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ESTERLE'S PROOF
OF THE TAUBERIAN THEOREM

FOR BEURLING ALGEBRAS

by H. G. DALES and W. K. HAYMAN

1. Introduction.

In [5], J. Esterle gave a new proof of the Wiener Tauberian theorem for
the algebra L1 (R) by using some results from complex analysis and from
the theory of radical Banach algebras. In this note, we show that a proof
with the same idea also establishes the analogous result for Beurling
algebras.

We first give the basic properties of the algebras of Beurling that we are
considering.

Let (p be a non-negative, measurable function on R, and set

L ; = { / : ||/||= f \f(t)\e^dt< 0)}.
J — 00

Then L^ is a Banach space : as usual, we equate functions equal almost
everywhere. If

(1) (p(5+Q ^ (p(s) + (p(Q (5,reR),

then L^ is a commutative Banach algebra with respect to convolution
multiplication defined by the equation

r°°(/ ̂  gW = f(t - s)g(s) ds (f,g e L^).
J - 00

These algebras were introduced by Beurling in 1938 [1].
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Condition (1) ensures the existence of the finite limits a = lim (p(QA ^d
(-»00

P = lim (p(0/r. Let n be the open strip { - a<Re z<-P}, and let Ft
t - f—OO

be the closed strip { — a ^ R e z ^ — p } of C : if a = P, then n is a line.
For / e L^, we define the Laplace transform, /, of / on n by

Az) = JX » = ./(t)e-"A (zen).
J - 00

The integral converges absolutely for z e U . Let Ao(n) denote the uniform
algebra of functions which are continuous on n, analytic on n, and
which converge uniformly to zero as z -> oo with z e n . Then fe Ao(n).
It is well known (for example, see [6], §18) that the character space, or
space of maximal modular ideals, of L^ can be identified with n, and
that the map / i—>f is a monomorphism of L^ into Ao(n).

Let I be a closed ideal of L^. We are interested in conditions on I
which ensure that I = L^. Let

Z ( I ) = { z e n : / ( z ) = 0 (/el)}.

Clearly, a necessary condition for the equality I == L1 is that Z(I) = 0.
Wiener posed the problem for the algebra L^R) (for which (p = 0), and
he proved that, if Z(I) = 0, then I = L^R). This is Wiener's Tauberian
theorem; of course, the formulation of Wiener was different.

DEFINITION. — Let L^ be a Beurling algebra. Then spectral analysis
holds for L1 if each proper closed ideal of L» is contained in a maximal
modular ideal of L^.

Clearly, spectral analysis holds for L^ if and only if I = L^ for each I
with Z(I) = 0, and Wiener's theorem is that spectral analysis holds for
L^S).

It was shown by Beurling in [1] that spectral analysis holds for the
algebra L^ provided that the weight (p satisfies (1) and the additional
condition that

(2) -——I^<»-
<p(t)

1 +t2

(Note that this condition implies that a = p = 0, and so in this case we
are identifying the character space of L^ with the imaginary axis.)
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Modern proofs of the theorem of Beurling use only the fact, ensured by
(2), that the Banach algebra L^ is regular, in the sense that, given YQ e R
and a neighbourhood U of yo, there exists fe L^ with f(iyo) = 1 and
f(iy) = 0 (y ^ U) : see [6], § 40, for example, for a proof of the theorem
given that L^ is regular. Indeed, Gurarii ([7], page 24) states, « all proofs
of Wiener's theorem known to us make essential use of this fact of
regularity, and... it is hardly possible to manage without it. » Following the
ideas of Esterle in [5], we shall prove Beurling's result without using the
regularity of L^. It is not claimed that the present proof is any shorter
than the usual one.

It is perhaps worth recalling how the regularity of L^ follows from
condition (2). The starting point is a result which is essentially Theorem XII
of [10] : if (p is a non-negative, measurable function on R, then a
necessary and sufficient condition that there exists a function / which is
bounded and analytic in the open upper half-plane n + and which is such
that lim \f(x+iy)\ = exp(- (p(x)) for almost all x is that (p satisfies (2).

y-»0+

To show the sufficiency of (2), suppose that (p satisfies this condition, and
define u on II+ by

y f- n>(t)dt
u(x-^-iy)=- -——-———^•

^ J-oo (^-0 + y
Then u is harmonic on n + and has non-tangential limits agreeing with (p
at almost every point of R. Let v be the harmonic conjugate of u, and
set / = exp ( — u — iv). This function / has the required properties.

To conclude the proof that L^ is regular if (p satisfies condition (2),
take YQ e (a,b) c= R. Construct a function /o which is analytic and
bounded in II^ and which is such that

\fo^)\<1——— (xeR) .1 + x

Let /i(z) =fo(z)/(z+i), so that /JReL^. Also, |/i(z)| -> 0 as z -^ oo in
I! + , and so /i (iy) = 0 for y ^ 0. We can clearly choose a e R so that,
if g^(x) =f^x}eiax, then g^iyo) ^ 0 and g^(iy) = 0 (y < a). Similarly,
there exists g^ e L^ with g^iyo) + 0 and g^(iy) = 0 (y>b). If
h=9i ^Qz. then h e L^, h(iyo) ^ 0, and h(iy) = 0 (y i:(a,b)). This
shows that L^ is regular.

In fact, the Banach algebra L^ is regular if and only if condition (2)
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holds. The strongest result of this type is the famous theorem of Beurling
and Malliavin [2] which shows that, if (p is a non-negative, measurable
function on R, then the following two conditions on (p are equivalent :

(i) for each a > 0, the Banach space L^ contains a non-zero element
whose Fourier transform has support in [ — ia.ia];

(ii) (p satisfies (2) and the condition that

ess sup {|(p(s+Q - (p(s)| : s e R } < oo (t(=R).

Let (p be a function satisfying (1), and let a and P be the limits
defined above. The algebra L^ is termed analytic i f p > a . I f a = P = 0 ,
then H is quasi-analytic if the integral in (2) diverges, and L^ is non-quasi-
analytic if condition (2) holds. Thus, our theorem is that spectral analysis
holds in the non-quasi-analytic case.

In fact, spectral analysis fails in both the analytic and in the quasi-
analytic cases. This was first proved by Vretblad in [11] provided that (p
satisfies some slight extra conditions. We are grateful to Professor Yngve
Domar for pointing out that the proof of Theorem 4 in [4] implicitly shows
this result without any extra conditions on (p. Thus, spectral analysis
holds for the Beurling algebra L^ if and only if cp satisfies condition (2).

In the special case that (p(r) = a|^| for a positive constant a, the
family of all proper closed ideals of L^ which are not contained in any
maximal modular ideal was described by Korenblum ([9]). The family does
not seem to have been fully described in more general cases : see [7] and
[11] for the best partial results.

2. The proof.

THEOREM. — Let (p be a non-negative, measurable function on R which
satisfies (1) and (2). Then spectral analysis holds for the Banach algebra L^.

The proof of this theorem depends heavily on a recent result given in
[8] which we first describe. We write A for the open unit disc, and, for each
o e R , we write 11̂  for the open right half-plane {(x,y) : x > a}.

LEMMA 1. — Let k be a positive, continuous, increasing function on [0,1).
Let f be analytic on A and satisfy the condition that

(3) log LA^16)! <^k(r) (r^eA).
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v
f1 / k(r) \2

(4) u rfroo,
Jo V - r }

then either /= 0, or lim sup (1—r) log |/(r)| > — oo.
r-»l -

Proof. - Theorem 5 of [8] shows that, under the hypotheses (3) and (4),
there exists an analytic function g on A such that :

(i) g is real and increasing on [0,1), with g(r) -> 1 as r -> 1 — ;
(ii) ^ ( A ) c A ;
(iii) sup {|l-^(r)|/|l-r| : re [0,1)} < oo ;
(lv) f° 9 ^as bounded (Nevanlinna) characteristic in A.

It follows from (ii) and (iii) by the theory of the angular derivative that

r 1 - ̂(5) lim ————r-»i- 1 — r

exists in (0,oo). (The existence of this limit can also be seen from the
explicit construction of g in [8], pp. 192-193.)

Suppose that / 7^ 0. By (iv), there exist bounded, non-zero,
analytic functions, say h^ and h^, on A such that / o g = h^/h^ on
A . If lim sup ( 1 — r ) log |(/ o g)(r)\ = — oo, then

r-> 1 —
lim sup (1—r) log |^i(r)| = — oo, and so, by a result of Phragmen-

r-*l —

Lindelof type ([3], 1.4.3, transferred from IIo to A), h^ = 0, a
contradiction. It follows that lim sup (1—r) log |(/ o g}(r)\ > — oo.

r-»l -

The lemma follows from the existence of the finite non-zero limit given
by (5).

Condition (4) in the above lemma is necessary in the sense that, if the
integral in (4) diverges, then there exists a non-zero analytic function/on A
satisfying (3) and such that (1—r) log |/(r)| -> — oo as r -> 1 — : see [8],
Theorem 4.

We transform this result to the half-plane n^. Throughout, if K is a
positive, continuous function on [l,oo), we set

.K)-["(^.
_ f00 /K(R)\2
~ J i \^~)
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LEMMA 2. — Let K be a positive, continuous, increasing function on
[l,oo) such that J(K) < oo.

Let F be analytic on II ̂ , and let F satisfy the condition that

log |F(p^)| ^ Kf-^) (p^ e n,).
\cos \|//

77i^n ^f^r F = 0, or lim sup p ~ 1 log |F(p)| > — oo.
p-» oo

Proof. - Let ^ = ^ 4- HI == p^ belong to n^ , and let
z = (^-3)/K+1) define a conformal map of n^ onto A. Then
^ = (3+z)/(l-z). Let f(z) = F(0, so that / is an analytic function on
A. If |z| = r < 1, then

,2_ iZ3 2-! 8^-1) ^ , ^
' ~ »- . •• ~ A /»- . - i x? . ? ^ A ~ 7^—^—

|^+l| ^+1)2+T^2 ^ + T 1 2

so that

p _ ̂  + Ti2 8 8
cos \|/ ^ 1 — r2 1 — r

Hence, log l/^19)! ^ k(r) for re^eA, where

^^ = ̂ A:)'

Then fe is a positive, continuous, increasing function on [0,1), and

f ("My „. «* f f^y ̂ ,
Jo V-r/ Jg \ R3 /

and so k satisfies condition (4). By Lemma 1, either / = 0 or

lim sup (1 -r) log |/(r)| > - oo. In the former case, F = 0, and in the
r-*l -

latter case, lim sup p~ 1 log |F(p)| > — oo, as required.
p-»oo

If F is an analytic function on IIg such that
sup {exp (-Izn^z)!} < oo for some a < 1, then, by applying Lemma 2
with K(R) = R", we can deduce that either F = 0, or
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limjsupp-Mog^p)! > -oo. This is Corollary 2.2 of [5], and the
theorem of Esterle followed from that Corollary. The present more general
result will require the stronger Lemma 2.

Now, following [5], we introduce the functions ^ :
1 / ^2\

^--T-exp -- (^ello, r e R ) .
V^ v ^ /

Since (p(r) = 0{\t\) as | r | ->oo, we have ^eL^ for each ^ello. It is
well known and straightforward to check that the map ^ ^—>a^,
^ -> L^, is a semigroup monomorphism and an analytic map. We must
calculate \\a^\\ in L^. We first give a technical lemma.

LEMMA 3. - Let (p be a non-negative, measurable function on R
r^satisfying (1) ̂  5^0^ ^W (1 -K2)"1^) A < oo .

Jo
(i) // (pi(0 = max {(p(5): 0 ^ 5 ^ t] (t e R-"), then (p^ 15 monotone

r00
increasing on R+, (pi(t) ^ (p(r) ( r eR-^ ) , ^rf r2^)^ < oo.

(ii) J/ (p2(0 = ? max{5 - l(pl(s) : 5^r} ( r e R - ^ ) , then r2^) fs fl
monotone decreasing function of t on R + , (p^r) ^ (pi(r) (r e R-"), anrfr00

^ 2^2(t)dt < °0.

Pyw/ - These results are obvious or are proved clearly in Lemmas 3.3
and 3.4 of [7]; they are originally due to Beurling.

LEMMA 4. — Let (p be a non-negative, measurable function on R
satisfying (1) and (2). Then there exists a positive, continuous, increasing
function K on [1, oo) with J(K) < oo such that

(7) log H^ll ^ ^(^——-) (S = P^ e n,).

Her^, Ha^ll LS calculated in L^.

Proo/: - Let £; == p^1^ e n^. We have

i r00 / r2 \
11^11 == —7= exp ( - — cos \|/ + (p(Q (A .

v/TTp J-oo \ P /
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Since p ^ 1,

i r°° / t2 \
\W\ ^—=\ exp———+ (p(0 ] d t

^/K J-oo \ K /

= exp K(R), say,

where R = p/cos v|/ ^ 1. Clearly, replacing K by sup {K,0}, we can
suppose that K is positive, continuous, and increasing on [l,oo). To
show that J(K) < oo, it suffices to show that JQog'^ K) < oo, where

r°° / t2 \ 1- r00 l~
K(R) = exp - _ + (p(Q )dt = R2 exp (-s2+^>(R2 s ) ) d s .

Jo \ K / Jo

Let (pi and (p^ be as specified in Lemma 3. We can suppose that
(p2(l) = 1 . For each R ^ 1, let

H(R) = sup {t: 2cp2(OR ^ t2}, v(R) = R'^R).

Then v(R) is the supremum of the solutions of the inequality

^(R^) ^ ^ s 2 . Since (p(t) = 0(0 as t -> oo, ^i(R) == 0(R) as R -> oo.

t i 1If s ^ v(R), then (p(R s) ^ (p2(R s) ^ -s2, and so

^oo J_ fao 1

exp (-s^q^R^)) ^5 ^ exp (--s2) ds < oo.
Jv(R) JO z

1 1

If s ^ v(R), then (p(R2 s) ^ (pi(R2 s) ^ cpi(n(R)) ^ (p2^(R))

^R-^R))2, and so

rvw 1 _i ^^(R))2"!
exp (-52+(p(R2s))^ ^ R~^(R) exp -——— •

Jo L ^ J

Thus, logK(R) ^ -R-1(^(R))2 + O(logR) as R -̂  oo, and so

r00 L|YR^
JOog-" K) ^ • 'y- dR + 0(1) as R -> oo .

Ji R
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Using the definition of ^i(R) and Lemma 3, we see that

^ t > ( R ) .R- l -^• '? ( R ' -2 f • ]^A<».
Ji R2 Ji R Ji t2

Thus, JQog'^ K) < oo, as required.

LEMMA 5. — If A is a radical Banach algebra, and if (a1) is a continuous
semigroup in A over R+, then lim ^ -1 log H^H = — oo.

(->'oo

Proof. — This is [5], Lemma 2.3.

We now conclude the proof of the theorem.
Let I be a closed ideal of L^. We must show that, if I is not

contained in a maximal modular ideal of L1, then I = L1. Let
A = L^/I. Then the hypothesis is that A is a radical Banach algebra.

Let (a^) be the analytic semigroup in L^ given above, and let [^] be
the coset of a^ in A. Let ^ € A', the dual space of A, and set

0(0=<IW> KeIIo).

Then <D is an analytic function over Flo, and

WOl^ 11^11 I IM< 11^1111^11 (t^rio).
By Lemma 4, there is a function K such that J(K) < oo and such that
log |0(0| ^ K(R) for (;eIIi, where ^ = p^ and R=p/cos\ | / . By

Lemma 5, lim p~ 1 log |0(p)| = - oo, and so, by Lemma 2, 0 = 0 . This
p-^oo

shows that [a^] = 0 in A, and hence that a^ e I for ^ e IIo. However,

for each /eL1, /= lim /* ^p, and so /el = I . Thus I = L1 , as
p-»o+

required.

The use of Lemma 2 in the above theorem seems to be necessary. For
example, consider the case that (p(Q = [^p, where 0 < P < 1, and take
(a^ as above. Then the best estimate of \\a^\\ in terms of p == !̂ [ which we
can obtain is that log ||̂ || == 0 (p2^2"^) as p ̂  oo with ^ e IIi : here we
are using the fact that 1/cos 9 ^ p for (3 e IT^. We can thus apply [5],
Corollary 2.2, only if 2p/(2-(3) < 1, that is, if P < 2/3, whereas the
result holds if P < 1.
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