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CLOSED CONVEX HULL
OF SET OF MEASURABLE FUNCTIONS,

RIEMANN-MEASURABLE FUNCTIONS
AND MEASURABILITY OF TRANSLATIONS

by MichelTALAGRAND(*)

1. Introduction.

Let G be a compact group. For /EI/^G), and r G G , let
L^/GL°°(G) be given by L^f(x) = f(tx). It has been conjectured
by G.A. Edgar and J. Rosenblatt that / is equivalent to a Riemann-
measurable (i.e., is continuous at each point of a set of full Haar
measure) if and only if the map t —^ L^f from G into L°°(G)
is scalarly measurable, i.e., for (^GL°°(G)* the map t —^ <^(L^/)
is measurable for the Haar measure.

We prove here that under Martin's axiom this conjecture holds.
Generalizing this result we characterize those /GL°°(G) for which
t—> L^f is scalarly measurable when G is assumed to be only
locally compact. We also show in both cases the surprising fact that
the map t——> L^f is scalarly measurable as soon as t —^ 6(L^f)
is measurable for each character (i.e., multiplicative linear functional)
on L°°(G). Using a beautiful result of D.H. Fremlin we also show
that the map t —> L^f is Borel measurable if and only if / is
uniformly continuous.

These results are based on powerful ideas of measure theory.
Among the new measure-theoretic results proven here, the follow-
ing seems of independent interest: Under Martin's axiom, if a pointwise

(*) This paper was written while the author held a grant from N.A.T.O.
to visit The Ohio State University.
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bounded set of measurable functions on a compact metric space with
a Radon measure is pointwise separable and pointwise relatively com-
pact in the set of measurable functions, the same is true of its convex
hull.

The author thanks G.A. Edgar and J . Rosenblatt for bringing
their conjecture to his attention, and for communication of partial
results. The author is also indebted to J. Bourgain for bringing (inde-
pendently) the problem of the convex hull of compact sets of mea-
surable functions to his attention.

2. Preliminaries.

Let (T2, 2 , JLI) be a complete probability space. We denote
by JLI* the outer measure, by M(2) the set of all measurable real-
valued functions on Sl.

The pointwise convergence topology on the set of all real-valued
functions on a set X is denoted by Tp . The Tp -closed convex hull
of a set T of functions is denoted by c(T).

We need to consider two set-theoretical assumptions. The stron-
gest one is CH, the continuum hypothesis, i.e., the assumption that
the first uncountable cardinal has the power of continuum. The second
one is MA, Martin's axiom, whose nature is more complicated, and
which is explained in [9]. This axiom will be used (through Lemma 1,
but not directly in this work) through the following consequence,
more familiar to the measure theorist: If 2 is the completion of a
countably generated algebra a union of less than the continuum of
negligible sets is negligible.

The following lemma is the cornerstone of this work. It is used
in our two main results, theorems 5 and 17. It is due to D.H. Fremlin,
and independently, to J. Bourgain and F. Delbaen.

LEMMA 1. - Let (Sl,, 2,, ^),<<y be complete probability
spaces. Suppose that for each s = (^ ,..., Sq) is given a measurable
set A, of ft^ x ... x n^ , of measure 1 for the product measure.
Suppose either

a) Each 2, is the completion of a countably generated algebra,
and MA holds.
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b) Each S, is the completion of an algebra of cardinality
< card R , and CH holds.

Then there exist sets U, C Sl,, M*(H-) = 1 , such that for all
s = (^i , . . . , Sq ) , and all families (^, y \^q, j^s °f distinct elements
of V,, we have (u^^ , . . . , ̂  , ̂  , . . . , M^^ , . . . , ̂ ,^) £ A,.

Proof. — In either case, 2, is the completion for JLX, of a a-
algebra "L\ which has the power of continuum. Let 7 be the first
ordinal of cardinality of the continuum, and let (V^)^<^ be an enu-
meration of the sets of positive measure of 2,'.

It is clear that one can assume each A, invariant for each i < q
by permutation of the componants which belong to ?2,. For finite
sets F, = (^-j ),<,.. and s with ^ < s^ for i < q , let

A^(F^ , . . . , Pq) = {(.Mi^+i , . . . , ̂ i^ , ^2,^+1? • • • ? uq,r +l 9 • • • 5 uq,Sy)

£ ̂  "rl X . . . X ̂ "^ ; (M^i , . . . , ̂  , ̂  , . . . , ̂  , . . . , ̂  ̂ )

^A,}

with the convention that if r, = 5,, we omit the factor 0,. By
induction over j8 < 7 we construct (u1g) ^ such that

i) For f < < 7 , the (^ J)^ are distinct
ii)^^
iii) For each finite sets F, C {u1^} ̂  and for all 5 with

Sf > card F .̂ for all / , we have
^--OF,)^^ ,,F,))=1

with the convention that if 5, = card F, for all i , this means that,
if F, = (^^)/<^. we have

("1,19. . . , ̂  ̂ 2,1. • • - ̂ ,i. • • • . ̂ ) e A^ •
This construction is straightforward since condition a) or b) and Fubinfs
theorem ensures that if (^)a<^ are constructed, (^),<<y can be
picked anywhere in a subset of n Vg of full measure (hence non-

, . i<Q p

empty).
It is then clear that U, = {^}^<-y satisfy the requirements.

Q.E.D.
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For two subsets A,B of Sl, not necessarily measurable, we
ess

write A C B if B\A is negligible.
We now turn to the definition and elementary properties of

Riemann measurability. Let X a compact space and /A a Radon
measure on it. A function /: X —> R will be said Riemann-
measurable if it is bounded and if its set of points of discontinuity
is negligible. The following is elementary.

LEMMA 2. - Let f: X —> R be a bounded function. The
following are equivalent.

a) / is Riemann-measurable.
b) For all e > 0, there exist f^f^,X —^ R continuous

such that /i < / < A and f (A - A) ̂  < e .

Proof. - a —^ b. For x E X, let
Os^(/)= Inf{Sup{/ ( ;C2)- /Oci ) ; x^jc^V};

V neighborhood of x} .
Let n > 0 . The set F = {x E X ; Os^(/) > 7?} is negligible

and closed. Let U and V be open, with F C U C U C V and
JLI(V) < T? . On Y = X\U define

g^ (x) = lim inf f(y), ^ (x) = lim sup f(y).
y - " x y->x

Then g^ - g^ < r ] , so ^ - T? < ̂ i + r ] . Since ^ - 7? is UPP63"
semi-continuous, and g^ + 17 lower semi-continuous, there exists
A : Y——^ R , continuous, with

^ 2 - 7 ? < A < ^ + 7 ? , i.e., / Z - 7 ? < ^ < / < ^ < / 2 + 7 ?

on Y . Hence there exist continuous functions f^, f^ : X —> R ,
with A = inf {f(x); x E X} on U , /2 = sup {/(x); x E X} on
U, / i < A - 7 ? , / Z - h 7 ? < / 2 O n Y , / i = A - 7 ? , / 2 = / 2 + 7 7 OH

Y\V. So f, < / < / 2 , and J^ - A) ̂  < 2r? (||/IL + |/x|(X)),
which is arbitrarily small.

b =^ a since {x ; Os^(/) > 77} C {x ; ̂ (x) - /i(x) > 77} has
a measure at most e / r ] for all e , the former set is negligible.

For a measurable set A, let ess cl A be the smallest closed
ess

set such that A C ess cl A, i.e., the set of points x such that each
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neighborhood of x meets A in a set of positive measure. (This set
is also the support of the restriction of JLI to A.)

LEMMA 3. - Let /EL^JLI). The following are equivalent.
a) There exists a Riemann-measurable function h in the class

of f.
b) For all real numbers a <b, if M^ = ess cl { / < a},

N^ = ess cl { / > b}, then JLI(M^ H N^) = 0.

Proof. — a ==^ b is clear since no point of continuity of h
belongs to M^ H N^, .

b ===» a We can suppose that X is the support of jn . Define
h (x) = Inf { t E R ; / < t a.e. on V, V neighborhood of x} .

For two rationals r < s , let F^, ==; {h <r} H {/z >.?}. Let
r <a <b < s . If x E {A < r} , each neighborhood V of x contains
a point y ^ { h < r } , and hence an open W on which h <a a.e.
so We^ {/ < a} , so x £ M^ . If x G { A > 5} , each neighborhood
V of x contains a point ^ £ { A > 5}, and hence a set of positive
measure on which f> b , so x G N^ . So F^ ^ C M^ H N^ , and
hence ^(F,.,) = 0 by hypothesis.

Since h is continuous in the complement of U^F^ h is
Riemann-measurable. Moreover, since {h < r} C M^ , we have
JLI({A < r} H N^) = 0 for 6> r . It follows easily that h is in the
class of /.

3. Convex hull of sets of measurable functions.

Before we start explaining our result, we give a brief survey
of known results connected to it. A general problem is the follow-
ing. Let X a set, and T be a uniformly bounded (to simplify) set
of functions on T, which is compact for Tp . Suppose T consists
of functions with some regularity. Let ^(T) be the Tp -closure of
the convex hull of T. Does it follow that <T(T) consists of regular
functions ? The following results are known :

a) If X is compact, and T consists of continuous functions,
then 7T(T) also consists of continuous functions. (This is essentially
the classical Krein's theorem).
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b) If X is Polish, and T consists of functions of first Baire
class, so does c (T). [ 1 ].

c) If X is Polish, and T is separable, and consists of Baire
fonction of class < a, then c (T) consists of functions of Baire
class < a + 1 [1]. (It is not known if c(T) always consists of
functions of class < a.)

d) If CH holds, even if X = [0,1], there exists a T which
consists of functions of Baire class two, but such that c~(T) contains
a non-Lebesgue measurable function.

e) If MA holds, there exists a probability space (ft, S , p.)
(large in some sense) and a separable compact TCM(2) such that
F(T) <? M(2). [4]. (D.H. Fremlin told us he can modify this example
to remove MA.)

It is interesting to see how the situation deteriorates when one
increases the generality of the class of functions considered. The
examples d) and e) does not tell us what happens when both T C M(2)
is separable and ft is not pathological. For further applications,
we need an assumption on T which is less restrictive than separa-
bility.

DEFINITION 4. — a) A family U of sets of 2 mil be called nice
if for all n, and for all measurable set H C n", there exists H' C ̂ n ,

ess n ess
H' C H such that for all A^ , . . . , A^ e U , n A, C H implies
n A , C H ' .

b) A family of functions T C M(2) mil be called nice if the
family of sets {f>a}, {f<a} / o ^ / E T . f l E R is nice (T is
not assumed to be Tp-compact.)

Examples. —
1) Countable families are nice.
2) If Ui is nice, and each member of U is a union of members

of U i , U is nice.
3) It is easy to see that if fJi is a Radon measure on a compact

space S, the family of open sets is nice, and the family of continuous
functions is nice.

4) An important example of nice family is given by proposition
10 in the next section.
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Let TCM(2) a set which is not necessarily Tp -compact, and
T its r -closure. We want an estimate of roughly speaking "how
far T is to be contained in M(S)'\ For /: ^—> R , let
/* = ess inf {h : ̂  —> R ; h > /, h measurable} , / * = = - (-/)*.
Since /* is valued in R U {oo}, /* — f^ is well defined, and if

/^
denotes the upper integral of positive measurable functions,

f ( /*—/•) dp. gives a measure of how far / is to be measurable.

In fact, if f*(/*- /*) ̂  = ° » then /* = /* = / a.e. and hence
/ is measurable, the converse being obvious.

Define 0(T) = sup ( f*(/* - f^dfi). Then T C M ( 2 ) i f
/GT w /

and only if 0(T) = 0 .

THEOREM 5. — Let (S2 , S , jn) be a complete probability space.
Suppose either

a) MA holds and 2 is the completion of a countably generated
algebra

b) CH holds and 2 is the completion of a a-algebra SQ which
has the power of continuum.

Let TC M(2) be a nice family of functions such that for all
coen, g(^)= sup{|/(co)|; / E T } < + o o . Then

a) We have 0(c(T)) < 0(T), where c(T) is the convex hull
o/T.

P) / /TCM(S) then c(T)CM(2).
Remark that T is not assumed to be Tp -compact.

We need a simple lemma before starting the proof. A sequence
(Y^) of measurable sets will be said irreducible if for all subsequence
(rg) we have

^(lim sup Y^) = jLi(lim sup Y,. )
r Q. x-

where lim sup Yy = H U Y^.
r p r>p

LEMMA 6. — a) Each sequence of measurable sets contains a
subsequence which is irreducible
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b) Let (Sl{, ̂ , lJif)i^q ^ probability spaces. For i < ^ , /^
(Y,,.),. &^ a^ irreductible sequence of Sif. 7%^

ess
lim sup n Y, y = n lim sup Y, y .

r i^q ' i<q r

Proof. — a) It is standard. We define by induction sequences
(^)p °f integers, such that ^+1 is a subsequence of t9 , and
/x(lim sup Y ^) < T ' p + Inf{/x(lim sup Y^ ); (q^) is a subsequence

ofr^}.
Let q^ = ^. For each subsequence ^g of q^, since for each

p,(<7g)fi^ is a subsequence of (^Rg, we have

^(lim sup Y^) < ^(lim sup Y^p+i) < 2^^ + jLi(lim sup Y^)

whence jLi(lim sup Y^ ) = /i(lim sup Y^/ ) , i.e. (Y^ ) is irreducible.

b) Suppose first that n = 2 . Let x^ £ lim sup Y^ ,.. There
exists a sequence of integers (rg) such that ^ i^Y^ . Then:

lim sup Y^ C {^2 C ̂  ; (^i, x^) G lim sup Y^^ x Y^,.} C lim sup Y^

hence this set has the same measure as lim sup Ya^r • Then FubinFs
theorem shows that
JLI^ ® A4 (lim sup(Y^ .̂ x Y^^)) > H^ ® ̂  (lim sup Y^ ^ x lim sup Y^ y ) .

The result follows since of course
lim sup Y^ x Y^ ^ C lim sup Y^ x lim sup Y^ ^ .

Notice that this result implies that (Y^ ̂  x Y^^)^ is irreducible.
The general case now follows by an obvious induction on n.

Proof of Theorem 5. — If T is Tp -compact, T is pointwise
bounded, 0(T) == 0, i.e. the hypothesis of a) are satisfied. It is
then enough to prove a). One can obviously suppose that the measure
space is diffuse (i.e. atomless).

1st Step. — We reduce to the case where T is uniformly bounded.
For all n, let A., = ess sup {|/ | > n}. Since T is nice, there exist

/eT
A^ e 2 , A^ C A^ such that for all /E T, { I / I > n} C A;,. Since
for all n, and all f€ T, {|/| > n} C {g > n} the set A^\{g > n}
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is negligible, and hence it is the case for A^\{^ > n} and so Q A^
is negligible.

Let T" = {/Xn\A' ; /e T} • It is clear that this is a nice famay•
Also ^(T")= {/x^'^^))' so, since l im/ i (A^)=0 , we
have 0(c(T)) = limOW)) for if /ec"(T) we have

f*(/* - A) dii = lim f* (/* - /„) X^\A, 4x = lim f\(fx^ )*
»/ ft v 71 •*

- <^\^)*) ̂

and of course c (T1) < c (T).
Since 0(T1) < 0(T) and T" is uniformly bounded, this con-

cludes this step. We suppose now on that /GT ======» 0 < / < 1 .
Let a = 0(c(T)) and q £ N . We want to show that

0(T) > a - 10q-1. Let /zEF(T), with f (h* - h^)d^ > a - q~1 .

2nd Step. — For each sequence

s = (5i,..., ̂ , 5^.i,....^EN2^,

let \s\ = S ^. For /£T, let
i<2q

w ,<"<. (^"'"i"'1.^. {^c-'x-t"""1-
Let A = ess sup B (/). Since T is nice, by hypothesis there exist

5 ^GT ess
A ^ C X ' ^ ' with A^ C A, and B,(/) C A^ for all /e=T.

Let p be an integer, and rf = (S qp card {5 £ N2^ ; | s \ < p})~1 .
Then there exist A, . . . , /^T such that if C, = ̂  B,(/,), we
have jLi®151 (A^\C^) < T? for all s with I ^ K p (where jLi®151 is the
product measure on ft1^1).

For each integer fi < p , the set Eg of points of R2 which
have any two coordinates equal is negligible, since JLI is diffuse. Hence
there exists a finite subalgebra ^ of 2 , which contains the sets
{/, > iq~1} , {f, < 0' - 1) q~l} for 1 < ; < q and r < n and
such that each Eg is contained in a set of the product algebra ^ p

of measure < T ? . We can suppose that the atoms Z ^ , . . . , Z^ of
^ have positive measure. For i < k, let /x, be the normalization
of the restriction of JLI to Z, . Let Z = (.n Z,)2 , provided with
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the measure X = ( ® ^i,)®2 . A point z G Z will be denoted by
^i^Kik where z, G Z, if / < k , z, G Z,_^ if z > k .

For z G Z, let

g(z)= S A*(z,)^(Z,)- ^ /^(z,)jLi(Z,).
Ki<k k<i<2k

A straightforward calculation shows that

f gd\= f(h*-h^)d^L>a - q-1.

Since g < 1, (for A* < 1) we have

X { z ; ^ ( z ) > a - 2^- l}> ^ q-1 . (3.1)

For z G Z, let P^ = {z^.; f < /:}, provided with the measure
^ which gives weight jn(Z,) td z,, and let Q^ = { z , ; k < i < 2k} ,
provided with the measure ^ which gives weight ^i(Z^^) to z,.
Let c = ^ 5,, d = ^ ^. and R^ , = P^ x Q^ , provided

Ki'<<7 q<i<2q

with the measure ^ = (^V^® (^)®^ . This is a measure on
n 1 5 1 .

^rc? Step. - We show that for each measurable G C ft151, where
I s | < p , we have

f v^(G) d\(z) < r] + ̂ '^(G). (3.2)
^zez

For a sequence a = (o,)^^ of integers < f c , and z £ Z ,
let

^ = (( ,̂)«c - (^a,)c<,<l.l)E»IJI• (3.3)

We have

-•••°S,<n,^,X.. (3.4)
where the summation is taken over all possible choices of a and
where 5y is the Dirac measure at u. If all the integers (o,),^^
are distinct, then

f n ^(z,.)6, (G)rfX(z)==/ i^ i (Gn n z^ )
^zeZ <<|5| ' cr ,^1,| °»

as easily seen, and otherwise

f n n(z ) 6 (G)d\(z)<^( n z,.).
^zez <<l^l ' ° i<|j| <
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The union of the sets II Z- where two of the a, are equal is
i<\s\ l

the smallest set of sd "yl which contains E(^| , so by the choice of
sd, it is of measure < 17, which proves the claim.

4th Step. — Hence, if | s \ < p , we have

\{z G Z; v^\C,) > p-1} < p f v, ,(A;\C,) rfX(z) < 2^ .
Jzez ' (3.5)

Let Y be the set of z G Z such that ^ ,(A^\C,) < p-1 for 1 5 1 < p .
It foUows from (3.1), (3.5) and the choice of r] that the set of z E Y
with g ( z ) > a — 2q~1 has positive measure.

It is clear that g = 9 * , where

000= I A(z,)^(Z,)- ^ A(Z,)M(Z,^).
Ki<q q<i<2q

If we had 0(z) < a — 3^~1 on Y, we would have
g ( z ) = 6 *(z) <a — 3^~1 a.e. on Y. Since it is not true, there
exists u G Z with 0(^) > a - 3^-1 and

^,.(A^\C,)<p-1 for |^| <p. (3.6)

Since AEc'(T), there exists /£c(T) with

^ /(^,) ^i(Z,) - S /(^-) M(Z,^) >fl - 4^-1 . (3.7)
Ki<q q<i<2q

For each integer £ < ^ , let

He = U { Z , ; i<q,f(u,)>flq-1}
(3.8)

Kg = U { Z , ^ ; f > ^ , / ( ^ , ) < ( £ - l ) < 7 - 1 } .

An easy calculation gives

^ /(^,)^(Z,)-^-1 S ^(Hfi)<^-1

Ki<<? &<q

S /(^,) AI(Z,_,) - q-1 S (1 - ̂ (K,)) > -^-1 .
q<i<2q £<<?

From (3.7) we get

^- '(E ^(H,)+ ^ ^ ( K g ) ) > l + a - 6 < 7 - 1 .
fi<g £<<7
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We now show the fundamental fact: for each s G N2'7 with
I s | <p , we have

^'(( n H^x n K^)\A,)<p-1.
^Kfi^ e 1<C<<7 c / ^ l

In fact, it is enough to show the corresponding assertion where A^
is replaced by C,. For a sequence (a,),^i of integers < fe, le^
Z^ = n Z^ . Each atom of ̂ ls l is of this form. If

i<\s\ l

z^c n rf'x n K'̂  ,<<<? ' i<(? '
then the point u^ (given by (3.3)) belongs to B^( / )CA^ by
(3.8). Since C^ is a union of atoms of ^ l s l , if moreover Z^ <f. C,,
we have ^ E A^ \C^. It follows from (3.4) that

^ ((̂ n H;1 x ̂  K;^) \C,) < ^,(A:\C,) < p-^ .

5^ 5'r^p. - With an obvious notation, we have shown that for
each integer p , there exist measurable sets (H,p),<^(K,^),^
such that
for all ^ G N 2 ^ with \s\ < 2^

^®l.l^n H^ x n K^)\A,) < V (3.9)

^"'(S ^(H,^)+ S ^ (K ,^ ) )>1 + a - 6 < 7 - 1 . (3.10)
i<<7 i<<7 ' /

By lemma 6 a), there is a sequence pg such that the sequences
(H,^, (K,p^)g are irreducibles for aU / < q. Let

L, = 1m sup H,̂  , M, = 1m sup K,^ .
Of course we have

^(Z ^(L,)+S AI(M,)) > 1 +a-6q-1. (3.11)
\'<(7 i<^ /

From lemma 2b), and (3.9), one deduces that

\fs G N2^ , n L1 x n M^ 'C8 A,. (3.12)
i<q l i<q l s

Let (/„) be a sequence of T such that if D, = UB,(/^),
ess "

A^ C D^ for each 5.
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It follows from lemma 1 that there exist sets (U,),^ , (V,),^
with U, C L,, V, C M,, ^*(U,) = /x(L,), JLI*(V,) = /x(M,), such that
for all sequences s £ N2q , and all families (u^ j ),<,. of distinct
elements of U,, all families (v^u)f<s' °^ distinct elements of
V,, we have

(^1,1 - • • ̂ i,.i'^2,1 - • - ̂ 2.^ - • - ̂  . ̂ 1,1 - • - u!,^^

•••^^IV

This means that there exists n £ N with /^ (^..) > ^~1 for
i < q , j < Sf, fn(Vfj) < (i - 1)<T1 tor i < q , j < s^y . Hence
there exists a r? cluster point / of the /„ such that /> iq~1 on
U,, /< (i — l)q~1 on V,. Hence /* > ^-1 a.e. on L,,
/^ < (i — l)q~1 a.e. on M,. So as is easily seen

frdyi>q-1 S ^(L,)
J i<q

ff^dfJi< l-q-1 S M(M,).
i<<7

From (3.11) this gives 0(T) > f(/* - f^)d^ > a - 6q-1, and
concludes the proof.

Remarks. - 1) Let B = [0,1], T = {axi ; a G R , I interval} .
Then 0(T) = 0 but c"(T) is the set of all functions [0,1] —> R .
This shows that a hypothesis of the type of pointwise boundedness
is necessary.

2) It is not hard to extract the following result from the above
proof: under the hypothesis of the theorem, 0(T) = sup {0(D);
D C T, D countable}.

Although this is not the main aim of this paper, we give an
application to integration in Banach space. If E is a Banach space,
a function 17: S2 —> E is said to be scalarly measurable if for each
;c*GE*, the function x * o r] is measurable.

PROPOSITION 7. — Suppose either a) or b) of theorem 5 hold.
Let 17 a bounded function Sl —> £°° . If for each character (i.e.
multiplicative linear functional) Q on £°°, Q o 17 is measurable,
then 17 is scalarly measurable.
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Proof. - The set T = {Q o 77 ; 6 character} is a separable
compact subset of M(£). For each linear functional jc*£fi0 0*,
positive and of norm 1, x*o 7?£c"(T) hence x*o r] is measurable.
So by additivity, x* o 17 is measurable for all jc* G JT * .

The interested reader will find several connected results in [4].
We now prove a (much easier) analogous of theorem 5 for

Riemann - me asurability.

THEOREM 8. — Let X be a compact metrizable space, and ju
a Radon probability on X. Let T be a uniformly bounded r^-
compact set of Riemann-measurable functions. Then c"(T) consists
of Riemann-measurable functions.

Proof. - For ^Gc"(T) it is easy to see that there exists a
Radon measure v on T such that for all x £ X

SW^f^W <W). (2.1)

Consider the measure X = JLI ® ^ on X x T . Let d a distance
defining the topology of X. For each n, define the function
^ on X x T by

^(x , /) = sup {1/OQ - /(z)| , d(y , x) < n-1, d(z , x) < n-1} .

It is easy to see that ^ is lower semi-continuous, hence mea-
surable on X x T . This shows that (p = Inf^ is also measurable.
For each /, {x £ X ; ^(x , /) > 0} is negligible since / is conti-
nuous a.e.. By Fubini's theorem there exists a set of full measure
Y C X such that if y G Y, v{f€ T; ^p(x , /) > 0} = 0 . It follows
then by Lebesgue's theorem that g is continuous at each point
of Y.

Remark — Let (Qn\>2 b6 an enumeration of the rationals
of [0,1].

The set { 0 } U { 2 " X { ^ }} is T^-compact, pointwise bounded,
and consists of Riemann-measuAable functions, but its closed convex
hull contains Xonro n which is not Riemann-measurable.
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4. Consistent liftings.

Let (^2,2, fi) a complete measure space. A linear lifting of
L°°(/A) is a positive linear map p from L00^) into ^(/i), such
that p ( l ) = = 1, and that for fCU°(p.), p(f) belongs to the class
of /. If moreover p is multiplicative we say simply that p is a
lifting. See [5] as a basic reference.

For each n, let 2" be the completion of the product a-
algebra for ^n .

DEFINITION 9. — A lifting p of L°°(^) is said to be consistent
if for each n there exists a lifting p" of L°°(JLI®") such that for
each A ^ , . . . , \ E 2 , we have

p"(Ai x . . . x A ^ ) = p ( A i ) x . . . x p(A^).

The motivation for this definition is the following result.

PROPOSITION 10. — Let p be a consistent lifting of the pro-
bability space (S2, S , ju). Then

a) The family U of sets A C S ^c/z rtor ACp(A) is nice
(see Definition 5).

b) The family T of functions /EM(2) 5MCA ^r ?(/)=/
^ mce.

p^ooy; - a) Let » e N and p" the lifting of L^®") as
in Definition 8. Let HES" , and H' = p"(H). We have H' S8 H.

ess
For AI , . . . , A^ E U, we have, if A^ x ... x A^ C H

AI x . . . xA^ C p(Ai)x ...x p(AJ =p"(Ai x . . .xAJ
Cp"(H)=H '

b) It is enough to show that if /ET and a E R , then
{f>a} and {f<a} belong to U. Now we have, if 6=| | /IL

/ < a + 2&X{/>a} so / = p(/) < a + 2&Xp{/>a}

hence if f(t)>a, t ^ p { f > a } , i.e. {/> a} C p{f> a}. And
we have {/< a} = {-f>-a} C ?{-/> -a} = p{/< fl} since
- /GT.
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The following lemma is a useful tool to construct consistent
liftings.

LEMMA 11. — Let (n , 2 , ju) be a measure space. Suppose that
for each n there exist a lifting ?„ of L°°(jLi) and a lifting a^ of
L°°(jLi®") such that the following conditions are satisfied:

(4.1) For all k<n, for all A E S ^ , there exists A 'ES^ such
that aJAxn"-^ = A'x ^-fc.

(4.2) For A , , . . . , A , E 2 , o,(A, x . . . x AJ = p,(A,) x ... x p,(A,).
Let ^U be any non-trivial ultra/liter on N. Then the lifting p
of L°°(jLi) given for oj ESl by

(4.3) P( / ) (c^)= lim pj/)(o;)
n-^U

is consistent.

Proof. - Since each p^(/) is equal a.e. to /, it is clear that
(4.3) defines a lifting. From condition (4.1) there exists for k^n
a lifting p^ of 2^ such that p^(A) x n"-^ = a^(A x n"-^) for
A E S ^ . Let pk given by pkl(f)(^)= lim p^(/) (a;') for
co'E^ , /EM^). "-"al

For A i , . . . , A^ E 2 , a? E ̂  , we have

p^Ai x ... x AJ(o?) = lim P^AI x ... xAJ(co).
n-^u

But
p^(Ai x . . . x A^)xnM- f c = aJAi x . ^xA^x f t ^ )

= p^(Ai) x ... x pjA^) x n"-^
so

P^(AI x . . . x A^) = p^(Ai)x . . . x p^(A^).

It then follows that

P^AI x . . . x A^) = p ( A i ) x . . . x p(A^),

which concludes the proof.
The following result answers a natural question, but it will not

be used in the sequel, so we don't give all the details of the proof.

THEOREM 12. — For any complete probability space (S2, S , jn),
L°°(jLi) has a consistent lifting.
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Proof. — It closely follows the method of [5]. Given n, we
are going to construct liftings .p = ?„ of L°°(^) and a = a^ of
L^®") which satisfy (4.1) and (4.2).

Let ^ be the cardinal of 2, and (A^<^ be an enumera-
tion of 2. Let 2^ be the completion of the a-algebra generated
by (\)p<a and for k < n , 2^ the completion of its product on
^ . We shall construct by induction on a liftings p^ of L°°(JLI^)
and o^ of L°°(^") where ^ and ^n denote the restrictions of ^
to 2^ and JLI®" to 2^ respectively, which satisfy the following
condition:
(4.4) For ft < a, A £ 2 ^ , B G 2^ , p^(A)=p^(A) , aJB)=(^(B),

and the conditions corresponding to (4.1), (4.2) hold.

Suppose PQ and OQ have been constructed for all j3 < a. If
a has uncountable cofinality, since 2^ = U 2^, , 2^ = U 2^,
it is enough to set pjA) = p^(A) if A E 2 ^ , o^(B) = a^(B) if
B £ 2" and (4.4) shows that this does not depend on j3.

Suppose now a = sup a , where a^ < a. To simplify the
notation, let 2^ = 2^, 2; = 2^ , p, = p^ , a^ = a^. Let
^ be an ultrafilter on N , and for /EL°°(^), ^eL°°(^), let

p^( / )= lim p-(E^(/)); ^(g)= lim ^(E^(^))
p-.<u P^-U

where for a a-algebra 2', E2' denotes the conditional expectation
with respect to 2'. We define in this way two linear liftings of
L°°(^) and L°°(^) respectively. Let

k<n, A £ 2 ^ , A ^ , . . . , A ^ G 2 ^ .

For all p , we have, if a? = (a)i , . . . , a^) £ S2"

E£?(XAXA,„X...XA,)(^) = E^(XJ(C^,..., 0;,)

x^n^ E^(XA,)(^-),
so, from (4.1) and (4.2)

a.(AxA^x. . .xA„)=(^(Axnn^)n(^x n p^(A,.)).
l=fc+l (4.5)

Moreover o^(A x ft"'"^) (a;) depends only on the first k coordi-
nates of u, hence we can write a^Ax^-^ = ek(A)x nn-k

where 0k(A) is a linear lifting of L^^"), (of course 01 = p ^ ) .
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Now we show how to modify p^ and o^ to make them
multiplicative. For a? = (a?i, . . ., a?^) G t2" , k < n, and
a /= (c^,.. . ,c^), let ^ = { A G 2 ^ ; ^(A)(c^)= 1}. It is
easy to see that ^ is a filter, which depends only on c^,..., o?^ .
For each o^en, let V^ be an ultrafilter containing ^ .
For each a? = (a^,..., a^)£?2", we construct by induction on
k < n , ultrafilters ZL^ on ^ with the following properties:

(4.6) For CG^-^nS^-1, AEV^nS^ , we have CxAE^

(4.7) ̂  C ̂

(4.8) "U^ depends only on c j ^ , . . . , o ; ^ .

We take U^ = V^^. Then (4.6) to (4.8) are automatically
satisfied.

Suppose now 'U^"1 has been constructed, satisfying (4.6)
to (4.8). The family of sets C x A on ^ , where C ̂ U^1 n S^-1,
A G V^ n 2^ , is a filter. For B E ̂  , we have

(4.9) ^ (CxAnB)>0.

Indeed, otherwise
0 = 1 - ^(B) (c^) > ^(C x A) (^)

so
0 ^^(CxAKa;^ ^(CxAxft"-^^)

=a„(Cxn"- fc+l)(^)p^(A)(a;^)

by (4.5). Since A G V ^ we cannot have p^(A) (o;^) = 0, for
otherwise p^(n\A) (c^) = 1 , i.e. n\A £ §?^ C V^^, a con-
tradiction. So we have o^(C x ft"-^1) (a?) = 0, hence

(^((^-^Oxn^^Ka^ 1

so n^VCG^"1, which contradicts the fact that CE'U^"1 .
It is now clear that there exists an ultrafilter 11̂  on ^ which
contains ^ and all the sets C x A for C £ Zl^"1 n 2^-1 ,
A £ V^ n 2^ , and of course ^^ can by choosen depending
on o^,..., o?^ only. This concludes the construction.

It is clear that V^ and U^ = U^ contain no negligible sets.
Hence one can define p^ by
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P,( / ) (T)= lim f(T), a^g)(^)= lim g ( ^ )
T'-^V^. ^-^a;

for /E L°°(/^) , g £ L°°(JLI®") , r E n, u E n" , since these quan-
tities depend only on the class of / and g . These maps are linear
and multiplicative. If A G (2, let

A' = {rEft ; p,(A)(r)= 1 }

A"= {rEft; p^(A)(r )=0} .

For r E A ' , we have A' E^., hence A' E ̂  , i.e. p^(A) (r) == 1 .
Similarly p ^ ( A ) ( r ) = = 0 for rEA" , which shows p^, and similarly
o^, are liftings. Moreover if A E 2 ^ for j 3 < a , p^ (A)=p^ (A) ,
so p^ (A)=p^(A) , so (4.4) holds. It remains to check (4.1) and
(4.2). Let k<n, a; E n", and A E S ^ . Then, from condition
(4.6) aJAxn"-^)^) = 1 ^=» Axn^EZL^ <==> AE^ and
the last condition depends on o^,. . . , co^ only, so (4.1) is proved.
Similarly condition (4.6) gives, for A E 2

aJ^-^xAx^-^Ka;) = 1 ̂  ̂ ^x Axn"-^-1 E ̂

— — A E ^ ,

so aj^-1 x A x .n"-^-1) (a;) = pjA)(c^), which implies (4.2).
This concludes the construction if a is a limit ordinal.

Suppose finally that a = j3 4- 1 . Then 2^ is generated by
2. and A^ . Let

B^ = ess sup {C E 2^ , C C A^ }
and B^ = ess sup {C E 2^ , C n A^ = 0} .

Then set p^(A^) = (A^ U p^B^^Xp/B^). It is easy to see that
the only candidate for p^ which satisfies this condition and (4.4)
is actually a lifting. For B E 2^, set

oJAH n e^.AJ^^n ft e.pjA^)
(<» r »= i

where e, = ± 1 and for a set C of ^ and + C = C, — C = Sl\C.
It is easy to check this is a lifting, and that a ^ , p^ satisfy (4.1),
(4.2), (4.4). The construction is completed. The theorem follows
with a = ^.

Let G be a locally compact group, and dx a left-invariant
Haar measure. Since all these measures are proportional, the object
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L°°(G) is well defined. (When G is not a-compact, L°°(G) is the
set of bounded measurable functions on G modulo the locally
negligible functions). There is a natural operation of G on L°°(G),
given, for /GL 0 0 , by L,f(x)=f(tx) for xCG (the class of
4/ depends only of the class of /). A lifting p of L°°(G) is said
to be left-invariant if p(L,/) = L,p(/) for all /GL00 . In [6], the
existence of a left invariant lifting is shown for any locally compact
group. We find very likely that there exist consistent left invariant
liftings on each locally compact group. However, we don't see how this
could be proved without revisiting the proof of [6], and, to be frank,
this proof is so long that we don't have this courage. So we shall only
prove it in a much simpler way for a large class of groups (which
contains all the metrizable abelian groups).

THEOREM 13. — Let G be a (metrizable) group which satisfies
the following conditions, where \ • |^ denotes the product on G^
of the Hoar measure on G:

(4.10) "There exists a decreasing sequence \n of neighborhoods
of the unit such that for all k and A C G^ measurable
lim |V^|.1 lAOxV^I . = x.OO for almost all x e G^ ".

n -> oo - - A

Then G has a Ie ft invariant consistent lifting.

Proof. — Let -U be an ultrafilter on N . Consider the class
QL of measurable sets of G such that lim |VJ~1 l A O V J ^ = 1.
It is closed under finite intersections. Let 6 be a character of L°°
such that 0(A) = 1 if A G O . Note that

0(A)= 1 ==^ lim |VJ-1 f A H V J , >0*u.
for otherwise G\A£(Sl.
For /EL 0 0 , let p(f) (t) = 0(L,/). For A measurable, r G G ,
we have

lim |VJ71 l A ^ n r V J = 1 (respO)=^p(A)(r)= 1 (resp 0)

hence by hypothesis and an obvious density argument p(f) is in
the class of /, so p is a lifing, of course invariant since

p(L,/) (0 = 0(L,L,/) = 9(L^f) = pf(ut) = L^p(/) 0).
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For k > 1, the class QL ̂  of sets of the form A^ x ... x A^ H A
where A/ £ QL for f < n and lim |V^1 |AHV^ = 1 is closed
under finite intersections, and none of its elements is empty since
lim |V^1 [AI x ... x A^ n V^ > 0 . Hence if 9^ is a character
on L'CG^) such that 0^(B) == 1 if B E O ^ , we can as above define
an invariant lifting p^ of G^ for which it is easily seen that
p^(A^x. . . x A^) = n p(A,).

i<k

5. Measurability of translations.

Let G be a locally compact group. We fix a left invariant Haar
measure d x . This paragraph is mostly devoted to a study of the
following question: For which functions /£L°°(G) is the map
t —> L^f from G to L°°(G) scalarly measurable, i.e. such that
for each ^£L°°*, t—> ^(L^f) is measurable ?

The Haar measure of a measurable set A of G is denoted by
| A | and the product measure on G" is similarly denoted by | • [„ .
A character 9 on L°°(G) is a linear functional which is also mul-
tiplicative. We say that a character 9 on L°°(G) (resp a ^EL°°*)
is localizable if there is a compact set K C G such that 9(\y) = 1
(resp for all e > 0 , there is a compact K of G with 1^1 (XQ^) ̂  e)-

We denote by ^°°(G) the set of bounded measurable func-
tions on G. Each /EL°°(G) is a set in ^°°(G). For /z£/r(G),
its class in L°°(G) is denoted by A . We denote by Tp the topology
of pointwise convergence on the set of real-valued functions on G.
For /!£jr°(G), and t ^ G , let L^h(x) = h(tx), R^h(x) = h(xt).

LEMMA 14. -Let /zEjr(G),

a) Let 0 be a character on L°°(G). Then the function
t—> e(L^h) belongs to the Tp-closure of [R^ ; t^ G}. // K
is a compact of G with 0(XK:) = l ' lt belon^ to the r^-closure
of { R , / z ; r G K } .

b) Let ^£L°°*(G), <p(l) = 1 , </? > 0. Then the function
t —> ^p(L^h) belongs to ~c{R^h ; t^ G} . If K is a compact subset
of G with ^(XK:) = 1 ' lt belongs to ^{R^h ', t £ K} .
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Proof. — Since a) is similar to b) but simpler, we prove only b).
Let /^,...,/^£/T(G). Let 77:6—> R" given by u—> (h^u )),^ .
It follows from the theorem of Hahn-Banach that (<p(A, )),<„ belongs
to c"(i7(G)). Hence for each e there exists c^ ,. . . , a > 0,
^ <x. == 1 , and u^ , . . . , u E G with ^ a.h^u.) — <^(A,) < e for

/•<? /<P
i <n . Let us apply this with A, = L^A for a family ^ , . . . , ^ G G.
We have for i < 71

S ^L^(«,)-^(L,.A) = S ^R, .A(^)-^(L,A) <e
7<P ' l KP J

which concludes the proof.

For A, B C G, we write

AB = {ab\ a £ A , 6 SB} , A-1 = {a-1 ; a G A}.

LEMMA 1 5 . — Suppose G ^ metrizable. Let A ^ , . . . , A ^ &^
relatively compact measurable sets. For each i ̂  n, let F, == ess cl A,.
Then

| { (^, . . . , rJEG"; | U ^F,|>0, | H r,A,| =0}|, = 0 .
i^n i^n

Of course the interest of this lemma is that F, is in general much
bigger than A,.

Proof. — Suppose first n = 2, and let p be a left-invariant
lifting of L°°(G) [6].

First for A, B measurable we have

rEp(A)p(B)-1 ^> ^ p ( B ) H p ( A ) ^ 0 ̂  i r A H B I >0

so p(A) p(B)~1 is open.
Let L = {t E G ; |Ai n tA^ \ == 0}. This set is closed.

Since p is left translation-invariant
tCL =^p(A^)n tp(A^)==({)

hence p(A^)H Lp(A^) = 0 .

Since p is left translation invariant, p is strong, i.e. p (A)CA
for A closed. Since L is closed, p (L)CL, hence

p(A^)np(L)p(A,)=0.
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Let H^ be a closed set with H^ C p(A^) and |A^\H^ | < n~1.
Since p is strong, and H^ closed, p(H^1)"1 C H^ C pCA^), so
for all n, p(Ai) H p(L) p(H^1)"1 = 0 . Since the second set is
open, and meets p(Ai) in a negligible set, the definition of F^ shows
that F^ Hp(L) p(H^1)-1 = 0. Since 1(^ pOI^r^A A^l = 0,
for each t ^ - L except in the negligible set L\p(L) we have
|F, 0 tA^\ = 0. Changing t in t~1 the same proof shows that

| { ^ G G ; |F^ n^| > 0 , |A^ HMJ = 0}| = 0

which implies the result by Fubini's theorem.

Suppose now it has been proved by induction that the result
holds until n — 1 . It is clear that there exists an open subgroup
G' of G which is separable, and contains A ^ , . . . , A^ . It is easy
to see that one can in fact suppose G = G', i.e. that G is separable.
Let (Vp) be a basis of open sets for the topology. We are first going
to show that for all p and for almost all (^ , . . . , ^_i ) in G"~1 ,
|VpH n r , F , | = 0 when |V^, 0 H r , A , | = 0 . In fact, if

f < M — 1 1<M— 1

v^n n ^.F,= n r,(F,n^v^
• i<n-l Kn-1

is not negligible, there exist k ^ , . . , , /^_i , k\,. . ., /^_i with
Vfc. C Vk! <= t~1 V. and | n r, (F, n Vfc.) | > 0 . Of course we1 l l • < < n — l • _
have | 0 r,(A, H V^/) 1 = 0 . Now e^ch open set meeting F, H V .̂

I < M — 1 *

meets A, H V^., in a set of positive measure, so
F,nv^cesscl(A,nv^).

Hence for all k ^ , . . . , k^_ ^ , fe ' i , . . . , k^_ i the set of (^),<^_ i
such that | n L(F, n V^.) | > 0 tod | n r,(A, n V^ )| = 0

i<n-l l i<n-l <
is negligible by induction hypothesis, which proves the assertion.

It follows that for almost all s = (^),<n-i £G"~1 , each open
set U which meets H r,F, in a set of positive measure meets

f< n — 1
n t,Ai in a set of positive measure. It follows that if

i<n—l

H,=essc l ( n ^,A,)
i'< n — 1

ess
we have n r,F, c H,, and hence that for all ^ e G,

i< n — 1

I n f,F,-n ^F«|<|H,n ^FJ.
i<n—l

The result follows then by the case n = 2 and Fubinfs theorem.
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THEOREM 16. -Suppose that MA Aofcfc Z^r G be a locally
compact group, and /eL^G). The following are equivalent

a) 77w6? ̂ ^^ a Riemann-measurable h E ^°°(G), /z E /
b) For a// localizable ^eL°°*(G), r/^ w^ r —. <^(L,/) ^

w^a^raft/^

c) For all localizable character 9 on L°°(G), the map
t—> 0(Lff) is measurable

d) There exist h e ST (G), h e / such that all compact K
of G, c { R ^ ; r e K } consists of Riemann-measurable functions

e) For ^c/z compact K o/ G, r/z^? ̂ ^ /? E jT (G), A G /
•wc/2 that [Rfh ; ^ G K} ^ relatively compact in ̂  (G).

Proo/ - From lemma 14, ^ ====> c. From lemma 14 and
obvious approximations, rf ==> b. It is obvious that b ==> c
and d ==> e . Let us show that a ==> d . Let ^ e c"{R^/z; t e K}
where /; is Riemann-measurable. Let Y be a compact of G. Let
X = YK. Let e > 0. From lemma 3, there exist two continuous
functions h^ , h^ on G with

h, < / z < ^ , ̂  ( A 2 W - ^ i O O ) A c < € , /^ = = A , = 0 ,

outside a compact neighbourhood of X. We know that g is a
pointwise limit along an ultrafilter of functions of the form 2 a,R^ „
for a, > 0 2 a, = 1 , ^, G K . Let /x be the Radon measure on K
which is the limit of the 2 a, 8^ along the same ultrafilter. Then
for x E Y we have ^ (x) < g ( x ) < ̂  00. where

g,(x)= f^h^(xt)d^t), g^(x)= f h^xt)d^t).

Hence ^^ and g^ are continuous on X , and a straightforward
computation shows f^ (g^(x) - g,(x))dx < e sup{A(r1); t E K}
where A is the modular function, so by lemma 2, g is Riemann-
measurable.

It remains to show that c =^ a. It is clear that G can be
partitioned G = U H, where each H, is a relatively compact set,
and the union of the frontiers of the H, is a closed negligible set.
It is then enough to show that for each compact set X of G,
there exist / z E / T , A G / , whose restriction to X is Riemann^
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measurable. Indeed, if h^e f is such that its restriction to H^ is
Riemann-measurable, we can suppose ||/!,|| < ||/||. Then the func-
tion g E ^°° which coincide with A, on H, is Riemann-measurable
and in the class of /. One can hence assume that G is a-compact.
Since / can be factored through a metrizable quotient of G, it
is easy to show that one can suppose G metrizable.

So let X be a compact of G . Let a < b , A = {f<a} n X ,
B = { / > 6 } H X . From lemma 4, it is enough to show that if
M = ess cl A, N = ess cl B , H = M n N we have |H| = 0 . Let
us suppose | H| > 0. Let p be a left invariant lifting of G. Let
X denote the normalization of the restriction of JLI to L = p(H)~1 ,
and e the unit of G . For s ^ , . . . , s^ € L we have e E H s. p (H)

i<n
so | n 5,H I > 0 . Hence for s ^ , . . . , ̂ , ^ , . . . , t^ E L"^ wei'̂  n
have | n 5,M n n /.N | > 0 . It then follows from lemma 15 that

i<n l i<m l

\<S(n+m) r „ v f t F T n+m •A t^l , . . . , S^, T^ , . . . , ly^ t= L, ,

I n 5,An n r,B| >0} = l.
i<n i<m

Since L is metrizable and MA holds, lemma 3 a shows that there
exists Ui , U^ C L, X*(Ui) = X*(U^) = 1 , and such that for
s ^ , . . . , ̂  e Ui , t ^ , . . . , ̂  G U ^ , we have | 0 ^.A n n ^,B| > 0 .

i<n i<m
It is then clear that there exists a character 0 on L°° (G), such that
^(H^X)^ and 0(x^) = ^X^) == 1 for ^FU^GU^ This
shows that 0 ( L _ ^ / ) < a for r £ U i , and 6(L_^f)>b for r e u ^ ,
hence ^ —^ 0(L^f) is not measurable, which concludes the proof.

The above theorem is very satisfactory when G is compact.
However, when G is not compact, to say that /z£J?°(G) is Riemann-
measurable gives information only about the local behaviour of h.
Hence we should not in general expect any regularity for the functions
t—> ^(Lfh) <^E L°°*(G). For example, one has the following
easy result.

PROPOSITION 17. — There exists a Riemann-measurable function
h £ ̂ (R), such that for all subsets X C R , there exists a character
e on L°°(R), wth 9(L,h) = 1 for t EX and 0(L,h) = 0 for
tf.X.

Proof. — Let n —> (p(n), q(n)) a bijection of N and N x N .
Let (I$)q be an enumeration of all the subsets of [ 0 , p ]
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which are finite unions of intervals with rational endpoints. Let
I == ^(^ + 1^), where ^ == S P W ' Let A = Xi . It is clear

i<n
that A is Riemann-measurable. Let us show that for any s, s•/ i ? • • • ? "m ?
t i , . . . , ty distinct real numbers | 0 (s, + I) n n (r, 4- R\I)| > 0 .

(<W /•</• /

In fact let a G R and p E N such that all the a - S f , a - r,, belong
to [0, p]. Jhere exists ^7 such that a - s, G 1̂  for f < m ,

^ - ry G [0, ^]\I^ for / < ^. If ^ is such that p = p ( n ) , q = q(n),
it is clear that a 4- a^ belongs to the interior of

n Cy,+ I)H n (r,+ R\I),
i^m /<r /

which proves the claim. The result follows by a standard argument.
We can however generalize theorem 15 in the following direction.

THEOREM 18. -Suppose MA holds, and let G be a locally
compact group and /EL°°(G). Consider the following conditions:

a) For all character 9 on L°°(G), the map t—> 0(L^/) is
measurable

b) For all character 0 on L°°(G), the map t —> 9(L^f) is
equal almost everywhere to a Riemann-measurable function

c) There exist he^°°(G), hef, such that [R^h, rEG}
is Tp-relatively compact in J?°°(G)

a') For all ^eL°°(G)*, the map t—> </?(L^/) is measurable
b ' ) For all ^eL°°(G)*, the map t—> <^(L^/) is equiva-

lent to a Riemann-measurable function
c') There exist /z 'E/T(G), A ' E / , such that

~c{R,h', rEG}C^°°(G).
77^72 a ̂  & «=» c a^zri a' ^> b' ̂  c ' . Moreover, if G has a
consistent lifting which is both left and right invariant (e.g. G is
abelian) all the conditions are equivalent.
Note: We dont know when there exist bi-in variant liftings.

Proof. — c =» a follows from lemma 14. To prove a "̂  c ,
we show that for any left invariant lifting p , the function h = p ( f )
satisfies c). Notice that for all t , u £ G, we have
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R,P(/) (U) = ?(/) (Ut) = L,p(/) (0 = ?(L,/) (0.

Since the map g —^ p(g) (t) is a character on L°°, this shows
that {R,p(/) : tCG}C{u —>• 6(L^f); 6 character on L°°(G)}
and the right-hand set is r -compact and contained in ^(G).

It is obvious that b "^ a. To prove the converse, notice
that for each character 6 on L°° (G) and each character 17 on the
algebra ^(G) of bounded real-valued functions on G, we can define
a character { on L°°(G) by ^(g) = 77 (^— > 0(L^)). Moreover,
if <^)=0(I^/),

S(V) = r^(u -^ 0(L,(L,/))) = r?^ -^ 0(4,/)) = 77(L^).

Since by hypothesis t—> S(L^/) is measurable, t —^ r](L^)
is measurable. But for each character Q on L°° there exists a cha-
racter T? on ^»(G) such that r](h^) = O(h^) whenever /^EI/^G),
/^Ej?°°(G), h ^ ^ - h ^ . So theorem 16 shows that <^ is equivalent
to a Riemann-measurable function. We have shown the equivalence
of a, b, c. The proof of the equivalence of a ' , b ' , c ' is similar.
Suppose now G has a consistent lifting p which is both right and
left invariant. We can factor / through a metrizable quotient of G,
and it is easily checked that this quotient still have a consistent lifting
(call it again p) right and left invariant. So we can suppose G me-
trizable. We have seen that under a) the set

{R,p(/) ; t £ G} = {p(R,(/)); t G G}

is T -relatively compact in ^°°(G). So theorem 5 proposition 10
and lemma 14 show that c"{R^p(/); reG}CjT(G), i.e. that
a' holds. Q.E.D.

A natural question is to ask if, whto the conditions of theorem
18 are satisfied, the map t —> 0(L^/) is Riemann-measurable.
The following result shows that even if G = R , it is not the case.

PROPOSITION 19. — There exists a function f: R —> {0 ,1}
such that

a) For all ^p^Lwf(R)*, t —^ ^(L^f) is equivalent to a
Riemann-measurable function

b) There exists a character 6 on L°°(R) such that both sets
{t G R ; 6(L^f) = 0} and {t € R ; 0(L^f) =1} are dense in R .
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Note that when G is compact, condition a) and MA imply that
/ is equivalent to a Riemann measurable function, and the proof
of Theorem 16 shows that t —> <^(L^/) is Riemann measurable.

Proof. - Let (?„) be an enumeration of the finite subsets
of Q. Let e^ a sequence of real numbers > 0 such that
^ €„ (card PJ2 < + oo. Let A = ^ (^ + P^ 4- [0, ej), where

the sequence (a^) is chosen by induction such that

1 + sup(^ a, + P, 4- [0, ej) < ̂  + InfP,.

Let / = x ^ .
It is enough to show a) when moreover ^ > 0. If <p is loca-

lizable it was shown in theorem 16 that t —> ^(L^f) is measurable.
Now each positive (^GL^CG)* can be written ^ = <^ + ^ ,
where <^ is localizable and (^(XK) == 0 f01" eac!1 compact K of
R . To prove a) it is hence enough to prove

c)If <pEL°°(G)*, < ^ > 0 , (^(x^) = 0 for all compact K of
R , then <^(L^/) = 0 for almost all real t .

Suppose that there exists a > 0 such that ^(L^f) > a in a
non-negligible set. Hence there exists an interval L in R , of length
one, such that if B = {t G L; <p(L^/) > a} the outer measure of
B is equal to j3 > 0. Let n an integer such that na > 2. For
Oi, . . . , rJGB", we have <^( ̂  L,,f)>na>2. This shows

i<n l

that for all compact K of R there exists u^K with ^ Ly,/(M)>2.
i<n l

Hence there exists 1 < ^ < ^ < ^2 such that r, + M £ A, r, + u E A.
The construction of A shows that there exists p with t^ + u,
^ + ^ Gfl^, + P ,̂ + [0, € p ] . Moreover for all PQ , one can take
K large enough such that the above condition implies p > PQ .

Let us denote by X the canonical measure of L. An elemen-
tary estimate using Fubinfs theorem shows that

X®X( { ( r i , ^ )eL 2 ; 3ueR,t,+u,t^+uea^Pp +[0,e^]})
< 2e^ (card P^)2

we have hence shown that for all PQ :
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x:(jai,...,^L";^(s L,j)>2|)
<C^ S 2e^ (card P^)2

P>PO
where X^ is the outer measure associated to X®" . We hence have
j3" = X^(B") = 0 , so j3 == 0, which proves c).

The condition c) shows that to prove b) it is enough to show
that there exists a non-locaJizable character 6 on L°°(R) with
0(4/) = 1 for r E Q . But this follows easily from the fact that
for each n, and each ^ G P^ , L^f = 1 on a^ + [0, ej .

Theorem 18 and proposition 19 suggest an other extension of
theorem 16. This next result is proved in a similar way as theorem 18,
except that we use theorem 8 instead of theorem 5.

THEOREM 20. — Let G be a locally compact abelian group
and f E L°° (G). The following are equivalent:

a) For all character 0 on L°°(G), t —> 6(L^f) is Riemann-
measurable.

b) For all (^EL^^G), t —> ^(L^f) is Riemann-measurable.
c) There exist /!'e^°°(G), h ' e f , such that {4/2'; t E G}

is T -relatively compact in the set of Riemann-measurable functions.
d) There exist h e^°°(G), h E/, such that ~c{Lfh',teG}

consists of Riemann-measurable functions.

Though the proof of the following theorem follows easily from
a powerful result of D.H. Fremlin, and is not related to the methods
of this paper, we include it here since it is obviously akin to the pro-
ceeding results.

THEOREM 21. — Let G be a locally compact abelian group and
/G L°°(G). The following are equivalent

a) There is a left uniformly continuous function h in the class
of f.

b) The map t —> L^f is measurable for the Hoar measure
when L°°(G) is provided with the Sorel a-algebra generated by
the norm.
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Proof. — a ====> b is obvious, since this map is then continuous.
b ^^ a: Let K be a compact of positive measure. Since the map
t —> L^f is measurable, the result of Fremlin [3] tells it is Lusin
measurable, i.e. there i5 a closed L C K , with |L |>0 , on which
this map is continuous.

So for each e > 0, there exists a neighborhood V of the unit
of G such that for t , uCL, tu~1 G V , we have ||L^/- L^/|| < e.
It is known that LL-1 is a neighborhood of the unit of G. (For
example, if p is a left invariant lifting of G, L^L contains the
open set p(L-1) p(L-1)-1). For x , y E G with x ^ ^ E V H L L - 1 ,
one can write xy~1 = tu~1, for t , u E L . Since f t ^EV, one
has
IIL,/-L^/||=||L^/-/|| =HL^/-/||=||L,/-L,/||<6.

We have shown that t —> L^f is continuous on G. The result
follows easily, e.g. by taking h = p(/) for a left invariant lifting
p. (It is continuous since p(/) (r) = p(L^/) (e) where e denotes
the unit of G.)
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