/i+/2/3)°C(r|) tend to infinity as r| tends to infinity because of
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the properness o f / o r , /i +/2/3. Hence we can define p(x). The
differentiability of n is clear.

We define a C°° map ^': R" -> R" in the same way such that

/OT(X)==CA+/2/3) 0^(X).

By the definition of n, \\.', the composition p, o \\! is the identity. Hence p,
is a diffeomorphism. Thus fo T and /i + /2/3 are equivalent.

It is trivial that /i -h/2/3 ls proper if we take p so large that
2p > deg/3. We want to see the non-singularity of Y^ on U^.
Consider Y^ and the functions on U3 — Ui. As (/—/i)//2 vanishes
there, f^ is chosen small. Hence we need only

Igrad (/, +/2/3)! ^ 8 > 0 on V, - U,

for any integer p and with a constant 5. From the property (2) and the
equality

grad(/,+/2/3) = grad/, + (|x|/2K)2^ grad/2 + WK^WK^-^X,

it is sufficient to see

f^,(x) = grad/i + c grad/2 + c ' x ^ 8 > 0 on IJ3 - Ui

for c, c' ^ 0. By (2), we have

/,(.x) > 0 on U3 - U,

for c, c' ^ 0. If there were points (Cf,c;,x,) eR'^ x R'^ x (L^—U^),
f = 1 , 2 , . . . such that /^'(^i) -> 0 as f -^ oo, we had a contradiction
as follows. Choosing a subsequence of the points, we can assume that
(l/(Cf+Cf),Cf/(Ct,+ci),.x;f) tends to (0,c",Xo) as i tends to infinity. Then
/cc'-C^i) "̂  ^ means that

c" grad/2 + (l-c")x=0 at XQ.

Since 1 — c" ^ 0, this contradicts (2).

We consider ¥2 on U^. Take p so large that

/3+ / '3>0 , 2|grad/3|<|grad/3| on U^.
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These inequalities mean /a > 0 and that the angle of x and grad/aQc) is
smaller than 71/6 on U^. Hence, by (1), Y^ ls non-singular on L^.
These arguments prove also that the angle of Y^ and Y^ is smaller than
7i on U^. Thus the proposition is proved.

Using the same method as the above proof, we prove easily

COROLLARY 8'. — A non-constant C°° function f on R is equivalent to
a rational function if and only if the critical point set is finite, the derivative is
nowhere flat, and if f(x) tends to a as x tends to infinity where a is a real
number or ± oo .

Proof of Theorem 2. — Let / be the function stated in the theorem.
We assume / to be positive valued. Let S = {s^ , .. ..s^} be the set of
critical points. By the assumption, there are rational functions (pi, .. ..(p^
on R" such that /,. and (?„. are equivalent. Here we take orientation
preserving local diffeomorphisms of the equivalences. Let
p, p i : R" -> R", i = 1, . . . , k, be rational mappings defined by

p(x) = 2ex/(l+|x|2), p,(x) = p(x-5,)+s,

for constant e > 0. Then the set of critical points of p is { |x [= l} , and
we have

P({W=1}) = {M=e}, JPl ^ £ and p-^O) = 0.

Take £ so small that (p; = (p^ o p, for each i is smooth and that the set of
critical points of (p;. is contained in {5;} u { |x—s, |=l} . Moreover, for
small e, (p; does not take the value (piCs,) at any critical point in
{ |x—5' , |=l} . The reason is the following. A point x with \x—Si\ = 1 is a
critical point of (p; if and only if x is a critical point of the restriction of
(p; on {|x—5,| = 1}. Hence we only need to observe the critical points and
the critical values of the restriction of (p, on {|x—5;|==c}. By the
assumption, ^ 1 ((p^)) has an isolated singularity at s^. It is well-known
that for x e (pr1^^)) near to 5,, the angle of the vector x — s, and the
tangent space of (p^1 ((pi(^)) at x is smaller than 7i/2, and hence the
angle of x — s^ and grad (p, is not 0 nor n. This implies that the
restriction of (p, on { |x—5f |==£} is not critical at any point x of
(pr1^^)).

It is trivial that for each i (p,,. and (p;, are equivalent by an orientation
preserving diffeomorphism.
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We put

^—(cpi-cp^,))2^ i f^Y
/=! V^/

for each f . Then we have v)/,~1 (0) = {sj , and Lemma 3 implies that (p;,.
and (p^ + ^•\|/ .̂ are equivalent for any germ of C00 function ^, because

(^L,-^^))" is of the form ^ ^ c p l ^ for germs of C°° functions fc, with
7=1 cx]

fc,(s,)=0[7]. Put

v K = ^ + n ^ /2= iU,
7^1 l = l

/i = E (p;-(l-^/v|/;.)+|x|2^
1=1

for each i and a large integer p. Then we have f^.1 (0) = S, /i and f^
are smooth rational functions since \|/; > 0, and we see the properness of
/i in the same way as in the proof of Proposition 8. On account of

i - vi/,/\i/;. = (n^j) /^ ' / is . f o r each l is of the form ^L, + a^.t
\J^i /

Hence /, and f^. are equivalent by an orientation preserving local
diffeomorphism. Then, by the proof of Theorem 1 we can reduce to the
case /=/i in a neighborhood of S and on {|x|^K} for a number K.
Therefore /,/i and f^ satisfy all the conditions in Proposition 8. Thus
the theorem is proved.

Problem 9. — Is a C°° function on R" equivalent to a polynomial if it
is proper, the number of critical values is finite and the germ at each point
is locally equivalent to a polynomial germ ?

Remark 10. — The condition f = fi on {|x| ^ K} in Proposition 8 is
not necessary. It is sufficient to consider f^ 4- M2^ m place of /i for
large m, if n i=- 4,5 .

Remark 11. — Assume that a C00 function / o n R5 satisfies the
conditions in Theorem 1 or 2 and that f'1^) is diffeomorphic to S4 for
a large number a. Then / is equivalent to a polynomial, a rational
function respectively, because W^ in the proof of Lemma 7 are
diffeomorphic to S4 x [0,1] (see [2]).
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3. C00 functions on R3 .

In this section we consider functions on R" on the condition (^) that
the absolute value of the differential is larger than a positive constant outside a
bounded set.

By Lemma 7', any C°° proper function with the bounded set of critical
points on R", n ^ 4,5, is equivalent to a function satisfying the condition
(-NO. Hence we ask the next question. Can we replace the properness
condition in Theorem 1, 1', 2 by (^) ? This is impossible for n ^ 4. The
author was pointed the next example by Y. Matsumoto.

Example. — Let W be the 3-dimensional contractible manifold of J. H.
C. Whitehead [12]. Then W x R is diffeomorphic to R4 , and W is not
diffeomorphic to the interior of any compact manifold With boundary.
Hence there exists a C00 function / on R4 without critical point such that
/" ̂ O) is not diffeomorphic to any algebraic set. It is easy to modify / so
that \df\ = 1.

We know examples for n ^ 5 too. Therefore we assume n = 3. The
case n = 2 will be considered in detail in the next section.

The condition (^) assures a sort of regularity of the function near
infinity as the following lemmas. It is not easy to weaken it essentially. Let
us consider the case where a C°° function / has no critical point. For
n = 1, / is equivalent to a polynomial if and only if / is surjective. For
n = 2, 3,/ is equivalent to x^ if the absolute value of the differential is
larger than a positive constant, where (xi,^) or (x^x^x^) is an affme
coordinate system, because each level is contractible in this case. But
/= (1+^sinx) sinx has no critical point and is surjective but not
equivalent to any rational function. We remark that a polynomial without
critical point is not necessarily surjective. For example,
(l+x^+l^+x2 .

LEMMA 12. - Let f be a C°° function on R3 with 0). Let a be a
number which is larger than any critical value. Then the number of connected
components of f~l(a) is finite. Each component is diffeomorphic to S2-^
finite points) and divides R3 into two connected components one of which
contains all other components of f~^(a) and the set of critical points.
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Proof. — Let X be the vector field grad//|grad/|2 on the set of
regular points of /. Let (p, be the local one-parameter group of X. Let
A be a connected component of f~^(a). By the assumption, (p((x) is
well-defined for t ^ 0, x e/"1^). Put

BI == {(p,(x) |^>0,xGA}, B^ = R 3 - A - Bi.

Then B^ is open in R3 and closed in R3 — A. Since R3 — A has at
most two connected components, B^ and B^ are the connected
components. Hence we have /> a on B ^ , and B^ contains all the
critical points and other connected components of /^(a). If A is
compact, B^ is bounded, and hence / is proper. From Lemma 7',
Lemma 12 follows in this case. Therefore we assume A to be non-compact
in the following.

Let N be an integer such that {|x|<N} contains all the critical points.
Fix a point XQ in /^(fl) far from {|x|^N}. Consider the integral curve
of X passing XQ. Then the curve does not pass any point of {|x|^N}.
The reason is the following. If there were to < 0 such that

l^o^o^N, |(p,(xo)| > N for fo < t ^ 0,

f(xo) ~ f^tQ^o)) should be large because of (*). This is impossible. It
follows that (p((xo) is well-defined for all t and that / takes all the values
R on the curve. Hence, if a connected component A' of /^(fl) is
contained in {|x|>K} for large K, ^(x) is well-defined for
r e R . x e A ' . Then {^(x)\te R,x eA'} is open and closed in R 3 . This
is a contradiction. Therefore there is not such A'. This shows the
finiteness of the connected components of f~l(a).

It rests to find a diffeomorphism from A to S2-^ finite point set].
Assume the existence of Jordan curves C^,C^ in A which intersect
transversally at one point. Then the pair of (pe(Ci) and C^ or of Ci and
(pg(C2) for small e > 0 twists, say (pe(Ci) and C^. (pr(Ci) for t ^ 0 is
well-defined and tends to infinity as t -^ oo. On the other hand cp((Ci)
for t > 0 does not intersect with C^. This is a contradiction. Hence
there are no such Jordan curves. This means that, if there is a compact
connected 2-dimensional submanifold of A with boundary, this is
diffeomorphic to S^finite disjoint open 2-disks. Let K be a large number,
M be a compact connected submanifold of A with boundary containing
An{ |x | ^K} . Let a i , . . . , a ^ be the connected components of the
boundary of M. Assume that there are a Jordan curve C\ in A — M

?•
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and a simple open curve C^ : (0,1) -> A — M such that they intersect
transversally at one point and that the image of C^ is closed in A. Then
(p^C^) for all t is well-defined, because K is large. Hence we have a
contradiction in the same way as above. This implies that A — M has m
connected components and that the closure of each connected component is
a manifold with boundary one of a; and is diffeomorphic to a closed disk or
to a closed disk — a point. Therefore A is diffeomorphic to S2 — a finite
point set. Thus the lemma is proved.

LEMMA 13. — Let /i,/2 be C°° functions on R3 with (*), a be a
larger number than any critical value of /i,/2- Assume that ftl(a) is
transformed to fz^(a) by an orientation preserving C°° diffeomorphism of
R 3 . Then there exists n a C°° diffeomorphism of R3 such that K is the
identity on a given bounded set and that f^on and f^ are equal outside a
bounded set.

Proof. — Let (P( be the local one-parameter group of the vector field
grad/i/lgrad/J2. By Lemma l2,f^l(d) u {00} has a triangulation. Let
K be a subpolyhedron whose complement is bounded in R 3 . Choose K
so small that (p,(x) is well-defined for all t e R , x e K . Choose a
triangulation of/^(fr) u {00} compatible with (p^_^(K), where b is a
smaller number than any critical value of /i and f^. Since

K, ={f^a} ̂ n\d) x [0,oo),
K2 = {fi^b} ^f^(b) x (-oo,0].
K3 = {^(x)\b-a^t^O,xeK-ao] ^ (K-oo) x [0,1],

R3 = KI u K.2 u K3 u (a compact subset K^),

R3 u {00} has a triangulation compatible with f^l(a)u{co}. This
argument shows also that we can assume fy = f^ on K^ u K.3. We only
need to reduce to the case /i = f^ on K^.

Let A be a connected component of /71 (a). At first we show that A
is imbedded in R3 in a standard form. By Lemma 12, A is diffeomorphic
to S2-^ points), k > 0. Let M c: {x e R3!!^ 1} be a connected C°° 2-
manifold with boundary such that the boundary consists of connected
Xi, . . . , X f c . Put

A' = Mu{\x\^\,xl\x\e8M}.
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We want to see that

(R^oo^A^ooUoo}) and (R^oo^A'^oo}, {oo})

are p.l. homeomorphic. Let B ^ , B^B'i, B^) be the connected components
of R3 - A (R^A') respectively such that

BI u A ^ A x [a,oo) (B'iuA' ̂  A' x [a,oo)).

Then a p.l. homeomorphism from A to A' can be extended to
BI u A -> B\ u A\ Let the extension be denoted by T. We want to
extend T to B^ u A -> B^ u A'. If k = 1, it is well-known that this is
possible, because A u {00} is combinatorial 2-sphere contained in
R3 u {00} = S3. We show the existence of an extension inductively on k.
Assume k ^ 2. Choose a triangulation of R3 u {00} compatible with
A u {00} and {oo}. The star of {00} in the triangulation of A u {00} or
A u B^ u {00} is the cone of k 1-spheres or k 1-disks respectively. Since
the imbedding of such cone in R3 u {00} is unique, there exist closed
neighborhoods U,U' of {00} in R3 u {00} such that

(U,Un(Au{oo}),{oo}) and (U',U'n(A'u{oo}),{oo})

are p.l. homeomorphic. Put X^ = ^~l(Xf^),i = 1, . . . , k. Then the homo-
topy class [XJ of X^ in B2 u A is zero, because of

[X'J = 0 in Ti((B2nU')uA').

It follows from Dehn's lemma that there exists Y^ c= B2 u A a p.l. 2-disk
such that YI n A = 5Yi = Xi . Let Y\ be the closure of the connected
component of {|x|=l} — M whose boundary is X\. Let us extend T
naturally to Yi u A -> Y\ u A'. We write the extension as the same T.
Consider Y\ u [\x\^ l,x/|x| eX\] and its inverse image under T . Then,
by the same reason as the case k == 1, T can be extended to one connected
component of B2 — Yi . Therefore we have reduced to the case in which
A is diffeomorphic to S2-^—!) points. Hence, by the induction
assumption, we have an extension of T . Thus A is imbedded in R3 in a
standard form.

Let CM denote the cone {x eR3-^}!^!^!,^/^! 6 M} u {0}. Then
there exists a p.l. homeomorphism

^(R^oo^AuB^ooUoo}) -. (R^oo^CM^O}).
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Next we show that f^{d) is imbedded in R3 in a standard form. Let K\
be a connected component of K^ — A — B ^ . The set
{|x[<£} — C M , 0 < e ^ l , consists of k connected components. Since
K\ u {00} is contractible, ^(K'i) n {|x|^e} is contained in one
connected component of {|x|^e} — CM, for sufficiently small e. Hence
we can assume that g(K\) is contained in one connected component of
{ | x | ^ l } — C M . Repeating this argument for other connected
components of Ki — A — B ^ , and imbedding them in R3 in a standard
form, we obtain a p.l. 2-manifold M^ with boundary contained in
[x e R31 \x\ = 1}, and a p.l. homeomorphism

(R^oo^K^ooUoo}) -^ (R^ooJ.CM.JO}).

By the same reason, there exist a p.l. 2-manifold M2 with boundary
disjoint with M^ in { |x[=l} , and a p.l. homeomorphism

^(R^ooJ.K^oo^K^ooUoo}) -. (R3u{oo},CM,,CM„{0}).

Put
(ho^oh'^x) for x ^ O
\0 for x = 0 .v|/,(x)

Then v|/((x) is well-defined in a neighborhood of x = 0 in R3 for
b — a ^ t ^ a — b and an isotopy such that

v|^(C(aM,)n{M<£}), ^_,(C(3M2)n{M^8})

for small e > 0 are neighborhoods of 0 in C(8M^), C(8M^)
respectively. Hence, modifying \|/,, we reduce to the case where \|/,(x) is
defined on {|x|<l} for b — a ^ t ^ a — b satisfying

^-,(C(3MO)=C(aM2),

(J v|/,(C(aM,)) == C{\x\=l,xiM,uM,}.
b-a<t<Q

Particularly
^-,(3Mi)=aM2,

U ^,(8Mi)={x\=l,x<t:MiuM^}.
b-a<t<0

Thus we proved that ({|x|= 1},M2) is uniquely determined by Mi up to
homeomorphisms of {|x|=l} identical on M^ .
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The last statement implies the existence of a homeomorphism p of R3

such that

p = identity on K, u K.3, p(/f ^b)) = f^1 (b).

Hence there exists a diffeomorphism from f^(b) to f^W which is the
identity on f^(b) — K^. This diffeomorphism induces naturally a
diffeomorphism from {f^b} to {/2^}- Therefore there exists a proper
C°° imbedding p' of {|x|^d}, for some large number ri, into R3 such
that /i(x) =/^op'(x) if |x| ^ d . By a theorem in [8], p' is extended
to a diffeomorphism p" of R3 . It is easy to modify p" so that it is the
identity on a given bounded set. Thus the lemma is proved.

The following corresponds to Theorems 1, 1', 2.

THEOREM 3. — A C°° function f on R3 is equivalent to a polynomial if
f satisfies (^e), the number of critical points is finite and the Milnor number
of the germ at each critical point is finite.

Proof. - Let S = {$1, .. .,Sjj be the set of critical points. We assume
f(Si) > 0 for all i. We transform /^(O) to an algebraic set by a C°°
diffeomorphism of R3 as follows. We regard R3 as S3-^} where
S3 = {xeR4!!;^!}. By the argument of standard form of f~l(x) in
Proof of Lemma 13, we know that the germ of /^(O) u {a} at a is a
cone of a finite number of circles. Hence there exists a C°° function ^ on
S3 such that /^(O) can be transformed to ^(O) n R3 , a is the unique
zero critical point of !;, and that ^ is analytic near a. Let ^ be a
polynomial approximation of ^ such that ^ — ^ is p-flat at a for some
large p . Then we have a C diffeomorphism n of S3 ,0 < r < oo,
such that n(a)=a^=^on in a neighborhood of ^(O),
^((^TI^-^O)), and that n is of class C°° on R 3 . The reason is the
following. A fundamental calculation of derivation shows that

S-CT^)2.^)2.^)2)
\\9xJ \8xJ \8x^ )

is a small C' function in a neighborhood of ^~1(Q) and of class C°°
outside a. We see in the same way that Lemmas 3,4, 5 hold true in the case
C7 too and that the resultant diffeomorphisms are of class C°° at any
point where the functions are so. Since the restriction of ^ on R3 is a
rational function v/v' for some polynomial v,v ' on R3 with v > 0, we
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assume from the beginning /^(O) = v'^O) and that v has no critical
point in v'^O). Let v be positive on S and f be the same as in the
proof of Theorem 1. Let g be a positive polynomial on R3 such that
g — f/v and hence gv — f are <f-flat at each Si. Then we reduce to the
case / = gv in a neighborhood of S.

We put
k

hmW = ?! l^-^l2"*, gm =8+^

with 2m > / , 2km > degg. Now we will see that g^v satisfies (^) for
large m. Put

C^ = {xeR^/M^O, <x,grad^v(x)> ^ - e|x||grad^v(x)|}

for e > 0. Then the argument in Proof of Proposition 8 shows that g^v
is decreasing as x tends to infinity on any 1-dimensional semi-algebraic
subset of C^e.

Generally speaking, if a polynomial defined on a semi-algebraic set
c= R" is not bounded, there exists a one-dimensional semi-algebraic subset
the restriction on which of the polynomial is not bounded. We prove this as
follows. Imbed algebraically R",R in S",S1 respectively so that
R" = S" — {a} and R = S1 — {b}, consider the closure of the graph of
the polynomial in S" x S1, and then take a connected one-dimensional
semi-algebraic subset of the closure containing (a,b). Then (the projection
of the subset onto S")-{a} satisfies the condition.

Hence it follows that g^v is bounded on C^g. We saw in Sketch of the
proof of Theorem 1' that the set of points x of M such that the angle of
x and the tangent space of /^(O) at x is smaller than given e > 0 is
bounded. Since g^v is regular on (g^v)'1^) =/~1(0), it follows that
the angle of x and grad ̂ v(x) tends to n/2 as x tends to infinity on
/^(O). Hence C^n/'^O) is bounded. Take a sufficiently large integer
w', and observe g^v on C^g. Then we see in the same way as at the
beginning of Proof of Proposition 8 that g^'v is proper on C^e • Hence
g^'v is proper and bounded on C^e ^ C^e. This means that C^e ^ C^/e
is bounded.

By an easy calculation of gradient, we see that the angles of x and
gradUx) or of x and grad(/i^-/ij = grad(g^-^J tend to 0 as x
tends to infinity. Hence it follows that the angle of x and grad g^v is
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smaller than it of x and grad^v on {/^0,|x|^K} for large K, and
that gm'v has no critical point there, here the angle of x and 0 vector is
assumed to be n. These imply that C^g n {|x|^K} c= C^g. Hence C^
is bounded.

Choose K so that

C^{|x|^K}.

Then the same calculation of gradient as above shows that

N2fc(w''-"')|grad^v(x)| < c|gradg^v|

on {x eR^lxl^K^/X)} for some constant c > 0 and any integer m"
larger than m1. Therefore |gradg^v| is proper on {/>0} for sufficiently
large m". We proceed with {/^O} in the same manner. Thus, from the
beginning we can assume (*) of g^v and the boundednes of C^g. Then
C^e', for any £' > 0, is bounded. If this were unbounded, we should
have

^v(x(Q)———— < a negative constantot

outside a bounded set, where t -> x(t), t € R+ , is a semi-algebraic curve in
C^ such that x(t) -> oo as t -> oo and that t is a canonical parameter
of the curve. Hence gmV(x(t)) -> — oo as ( -^ oo . This is a contradiction.

We put

/i = ^mV, /2 = h^v.

As ^ is positive, {/i^O} = {/^O} and {/i^O} = {/^O}. In Proof of
Lemma 13, we saw a standard form of {/<0}. That argument of standard
form shows also that if {f^a}, for some a, has a standard form, then
(R",{/^0}) is diffeomorphic to (R",{/^a}). Since /i satisfies (*),
{/i ̂ a] f01' sufficiently small a < 0 has a standard form. Hence we have

(R3,^^}) ^ (RM/i^O}) = (R^^O}) ^ (^.{/^a}).

It follows that (R3,/!"1^)) ^ (R3,/"1^)) for small a < 0. Apply
Lemma 13 to / and /i, and we reduce to the case /=/i in a
neighborhood of Su/'^O) and on {|x|^K} for a number K. The rest
of the proof goes on just in the same way as it of Proposition 8. We need
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only the boundedness of

{(x.OeR^IO^^l, <x,grad^F(x,Q>
B, = f ̂  - s\x\ |grad, F(x,0| if f{x) ̂  0

\^ eM|grad,F(x,01 if /(x)^

for e > 0, F(x,0 = tf^(x) + (\-t)f^(x). This follows easily from the
properties of grad g^v and h^ stated above. Thus the theorem is proved.

The non-euclidean case of Theorem 3 is:

THEOREM Y. — Let M be an affine smooth algebraic variety of dimension
3, f be a C°° function on M mth the same conditions as in Theorem 3.
Assume that the boundary of M is dijfeomorphic to S2. Then f is
equivalent to a polynomial.

For the proof, the sketch of the proof of Theorem 1' and the following
remark are sufficient. We omit the detail. Lemma 12, 13 are correct for this
M, because for large or small a, /^(a) is contained in M-[a bounded
set] which is diffeomorphic to S2 x (0,oo).

THEOREM 4. — A C°° function on R3 is equivalent to a rational
function, if f satisfies (*), the number of critical points is finite and the
germ at each critical point is equivalent to a rational function germ.

Proof. — Let S = { 5 ^ , . . .,5^} be the same as Theorem 3. Assume
/(5,) > 0 for all i. By the proof of Theorem 2, we have a proper positive
smooth rational function g^ and a proper non-negative polynomial g^
such that f = gi in a neighborhood of S, g^W = S and that the germ

^/* ^y

^2s. at each point 5', is a linear combination of germs of ,— ,— with
' OXj OXj'

germs of functions vanishing at 5» as coefficients. We want to find a
smooth rational function g^ on R3 such that (1) v = 1 — g^g3 is regular
on v'^O) and that (2) v'^O) ^oT"1^) for some diffeomorphism T
with T = the identity in a neighborhood of S. For this we imbed
naturally R3 in P^R), that is, let (t,x^,x^,x^) be homogeneous
coordinates of P3 such that R3 = {t^O}. Let g^ be the rational
function on P3 whose restriction on R3 is g ^ . Then

Put
gi =^2(^1/^2/^3/0-

^-^w+x^+xr-hxjQ,



EQUIVALENCE OF DIFFERENTIABLE FUNCTIONS 191

where 2^ is the degree of g ^ . Then g^ is smooth on P3, and its
restriction on R3 or on P3 — R3 is equal to (xf-l-xj^+xf)^ or not
identical to the zero function respectively. Let a be a point of P3 — R3

where g^ does not vanish.

Let i; be a C°° function on P3 such that a C°° diffeomorphism of
R3 transforms /^(O) to ^((^nR3 fixing S, that a is the unique
zero critical point of ^, that ^ < 1, > 0 on P3, S u (P3-^3-^})
respectively, and that ^ is analytic in a neighborhood of a. Let P be a
non-negative C°° function on P3 whose support is a small neighborhood
of ^T^0) and which does not vanish on g^1^)' Let ^' be a
polynomial approximation of the well-defined C00 function
(l—O/Q^+P) whose difference is p-flat at a for large p . Then
1 — (g'2+P)^' ls an approximation of ^, and their difference is p-flat at
a. Compare ± ^ r and ±(1-(^2+P)^0 in a neighborhood of ^(O).
Then, because of P = 0 there, in the same way as Proof of Theorem 3, we
have a C7 diffeomorphism of P3, r < oo, which is near to the identity, of
class C00 outside a and transforms (SO'^O) to ((l-^^O'^O).
Since the C diffeomorphism transforms {t=0} onto itself, it induces a
C°° diffeomorphism of R 3 . Hence v = 1 — g"^ satisfies the conditions
(1), (2) stated at the beginning.

Now we assume v'^O) =/-1(0). We remark v > 0 on S. By
Lemma 4', the germs of / and g^v at each point s; are equivalent, and
hence we reduce to the case / = g^v in a neighborhood of S. We put

/^(l+N^v, / i=^iv+/2

for a large integer m. Then, in the same way as the proof of Theorem 3,
increasing m, we see (^e) of/^ and the boundedness of C^g in the proof
and hence that |grad/2(x)| tends to infinity of arbitrarily large
polynomial order of |x| as x tends to infinity. Hence (^) of /i and
the boundedness of B2 in the previous proof can be assumed. The rest of
the proof proceeds just in the same way. We omit the detail. Thus the
theorem is proved.

We proved already in the proofs above the following (^) case of the
Proposition 8.

PROPOSITION 14. — Let f be a C°° function on R3 with (*). Let S be
the set of critical points. Let f^ 5/2 be smooth rational functions on R3 such
that /=/i in a neighborhood of S u/'^O), fz\Q) = S u/'^O), that
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/2 (5 regular on /^(O) and that f^ satisfies the conditions on g^ in
Lemma 4. Then f is equivalent to /i + /2/3 /or some polynomial f^.

Problem 15. — In the proofs above, we used the following fact. Let
B = {xeR^lxl^l}. Let M c= B be a compact C°° manifold of
codimension 1 with boundary in 3B. Then (Int B, M — 8M) is
diffeomorphic to (R^M') where M' is an algebraic set of R 3 . We easily
see this for dimension 4 too. Is this possible for general dimension?

Problem 16. — Do Theorems 3, 4 remain valid for general dimension n,
if we add the condition that (R",/"1^)) is diffeomorphic to (R",an
algebraic set) ?

4. Analytic functions on R2.

Let us consider the equivalence of a C°° function on R2 to
a polynomial. The condition that the germ of the function at each point is
equivalent to an analytic function germ is necessary. It is shown in [3], [4]
that the function under this condition is globally equivalent to an analytic
function. Hence we treat only analytic functions in this section.

The principal ideas of the proofs were used in the proof of II. 2.6 in [3].

Proof of Theorem 5. — Let / be the function stated in Theorem 5, and
S, T, V be the set of critical points, /^/(S), the set of points x such
that fjc — f(x) is not a power of a regular function germ respectively. We
remark that S is bounded and that V is finite. We assume / fton-proper.
The proper case follows more easily. We assume that all the critical values
are negative. By the proof of Lemma 12, (or we see easily that) the
connected components of /^(O) are finite fe, and for each component
E, T and all other components exist in one side of E in R2 . We reduce
by the method in the proof of Theorem 3 to the case that /^(O) is the
zero set of a polynomial v regular on /"^O), and that f= v on
{|x|^K} for a large number K. We remark that / is no longer analytic
outside a neighborhood of S but it satisfies (*). Let T^, T^, . . . be
unions of connected components of T such that for each f , if T( is
bounded then it is connected, that if it is unbounded it consists of all the
unbounded components with the same value of / and that T = T^ u . . . .
Regard R2 as S2-^}. Let (r,6) be a C°° polar coordinates of a
neighborhood of a in S2 such that r === 0 at a. Put g = tan fe9, for an
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integer k. Then in Proof of Lemma 13 we saw the following. For any
c > 0, there exists a diffeomorphism p of R2 such that

/o p = g on {0<|r|^l} n^a-c.cl),
and

1/opl ^c on {(Xlrl^n^-^R-r-c.c])

for some k. This k is an invariant. Hence {/<0} has k connected
components in a neighborhood of a, and in each connected component,
T, consists of two curves if T; is unbounded. Let T, be modified near a
to T, as the figure so that the two curves become to a curve and that T,,
T^ do not intersect each other and with /^(O) u {a} . We order T^, . . .
so that for any 1 ^ i < j , the identity mapping: T, -^ R2 - T, is
homotopic to a constant mapping. This is possible, for example, we choose
as TI one of the nearest T, to /^(O), as T^ one of the nearest to
TI u/'^O), and so on.

Using v, we will find a polynomial whose germ at the zero set is
equivalent to the germ of /at T^. Assume /(T^) = - 1. Let ^ be the
sheaf of germs of C°° functions on R 2 , p be the sheaf of ideals (V+l)^
on TI and ^ on T\. Then there exist uniquely non-trivial distinct
coherent sheaves of ideals pi , . . . , p^ and positive integer o^ , . . . ,»„
such that

p = n p',1=1
that if one of pi~l(Q) is unbounded then other p/^O) are bounded, and
that {pj is irreducible in this sense. We remark that the stalk p^ at each
point x for each i is generated by a regular function germ or by a
convergent power series without multiple factor. Let T^ be the zero set of
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pi for each i. Let us fix i. Put Ui = R2 — T^ if T\, is a point. If it is
not a point, R2 — T^ is the disjoint union of two sets U^ and U^ such
that any point of T^ is adherent to Ui and V^ ^d ^at Ui ^/^(O),
since R2 is orientable. For any x of R2 , we have a C°° function germ
v|/ at x which generates p^ and which is positive on U^ and negative on
IJ2. Multiplying \|/ by a suitable non-negative C00 function with
compact support, and summing them, we have a C00 function (p, on R2

such that

^(O)^,, (p^==p,

and on W = {|x|^K or/(x)^ -e}

{ v2 4- 1 if TI( is compacto>- =
v + 1 if it is not so

for small £ > 0 and large K > 0. Here we require that compact
T, ,c={ |x |^K}.

Now we define a polynomial whose zero set is equivalent to T^ as
follows. Assume T^ compact. Then ((p,—l)/v2 is well-defined and equal
1 on W. Let (pi be a polynomial such that (pi — ((pf—l)/v 2 is small on
{|x|^K} and ^-flat at T\, n V for large f and that (p; is positive on
W. Then 1 + v2^- is a polynomial approximation of (p, on {|x|^K},
and the zero set is contained in {|x|^K}.

Consider the case where T^. is not compact. By the proof of
Theorem 3, we can assume from the beginning that the set of points x in
{/^ 0} such that the angle of — x and grad v is larger than 2n/3 is
bounded. Let (pj be a proper polynomial on R2 such that (pj — (cp,—l)/v
is small on {|x|<K} and ^-flat at Ty-nV, that (p} is positive on W,
and moreover that the angle of x and grad <p} is smaller than a small
positive number on {|x|^K}. Then 1 -h vcp} is an approximation of (p,
on {|x|<K}. It also follows that |gradvg}| > a positive constant on
{|x|^K,/^0}. Hence there exists a diffeomorphism T' of R2 which is
near to the identity in the C° uniform topology and which transforms
{v(p;.=-l,M^K} to {/=-l,|x|^K}.

Put
m \<p = n(^ ^ = (! +v(p}) n (i +vVi)

i= l i^j
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and
(p' '=(i+v(p^no+vw.

i^J

where T^ is the non-compact element if exists. Then (p — q/ is small on
{H^K} and ^-flat at T^ n V . Clearly the zero set of (p is T\, the set
of zero critical points is T\ n V, and Milnor number of the germ at each
zero point is finite [11]. Then we can find C°° function h^, h^ small on
{M^K} such that

, , /3(p\2 , /5(p\2

(p-^p = U—) + H^—) •\&Ci/ \&C2/

This fact in the local case is well-known [11]. For the global, it is sufficient
to use a partition of unity. Moreover, increasing ^, we can assume that
/ i i , / i2 are ^'-flat at T^ n V for large given <f' . Hence, applying
Lemma 5, and using above T', we obtain a C°° diffeomorphism T of R2

that is close to the identity on {|x|^K}, equals in a neighborhood of
{/OO^O} ̂  (S—Ti) and satisfies ( p o T = ( p ' in a neighborhood of
i-^Ti) and (p'^O) = T'^Ti). Here Proof of Lemma 5 shows that T-
(the identity) is ^'-flat at T^ n V. Hence it follows that

(P, 0 T - (1 +V(p;.) , (p, 0 T - (1 +V2(p})

are <f'-flat at T^ n V for above j and any i ^ j .

Let x be a point of Ti n V. We can assume that (p, are analytic at
x . Then T showed in Proof of Lemma 5 is automatically analytic at x .
Let (9^ be the ring of germs of analytic functions at x. From the next
remark and from the unique factorization property of (9^, it follows that

((p,oT)^=(l+v(p;.)^
((p.oT^^O+vW,.

Trivially these equalities hold true for x e Ti — V if we replace (9^ by
^. Remark: Let h^, h^ be elements of ^ such that h^ has no
multiple factor. Then there exists an integer { " > 0 such that ^1(^2+^3)
has no multiple factor for any ^"-flat element ^3 of (9^. This is trivial,
because an element of (9^ has no multiple factor if and only if it is
stable [11].

We have proved (/OT+I)^ = (p"^. This means that /OT + 1 is
divisible by (p" and the quotient is positive on T'^T^) . Let d be a small
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positive number. Let ^ be a positive polynomial on R2 whose difference
with ( ( foT+ l ) / (p " -d ) /v 2 at T\ n V is <f-flat. Then
/o T + 1 - <P^-t-v2^) is ^-flat at T^ n V. By 2.2, 2.3 in [4], there exist
germs of C°° functions h^, h^ at each point XQ of T^ n V such that

/o,+l-,p-(^)-JW"±»)2

\ ^l /
^(/OT+1)Y

^2

- / ^ V / ' - ^ T ^ 1 / !-h h^ —.——— j as germs at XQ .

Increasing < f , we can assume that h^,h^ are ^\-flat at XQ for large < f i .
Assume XQ = 0. Let p be a C°° function on R2 such that

. f l for |x| ^ 1
^^^ ^'{o for 1^2.

Put pN(x) = p(N;c). Then /OT 4- 1 and

(PWV^PN+C/OT+IXI-PN),

for large N, satisfy the conditions in Lemma 4. Hence they are
equivalent. Here the diffeomorphism is the identity on {|x|^l/N}.
Repeating this argument for other points of T^ n V , we have a C°°
function p' on R2 whose support is a neighborhood of T^ n V, which
is equal to 1 in another one, such that 0 ^ p' ^ 1, and that

/OT + 1 and (p^+v2^ + (/oi+l)(l-p')

are equivalent. Compare ^"(rf+v2^)? '+ (/OT+1)(1—p') with
(p"(rf+v2^) in a neighborhood of x'^Ti). Then we see easily that they
are equivalent in a neighborhood of x'^Ti). Hence we can reduce to the
case

/+ 1 = e^ + v^i in a neighborhood of T^

where e^ is a non-zero constant and ^i is a polynomial satisfying

(^+v^O- l(0)=T, .

In place of v, consider

{_ ± v(^+VHi) if TI is compact
1 ^(^1+^1) if it is not so.
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Then, in the same way as above we obtain a non-zero constant e^ and a
polynomial ^2 so Aat we may reduce to

/ - / (T2)=^4-V^

in a neighborhood of T^, and

(^v^r^o)^.
Of course, we have to modify the application of the proof of Theorem 3,
because Vi has not (*). But, since the essential ideas are the same, we
omit this. Here we remark that if the order of T^ , . . . is wrong, we can
not get the last equation and T^ is only a connected component of the
zero set.

Repeating this, we can assume the existence of polynomials v, ̂  , . . .
on R2 such that

v-^O) =f~l(0), v =/ in a neighborhood of /^(O)
Kj~1 (/(T^)) = T,, ̂  = / in a neighborhood of T,

for each i and that the zero sets in C2 of the complexifications of v and
^i —/(Tf) do not intersect each other. By the last property, there are
polynomials (;o » ^ i » • • •. ^o. • • • such that

^v 4 +T^o^(W(W=l
i

^1(^1-/(Ti))4 + Thv4 n (W(T,))4 = 1 , ... .
19 ' I

We put

f\ = v(l-^v4) + ̂ i(l-^i(^i-/(Ti))4) + .. .

/.=v^{(..-/(T.))4.(^)\(^)4}(l.N-)
/I =/1 +/2

for a large integer r. Then / is transformed so that f=fi in a
neighborhood of Su/'^O), we have trivially /^((^Su/'^O),
and /2 satisfies the conditions on g, in Lemma 4 because of [7]. Hence the
conditions of Proposition 14 are satisfied. Therefore we have the theorem.



198 MASAHIRO SHIOTA

We prove in the same way:

THEOREM 5 ' . — Let f be an analytic function on R 2 . Let
Ki, i = 1, . . . , k , . . . , m, be imbeddings of (a^bi) x [0,oo) into R2 for
real numbers a^, fc, such that the complement of the union of the images is
bounded, that the images of TC, for i ^ k do not intersect each other and that

, . f ± x"1 + const for i ^ k/on,(x,,)=^^^ ^ ^

for some integers n^ 1. Then f is equivalent to a rational function.

Here we do not know if / is equivalent to a polynomial, because the
zero sets of the complexifications of similarly defined v, ^ — /(T,) may
intersect.

In the rest of this section, we consider analytic functions on algebraic
varieties. Let M c= R" be an affine smooth algebraic variety of dimension 2.

THEOREM 5". — An analytic function f on M with isolated critical
points is equivalent to a polynomial, if one of the following conditions is
satisfied:

1) / is positive, proper;
2) (^) or the conditions in Theorem 5', and that the boundary of M is

connected.

Proof. — If the conditions of Theorem 5' are satisfied, / is equivalent to
a function with (^) because of the isolatedness of the critical points.
Hence we assume (*). Let a^ > ... > a^ be all the critical values of /.
Put TI =/ - l(fll), . . . and proceed in a similar way to Proof of
Theorem 5. The only difference is the definition of p,. We change it so
that

p-rip^
that pi'^O) is a point for each i ^ 2 and that {pj is irreducible in this
sense. Then the rest of the proof is the same. We omit the detail.

THEOREM 5'". — Assume that M is homeomorphic to one of S2, R2 and
P^R). Then any analytic function on M is equivalent to a polynomial or a
rational function under the conditions in Theorem 5 or 5' respectively.
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Proof. — If M ^ S2 or R2 , we prove this in the same way as
Theorem 5. Assume M ^ P^R) = P2. Let T, V be the same ones as in
the proof of Theorem 5.

There exists only one connected component of T, say T^ , whose
arbitrarily small neighborhood is non-orientable. The reason is the
following. Assume that there were two such components Ti, T^. Then the
inverse image of T^ under a natural covering map S2 -> M is connected,
and its complement in S2 consists of connected components each of which
is diffeomorphic to R2 . Hence the inverse image of T^ should be
contained in a set diffeomorphic to R2 . 'On the other hand the restriction
of the covering map on such set must be injection. Hence we have a
contradiction. Assume that there exists not such component T^. Let
Mi, . . . , Mfc be the closures of the connected components of M — T.
Then if M, n Mj + (p then one of M^ and Mj is diffeomorphic to
S1 x [0,1], because the functions / is regular on M — T. Orient M^
arbitrarily and M, compatibly with Mi if 5M, n 8M^ + (p. If we could
continue this operation until every M, then M should be orientable. Hence
there exist a Jordan curve c in M and a homeomorphism
g : Mf -> S1 x [0,1] for some i such that any small neighborhood of c is
non-orientable and that ^(M^nc) = a x [0,1] for some a e S1. Then the
fundamental class [c] e Hi(M;Z) does not satisfy 2 [c] = 0, because the

image of [c] in Hi(M, (JM^;Z) = Z is not 0. This contradicts
J^i

Hi(M;Z) = Z^. Let T2, . . . , be other'.connected components of T
ordered so that for any i < 7, the identity mapping : Tj; -^ M — T, is
homotopic to a constant mapping. We want to transform / so that / is a
polynomial in a neighborhood of T;.

Assume /(T^) = 0. Let p be the coherent sheaf of ideals f^ on T^
and y on r\\. Let

mp = n p"1=1
be the unique factorization. Then, for each i p» is locally generated by a
germ of a regular function except at T^. n V, where T^ = p^O). We
assume that a small neighborhood of T^ is orientable for i < m' and
non-orientable for m' < i ^ m. For i ^ m1, we have a C°° function q\
on M such that (p^ = p,. Let \l/f be a polynomial approximation of
(p, such that \|/f — (pi is <f-flat at T^-nV for a large <f .
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Fix i > m ' . By Lemma 2 in [6] there exists C, a smooth algebraic
subset of M of dimension 1 such that Q n V= 0,[CJ = [T^J in
Hi(M;Z2) and that C, is transversal to T^. Hence C.-u T^ is the
boundary of a subset M; of M. We can assume moreover that M^
contains V — T^. Let (p» be a C°° function on M such that
(p^^O) = C,uT^, that (p^ = p; outside C, and that (p, is regular on
Q — T\f, of Morse type at Ci n T^- and positive on M;-. Let
g ^ , . . . , ̂  be polynomials on M, h^, . . . , h^ be C°° functions such that

k

gj\c, =0 , j = 1 , . . . , fe, ^ hjgj = (p;.
7=1

Let A},7= 1, . . . , f e be polynomial approximations of A, such that
k

hj — h'j and hence (pf — ^ /i^- are ^-flat at Ti,n(VuC(). Put
7=1

k ___________

v|/f = ^ h^.. We remark that the closure \|/f~x (0) — C, is algebraic (see
7=1

the proof of Lemma 2 in [6]). Because of Lemma 5, there exists a C°°
diffeomorphism T close to the identity such that

m mn ^ = n ^ °n
1=1 i = i

in a neighborhood of Ti'^Ti). Here the idea of the modification of T^
to the algebraic set TC'^T^) = ^(O) - Q is due to [10]. In the same
way as Proof of Theorem 5 we see that

\(/^ = (pf o ̂ y .
Consider the complexifications v|̂  of each v|/f and C^ of C,. Then

the algebraic set ^^(O) — C; is defined by real polynomials
P,i, . . . , Pa.. It follows that

i'

^ P,,^=P,07t.

Hence, for any point XQ of M, there exists a polynomial P such that
m

P^ = ]~] (p»o7t)^ since p;o7t) are principal ideals. Let Q be a positive
1=1

polynomial on M such that Q(xo) = 1 and that Q is small outside a
small neighborhood of XQ . Consider ± QP, here the sign is decided so
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that ± QP and f on take the same sign at each point near to XQ . Take
the sum /' of such polynomials for finite points XQ. Then, by the
property that any connected component of Ti is homeomorphic to R2 ,
we have

f'y = n^iOnT^pon.
i=l

Approximating by a polynomial the C°° function fonff in a
neighborhood of 71 ̂ (T^), we reduce in the same way as the above proof
to the case that / is equal to a polynomial in a neighborhood of Ti and
that the zero set of the polynomial is T^ .

For Tj;, j > 1, the modification of / in a neighborhood of Tj
proceeds in the same manner as Proof of Theorem 5, because Tj is
contained in a set homeomorphic to R2 . Thus the theorem is proved.

THEOREM 6. — Assume M compact and irreducible. Then any analytic
function on M is equivalent to a rational function if and only if M is
connected, and all the elements of H^(M,Z^) are realizable by algebraic
subsets of M.

Proof. — « Only if»: The connectedness is trivial. Let Ci, ..., C^ be
Jordan analytic curves in M which are realizations of all the elements of
H^(M;Z2). Let /i, ...,/n, be analytic functions on M such that for
each i/i'^O) = C,, and f^ is 2i-power of a regular function germ for any
x of C,. We put / = /i . . . fm. Then, by the assumption there exists a
diffeomorphism n of M such that fo n is a polynomial. Hence
n I U ^») ls ^gGbraic. Moreover, considering the zeros of the second

v=i /
- ( m \partial derivatives of fon, we see that n M U F/l an<^ hence

\*=2 /
71 ̂ (Ci) u {finite points} are algebraic. Repeating this, we have
realizations by the algebraic sets n'^Ct) u {finite points}, i = 1, . . . , m,
of all the elements of Hi(M;Z2).

« i f » : Let fli > . . . > ^ be all the critical values of an analytic
function /. Put Ti ==/~ 1 (a i ) , . . . . Using the same method as in Proof
of Theorem 5'", we reduce to the case / = pi in a neighborhood of
T,;, i == 1, . . . , k, where p^ is a polynomial such that p^ Y {a^ = T,.
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Then, in the same way as Proof of Theorem 2, we prove the equivalence of
/ to a rational function. We omit the detail.

In the non-compact case, we prove the followings in the same manner.

THEOREM 6'. — Assume M non-compact, irreducible. Then any positive
proper analytic function on M with finite critical values is equivalent to a
rational function if and only if all elements of Hi(M;Z^) are realizable by
compact algebraic subsets of M, and if there is no compact connected
component of M.

Let M' be a desingularization of the algebraic closure of M in P"(R).

THEOREM 6". — Assume that M is non-compact, irreducible, and
connected and that the boundary of M is connected. Any analytic function on
M with (^) or under the conditions in Theorem 5' is equivalent to a
rational function if and only if all elements of H^M^Z^) are realizable by
algebraic subsets of M ' .

Remark 17. — The author does not know whether elements of
H^(M;Z2) are realizable by algebraic subsets of connected M. By
Lemma 2 in [6], if M is non-orientable, at least one non-zero element of
Hi(M;Z2) is realizable.

Problem 18. — Is any rational function on compact M equivalent to a
polynomial ?

5. Equivalence to Nash functions.

The results obtained until now hold true in the problem of equivalence
to Nash functions. We use the terminologies Nash manifold and Nash
functions in the sense of [4]. We define the boundary of a Nash manifold in
the same way as algebraic varieties. Let M be a Nash manifold of
dimension n 1=- 4, 5, / be a C00 function on M.

THEOREM 7. — Assume that f is proper, that the number of critical points
is finite, that the boundary of M is simply connected for n ^ 6, that any
connected component of the boundary is not dijfeomorphic to P^R2) for
n = 3, and that the germ at each critical point is equivalent to a Nash
function germ. Then f is equivalent to a Nash function.
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THEOREM 8. — Assume n = 3, (^) in § 3 ^nd t^ conditions above on
the germs and on the set of critical point. Assume that the boundary of M is
dijfeomorphic to a disjoint union S2 u . . . u S2. Then f is equivalent to a
Nash function.

THEOREM 9. — If n = 2, and if f is analytic and satisfies one of the
conditions in Theorem 5 or 5', then f is equivalent to a Nash function.

These were shown in [3], [4] for M compact. To prove the non-
compact case, we need only the following two remarks (see [5]). Any
element of H^N^Z^) is realizable by a smooth semi-algebraic subset of
M . M can be Nash imbedded in a Euclidean space so that the closure of
the image is a compact topological manifold with boundary and that the
boundary of the topological manifold is of class C°° with corner. We omit
the details.

Remark 19. — In the theorems on equivalence to rational functions or
to Nash functions, the properness condition of a function / can be
changed to ones that /^(a) = 0 for some a e R and that f(x) tends to
a as x tends to infinity.
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