
ANNALES DE L’INSTITUT FOURIER

MAURICE DE GOSSON
Microlocal regularity at the boundary for
pseudo-differential operators with the
transmission property (I)
Annales de l’institut Fourier, tome 32, no 3 (1982), p. 183-213
<http://www.numdam.org/item?id=AIF_1982__32_3_183_0>

© Annales de l’institut Fourier, 1982, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/legal.php). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1982__32_3_183_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/legal.php
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
32, 3 (1982), 183-213

MICROLOCAL REGULARITY
AT THE BOUNDARY

FOR PSEUDO-DIFFERENTIAL OPERATORS
WITH THE TRANSMISSION PROPERTY (1)

by Maurice DE GOSSON

1. Introduction and results.

When studying boundary value problems - even in the differential
case— one is almost systematically confronted with the question of
the behaviour, near the boundary of associated pseudo-differential
operators. Since these operators are not local, one cannot expect,
in general, simple results of regularity up to the boundary.

Fortunately, the pseudo-differential operators associated to
these problems have the peculiarity of behaving almost as well as
ordinary differential operators "on" the boundary; they have the
so-called "transmission property". This class of operators was in-
troduced in the 70's by L. Boutet de Monvel, in relation with the
theory of Wiener-Hopf operators (see [2]). In this work was proved,
among other properties, the following essential result:

If PEL^CR") has_the transmission property and ft (resp S2)
denotes the half-space R^ (resp R^) with boundary 3S2 (= R"~ 1 ) ,
we have a continuous mapping:

c^(n)—^ c00^)
defined by:

u -^ P(^°)^

(here C^(ft) and C°°(S2) are the usual spaces of functions C°° up
to 3^2, and u° is the 0-extension of u across 3ft).

We shall in this work not only generalize this result to the case
of the Sobolev spaces, but also give micro local statements. To do
this one has to define a notion of "boundary singular spectrum".
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In our case, we shall mainly use the "3WF set" as introduced, for
instance in Melrose-Sjostrand [12] or Chazarain [3] (the notation
of whom is being used here). This set (which is defined as a subset
of the cotangent bundle to the boundary), measures in some way
the lack of "tangential regularity" of a distribution. A major problem
which arises when dealing with this concept, is that 3WF(^) isn't
generally intrinsically defined for an arbitrary distribution u E D'(R^),
unless u is solution of a non-characteristic partial differential equation
Pu = /, with / "normally regular" up to the boundary in every
coordinate system (see the precited paper of Melrose-Sjostrand).
This isn't really an obstruction for our purpose, since we shall only
consider here equations having this property. It should nevertheless
also be noted that R. Melrose has recently (see [11] and the references
therein) defined new classes of distributions which allow an invariant
definition of 3WF(^) even in the non-characteristic case.

This work is structured as follows:
— In § 2, we recall the standard definitions and properties

concerning partially regular distributions; nothing really new in this
section, except may be (1.9) which states that a pseudo-differential
operator transforms a normally regular distribution into a distribution
having the same property.

— In § 3 is proved the result which is the key to our regularity
theorems of the following sections:

(3.1) Let PEL^R") be properly supported and have the
transmission property. Let A£L°(3?2) be a properly supported
tangential operator, elliptic in a conic neighborhood of aGT^(3f t ) .
Then, if 7 is an arbitrary conic subset of 7 such that 7 CC 7,
we have:

^GH^W)

A^GH^CR") "̂  BP^eH^00^-00^)
^ i n = = 0

for every properly supported BGL°(3^2) such that WF(B) C 7 .
The proof of (3.1) is reduced by using the calculus of tangential

operators to the case A = B = 4, t = t\ The corresponding "non
microlocal" result has already been proved in a previous work (de
Gosson [4]), where it was used to derive partial hypoellipticity
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results. We have chosen to reproduce it here, although it is rather
long and technical, not only for the reader's convenience, but also
because it is highly instructive, since it contains the main difficulties
which appear when one has to prove precise results of partial
regularity.

— In § 4, we recall the definition of the C°°-boundary singular
spectra 8WF and WF^,, and extend these definitions to the case
of Sobolev spaces. The main result of this section is (in the C°°-case):

(4.13) if P has the transmission property, and if

^GC^R^DW)),
then we have:

WF^PO/^JCWF,^)

u° being the canonical 0-extension of u across 3^2.
The proof of (4.13) is a consequence of the following corollary

of theorem (3.1), which can be written:

3WF[P(g®§),JCWF(g)
in the C°°-case (here ^GD'(3^2), and § is the Dirac measure)
(see theorem (4.8)).

— Finally, § 5 is devoted to a precise study of the singularities
of noncharacteristic Cauchy problems of principal type, to which
we add a condition of transversality for the bicharacteristics. We thus
obtain, by using the techniques developed in § 4, a non trivial gene-
ralization of proposition (4.16) in Andersson-Melrose [1]. Our
result can be stated in the following way: If u^=.D\Sl) solves the
Cauchy problem:

Pu = /
(c) ^ = Sf

for /EC°°(R7,D'On)),^ED'(an) (/ = 0, 1, . . . , m - 1) we have:

^°^ . ,(.,))
s+m ] 2 ===> a^8WF 3(1^) near 3^.

s +m——
a^3WF(/)

Some of the results in this paper have been announced in de
Gosson [5]. See also de Gosson [6] for a generalization of the trans-
mission property to operators with quasi-homogeneous symbols.
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2. Partially regular distributions.

Let X be an open set in R", and consider a distribution
^GD' (X) . If ^ = (^ ,z ) C R ^ x R""^ , we denote the dual
variable by ^ = (17,?), and say that M is partially regular (in .y)
if, for every </? € C^(X) and every N € N , we can find constants
u ^ €E R and C ^ > 0 such that the Fourier transform \pu of
^'GE'(X) satisfies:

(2.1) 1^7(01 < C^^d + InD^O + 1?!)^ for every ^ G R'1 .

Remark. — When, in the latter definition, the constant ju ^
does not depend on N, the distribution M is said to be strongly
regular in the variable y . The example (with X = R2) of the
distribution u(xf , x ^ ) = 6 ( x ' — x^) shows that a distribution
partially regular in all the variables need not to be a smooth function.
Nevertheless, one has the following result (F. Treves [13]):

(2.2) If ^ED' (X) is regular in y and strongly regular in z , then
uec°°(X).

In practice, we will only consider distributions regular in the
"normal variable", that is, in x^ G R (we have taken here X = R");
it can be proved, by using the closed graph theorem, that the space
of all normally regular distributions can be canonically identified
with the space C°°(R, D'(3S2)) of infinitely differentiable functions,
valued in D'(9^2), (see Treves [13] or Melrose [11]), for this reason
we will not make any distinctions between these two spaces, and
only use the above notation. Generally, the definition of partial
regularity is not, unfortunately, coordinate invariant, and doesn't
therefore make sense when we replace X by a manifold. There is
nevertheless one very important case where this can be done, namely:

(2.3) Let u E D'(R'1), and suppose that

WF (u) H {(x\ x^ , 0, ̂  W , x,) E R\ ^ ^ 0} = 0 .

Then u E C°°(R , D\QSl)) in every coordinate system.

Finally, an extendible distribution ^ED'(S2) is said to be
regular (or smooth) up to the boundary in the normal variable, if
there is a distribution 'u eC°°(R, D'(R"~1)) extending u. Using
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for instance a Seeley extension of u, one can prove again that there
is a canonical corresponding between the space of distributions
smooth up to the boundary in x ^ , and the space C°°(R+, D'(3ft))
of distribution valued functions which are C°° up to the boundary,
and thus identify these two spaces. It is easily seen, by the definitions,
that one has the following Fourier characterization:
(2.4) ueC°°(R^ ,D'(3ft)) if and only if for every ^EC^(3ft),

and every N G N , there are constants C N > O and
p. ^ E R such that:

|D!^(r,^)l<C^O + IS'I)^
for S'^R71"1 and ^ E R^ .
Here ^u(^ , x ^ ) denotes the partial Fourier transform of ^u
with respect to the tangential variable x ' .

Useful tools in the study of partial regularity are provided by
the double-indexed Sobolev spaces H 5 ' r : We say that a distribution
M G S ' ( R " ) belongs to H^(R") (s and t being real numbers) if
the Fourier transform u of u is a function satisfying:

(2.5) (JI^I'O + ISI2)^! + IST/^)1^00.

(Note that H^^R") is the usual Sobolev space H^R")).
H^(R") is clearly a complex vector space, and the left side

of (1.5) defines a norm, denoted by 11^11, ^ on this space. In the
same way, H^(n) is the space of all restrictions, to the half space
ft , of the elements in H^R"), and it is equipped with the
quotient topology, defined, for ^EH^(f t) , by: IMI,^ ^nfHS'11^,
the infimum being taken over all i7 GH^^R") extending u. The
corresponding local spaces H^, H^p are defined as usually. We
now list the basic properties of these spaces. For details and proofs,
the reader should consult Hormander [7], and [8]:

s ̂  s'
(2.6) H51' C H 5 ' ^ ' ".

s + t > s' + t'

(2.7) H^(FT) C C" (R , H^'^^Oft))

^d H^^CC^R^.H^'^Oft))

if 0 ^ k < s - 1 •
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Setting, as usually, H^00^ = H H^'' and H^-00 = HH^-^
(the intersections being taken for all ^E R ) , we have, in particular:

(2.7') H^-^R71) C C°°(R , H^O^))
and

H^-°°(n) C C00 (^ , H;;;4 0^)) .

Let us now describe briefly the action of pseudo-differential
operators on the H 5 ' f spaces. First, for operators in all the variables,
we have the following H^-continuity result, the proof of which
is a trivial adaptation of the usual continuity result in ordinary
Sobolev spaces :

(2.8) If PEI/^R") is a properly supported operator, then:

P :H^(R W )—.H^ W ' r (R") .

In particular, if P G L'^R") :

P^W)——> C°°(R").

Using (2.8) one can easily prove the following important result:

(2.9) If PEI/^R") is properly supported, then:

P : C°°(R , D'Oft)) —> C°°(R , D'Oft)).
Proof. - By localizing, it is of course sufficient to prove that

P maps C^(R,E'Oft)) in itself. But, if u GC^(R, E'Oft)), for
every integer N, we can find, in view of (2.1), constants CN > 0
and J^N E R such that:

I ^ ( £ ) I < C N ( I + 1^1)^(1 +1^1)-^ V f e R "
that is, for some new constant C^ :

(*) 1^)1 <C^(1+ If 1)^(1 +1£1) - N if |S ' |<e |^ | ,

e being any fixed positive number.

On the other hand, since u is compactly supported, the easy
part of Paley-Wiener's theorem implies the existence of constant
IJL e R and Co > 0 such that:

l^(S)KCo(l +1^, V ^ G R "
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that is, for every N G N :

I^KCod+lSD^d 4- i s i )^ .
Since | $ | ̂  | ^ | in the cone defined by | ̂  | > e | $„ [ , the

latter inequality can be written:

(**) I W\ < C;(l + | W^ (1 + | ^1)^ if | S'l > 6 | ̂  I ,

for some new constant C'; finally by combining (*) and (**) we
have:

(***) | ^ ( $ ) l < C N . e ( l +1^1)^(1 +1^1)-^ VSEFT

where ^ = sup (^, ̂  + N) and C^ = sup (C^,, ; C^); from
this it follows immediately the existence of a strictly decreasing
sequence (^ )^ such that:

(2.9') uCH^^W) forevery N,

that is, in view of (2.8):

P^EH^'^^FT) forevery N

which proves our assertion, in view of (2.7).
The following proposition will be fundamental in the proof of

the main theorem (3.1). It shows in some way how to obtain partial
regular distributions by using pseudo-differential operators:

(2.10) Let PeL^FDnL-^r), where F is a conic neighborhood
of {(x ' , 0 ; 0, ^ ) / x ' E 3ft, ̂  G R}, the conormal bundle
to 8^2, be properly supported. We can then find a neigh-
borhood ft of 3ft in R", such that:

^eH^(R")=^ P^EH^00^-0^).
Proof. — For each x * G 3i2, there is an open neighborhood

ft^ of (x',0) in R" , and a positive constant C^ such that:

"^ x { ^ / I S ' l < c ^ i s j } c : r .
Let us set ft = U Sl , , the union being taken for all ^' E 8ft./-t^ •*

If ( /?GCo(ft) , we can recover supp(^) by a finite number of sets
ft^ ; hence there exists a constant C > 0 such that:

p , ^peS-^a/I^KCI^I})
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( p being the symbol of P). We are going to show that the operator
P i = p i O c , D ) is continuous from H^(R") to ^"'"^•^(R")
for every k € N .

Define 9 GC°°(R") (0 < 9 < 1) by:

0 if 1$1<^
9(S)

if \^\> 1

and x^C°°(R"\0) ( 0 < x < l ) , homogeneous of degree 0, by:

0 if \fi'\<lC\^
X(S)=

i if i n > - | c i ^ i
for some positive C. We then have:

Pi(^,$)=0(S)x(£)p(x,$) (modS-°°)

hence, in view of (1.8) it is now sufficient to prove:

(2.11) M(=H^(R") —^Op^MeH^^-^R")
for every k .

Setting v = Op(Q\) u, we have:

iHi^.r-t-/ KK^xa^iM^i'd+isi^^d+iri2/-^
= /i^xaol2!^^^

(i+m^o+is'i2/^
that is, finally:

IHli^.r-fc^CJIull^

for some constant C^ > 0, since 16\\ < 1 and

i+lii2^
^(TTifF) ~x($ ) '

and this ends the proof of (1.11).
We shall also use throughout this work "tangential" pseudo-

differential, that is, operators acting only in the x'-variable, the class
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of which is denoted by I/"'(3ft) {m E R) . These operators can
be extended as operators acting on D'(R") (resp. D'(ft)) by:

(2.12) Au(x) = f e ^ ' ^ a ( x ' , ̂ ) u^\x^) d^

for ^eC^(R") (resp. ^EC;;(ft)); here ^ES^Bft), and
^——^ ^(^, •) denotes the partial Fourier transform with respect
to x' can.

We have, for these operators the following continuity property,
the proof of which is standard (it is a generalization of th. (2.5.2)
inHormander [7]):

(2.13) If AGL^ (9ft) is properly supported, we have a continuous
mapping:

A:H^(FT)—^ H^-^on

for all (s , t) G R2 .

An easy consequence of (2.13) is:

(2.14) If A e I/"'(9SI) is properly supported, then:

A:H^(f t )—^ H^-^W.

Proof-Let ^EH^^ft) ; by the definition of this space,
there is an extension ^EH^R") of u , by (2.12) we have
A^EH^'^R"), hence the result, since Ai7^ = Au, in view
of (2.12).

Finally, combining (2.13), (2.14), and (2.9'), we have the
important:

(2.15) If AEL'^Oft), then:

i) A:H^(f t )—. H^H)

ii) A : C°°(R7, D'Oft)) —> C^ft)

and i), ii) still hold when ft (resp. R+) is replaced by R"
(resp. R) .

Also note the following recursive characterization of H"^,
which is in some sense the simplest of all results in partial hypoel-
lipticity:
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(2.16) Let H^ denote either H^(n) or H^(R"). We then
have:

D_ uCH5-1^
u^H5^ <==>

ueH5-1'^1 .

Finally, we define the kind of operators which will be used in
the following sections.

It has been known for a long time (see Boutet de Monvel [2])
that one cannot expect to obtain reasonable properties of regularity
near the boundary for pseudo-differential operators, unless one makes
the assumption that these operators have the transmission property:
More precisely, let PGI/^R") (m positive or negative integer) be
a classical pseudo-differential operator: the complete symbol p of
P admits an asymptotic expansion:

P - S Pf
/>o

where the pj are symbols, positive homogeneous of degree m — j
in the dual variable. P is said to have the transmission property with
respect to 3^2 , if the following conditions hold:

(2.17) D^D^p,(^,0;0,- l )=(- lr- /- l a ' ID^D^p,(x ' ,0;0, l )

for every x ' , / , a' and p .
These are not very restrictive. They are clearly fulfilled by dif-

ferential operators. Moreover, if P is a noncharacteristic differential
operator (or more generally a noncharacteristic pseudo-differential
operator with the transmission property), one can prove that every
microlocal parametrix Q of P also has the transmission property
(see de Gosson [4], where an explicit construction of Q is given).

3. Microlocal regularity at the boundary.

As announced in the introduction, we are going to prove in
this section the central result of this work:

(3.1) THEOREM. - Let PELm(Rn) be a properly supported pseudo-
differential operator with the transmission property with respect to
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the hyperplane 3^2. Let AEL°(3n) be a properly supported
tangential operator, elliptic in a conic neighborhood of aET^(8^2).
Then, if 7 is an arbitrary conic subset of 7 in T^8^2, with
7 CC 7, we have:

uH^W)

A^H^(R") ——> BP^EH^00^-00^)

^in = 0

for every properly supported BGL°(aR) satisfying W F ( B ) C 7 ,
and all s , t E R .

(3.1) will be proved by reduction to the case A = B = 1^, t = t\
More precisely, we shall first prove the following result:

(3.1') THEOREM. - Let P be as in (3.1). Then for all real numbers
s, t G R , w^ Aav^;

^EH^CFH
^in =0

p,. (= TjS —m+OQ,t—oo/(^\Lu^ ^"loc (")

The proof of (3.1') is unfortunately long and technical; it will
be made in several steps, and is mainly based on Taylor expansions
of the symbol of P in order to use the transmission property. The
main difficulty arises when one has to estimate the Taylor remainder
corresponding to the expansion at x^ = 0; it will be necessary to
introduce a kernel which is in some sense "smoothing" in the normal
variable. Let Op (x , $) - ^ p^x , {) be an asymptotic development

/>o
of the complete symbol of P, of course the p. are positively homo-
geneous of degree m - j in the dual variable, so that p^.GS^"7 .
In view of the hypothesis on P, each pj has the transmission
property, so it is of course, in view of the inclusions (2.7) sufficient,
in order to simplify the notations, to restrict ourselves to the case
where the complete symbol of P is p = ?o, positively homogeneous
of degree m.

Define now two functions 6 and ^ by:

i) eec^R"), o<e < i
and:
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0(S)=0 if ISK^

0 ( $ ) = 1 if I S I > 1

ii) V/ €C°°(R"\0), 0 < ^ < 1, x homogeneous of degree 0,
and:

V/0 )= l if SCEFi = {$/in<C|$j}
^0)=0 if ^er^ = a/IS' l>2C(Sj}.

Writing:

P(^,S)=0(S)^)pOc,S)-0($)(V/a)- l)p(x,$)

+( i - ( ?a ) )poc , ^ )
we see at once that we can neglect the last term, since we evidently
have, (1 - 6)p being in S~°°(R"):

Op((l -0)p)ueC~(R")CH^'"+~•r-°o(R"), Vu€D'(R").

On the other hand it is clear that 9 d) (.^ (1) — 1) vanishes
in a full neighborhood of { ( x ' , x ^ , 0 ,$„)}> so we ^^^Y ^Ply (2.10)
1[with ft = R"), and:

Op [9(1 - ̂ plueH^'"^-"^).

We are thus, finally reduced to the case where the symbol of P
is ] ) ( x , {;) = 0($) V/($) p ( x , f) , p being homogeneous of degree m.

Using now a Taylor expansion at ^' = 0 for p , until an arbitrary
order N', we have:
"-/„ t-\ — a/k\ ,i^r\ V -1—a",'n < v . n k \ t'0'1p(x,fi)= 0(^0) i —a^'p(x;o,^)r'

l /v' l<^TSJ' c^ •la 'KN

+ I ^(^)r'
|a'|=N' OL •

where:
^0^) = ^1 (i - O1^1 a^(^;^,£.)^.

(Remark that this equality makes sense even for ^ = 0, since ^ ({)
vanishes in a neighborhood of the ^ axis).

We first study the contribution of a term r^ (x , S) ̂ at (I a' | = N')
from the Taylor remainder. Trivial estimates show that we have
estimates:



MICROLOCAL REGULARITY AT THE BOUNDARY 195

I ̂  ̂  r ( y ^1 < C H 4- I fe |\w-|o;|-N'| o^ o^r^^x , §j| ̂  <-^^U -r I S^U

uniformly for x G K (compact set), as soon as m — N' < 0 ; clearly
the same estimates hold when r^ is replaced by Q^r^\ but 0({)
vanishes outside the cone F^ : | ^ | > 2C | $„ |, so we have in fact,
since 1 ^ 1 ~ ISJ it i r i < 2 C | $ J :

lap^^^^^^.^KC^^^d+isir-^'-^.
Thus, e^a^S^'^R") if N > m ; and from this, we

conclude, using (2.8) and (2.13), that:

Op(00) V/(£) r^(x , 0 F') (^) = Op(0(S) V/(S) ̂  (^ , $)) (D^ i,)

belongs to H^^'^-^Fr), that is, to H^^^R") as
soon as N' > /:.

Let us now look at the terms Q^'p(x ; 0, $„) ̂ a' of the Taylor
sum. To simplify the notations, we set:

A.' = B,. o D ;̂

where B^» is the operator with symbol

^^^p^o.^es'71--^1.
Since D^u eH^ - la ' l(Ryl) vanishes in S2, we see, replacing u
by D^ ^ , A^ by B^ , m by m — \ a' | and fc by fc + | a' |, that
it is sufficient to study AQ (corresponding to the case a' = 0);
for the sake of simplicity we drop the subscript in AQ and denote
this operator by A.

We have thus reduced the proof of theorem (3.1) to the case
where P is the operator A, with symbol

^A(^s)=0a)v/(^oc;o,^),
which is a typical transmission operator of degree m. A being defined
as above, let us make a Taylor expansion of p ( x ;0, {„) at x^ = 0,
until an arbitrarily order N. We get, for $„ 1= 0 :

P(x;0,^)= ^ -^P^',0;0,^)x^+—^(x,^)x^
P < N r - " ^ '

with r^(x,^)= ^(l-O^a^pOc',^,, ;() ,$„) .



196 M.DEGOSSON

Let us first study the contributions of the terms of the Taylor
sum. It is at this point that we shall use the transmission property.
We have, in fact, in view of the transmission formulas (2.17) :

<P(^0 ;0 ,^ )=3^p(x \0 ;0 , l )^ 0,^0).

Since multiplication by the C°° function ^ p(x\ 0; 0, 1).^
maps Hf^CR") into itself, we only have to prove:

(3.2) LEMMA. - Let A^ = Op (00) ^({)^) , with m E Z .
Then, if ^EH^CR") vanishes in Sl, we have:

A n ^ J-fs~m+oo^t~w9m\mu\S^ ^"loc W •

Proof of the lemma. -
1) m E I M . We have:

A^u = F-^O^D^u) = F-^O^ - l)D^u) + F-1^ - l)D^u)

+D^ u
.where F denotes the inverse Fourier transform. Since D^ u^ = 0,
0 - 1 EC^(R"), and the symbol 0 ( ^ - 1 ) satisfies the conditions
of (2.10), we have: A^u^ EH^^^-00^).

2) w < 0. We shall prove the result by induction, both on
m and k . We suppose that

(*) A^EH^^-^)

for every k ; let us show that then:

A »y c=. tjs-m+1+k, t-k ̂ \
"w-l u\^ ^"loc (&z) •

In view of (2.16), this is equivalent to prove that:
!) ^A^^EH^^-^ft), V ^ k E N

ii) A^^^EH^^^-^1^), V ^ E I M .

But i) is immediate in view of the induction hypothesis, since
Dx^ A^_i = A^ . We now prove ii) by induction on k :

- ii) is true for k = 0, since we obviously have in view of
(2.8): A^^EH^-^W).
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— Suppose it is tme for k — 1 , that is:
/**\ A ,y r= T j J -w+fc - l , f -A :+2 ^Q^
^ ^ ^m-l ^IH ^"loc (&z)

and let us show that we then have:

A n dV[S-m+k,t-k+l ^^
^w-l u\^ ^^loc ("") •

But, still in view of the conditions (2.16), this will be true
if and only if:

r.\ T) A f, a us-m+k-l.t-k+l ^^
^ ^x^ ^m-lu\S^ ^^loc ^L)

h^ A yy ^ Tjs-m+k ~l ,t- f c+2 /r^\u ) ^w-l "in v:: "loc {^u)t

But a) once again immediately results from (*), with k re-
placed by k - 1, since D^ A^,^ = A^ ; and b) is exactly (**),
and the lemma is proved.

Let us now go to the last step in the proof of theorem (3.1).
We have to evaluate the contribution of the Taylor remainder
r ^ ( x ^n) x v t ' Since p is positively homogeneous of degree m in
^ , we can split (modulo products by C°° functions) this term in
a superposition of terms of the type:

x^e^)^(H)y^)^

^(S)^)^-^)^
where y(^) (= 1 if ^ > 0, 0 if ^ < 0) is Heavisides function.
It is of course sufficient to study only the first term, since:

^ 0(S) ̂ ^)y(- ̂ ) ̂ - = ̂  0(S) ^0) ̂  - ̂ 00) ̂ (S)^,) ̂
=x^A,-x^(£)^a)^(^)^

and we know, by our previous calculations the properties of A
We need:

(3.3) LEMMA. — Let R^ ^ be the operator with symbol:

^0a)^(S)^(uc-,^z.
// MGH^R") vanishes in ?2, we have:

^.N^^H^^-^)
if k<VS - \s\ - 3.
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Theorem (3.1) will then be proved, since N can be taken arbi-
trarily big in (3.3). Let us prove the lemma.

a) m=0. We then have: R^ u(x) = x^ F~1 (Q^yu)(x)
where F~1 is the inverse Fourier transform; we thus obtain:

RO,N u(x) = x^ F-1 (yu) (x) + x^ F-1 ((0 ̂  - \)yu) (x) .

The second term is very easy to handle. In fact, since
Q^ - 1 = 0(V/ - 1) + 6 - 1, we have:

F^d// - \)yu) +F-1((0 - Dj^EH^^ + C°°(R")

for every k C N , since we can apply again (2.10) to the symbol
6(^ - l)yes° and since (0 - l)eC^(R") defines a smoothing
operator.

Let us now look at the term x^F-^yu^x) which will be
much more troublesome.

In view of a classical well-known formula, we have:

F-.O,)^^)^

thus:

V~\yu) =——(vp— ® 6 ) * u + - u .
27T ^ JC^ / 2

Since y ^m = 0, we only have to consider the convolution

term. In fact, we shall prove that the map:

\(vp——^ 5,,)*J
L ' ^n ' J |

u —> x^ \(vp——® 8^} * u
L xn / J in

is continuous from {u EH^CR")/^ =0} in H^^-^ft), for
every ^ < N - [ . ? | - 3 . Let E == [u eC^(R")/^,^ = 0}, and
^1^2 ^Co(R"). Setting

U = ̂  ̂ N f(^(^^^ 5^) *^^
L n J

we have, for x^ > 0 :

u(x^^)= /^K(^,^(;c\^)^

where K is the kernel defined by:

^7 j ^v-^yi 5 ^ w ^ 1 4 ^ ^ '^)^w




