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SOME COUNTER-EXAMPLES IN THE THEORY
OF THE GALOIS MODULE STRUCTURE

OF WILD EXTENSIONS

by Stephen M. J. WILSON (*)

Let JTl be a maximal order (over a Dedekind ring) in a (finite
dimensional) semisimple algebra A then (with K^ denoting rankless
objects in KO , C a picard group and Z the centre of an order)
we have a homomorphism

Nrdo :Ko(.}rc)^ C(Z(^))

by (aOTc)^ (i/(a) Z(<^)) [4]

where a is an idele of A and v(a) is its reduced norm. (If M is
an Oil-module and M (^ A s A^ then we put

(M)== W-n[Wt].).

We note that if A is simple and split (so Nrd^ is an isomorphism),
P a minimal projective of OTI and a a non-zero ideal of Z(OTl) then

Nrdo( [aP] - [P] )=a . (1)

We consider here the following problem. Let © be the ring
of integers in a number field. Let G be a group of automorphisms
of 0 and OTI a maximal order containing ZG. It was thought pos-
sible that one of

x = Nrdo(© S)zG Ore) or y = Nrdo(© ®ZG ^/torsion)

was zero or, at least, independent of OTZ. (This is certainly true when
©/©° is tamely ramified see [5] Theorem 3). Cougnard [2] has

(*) This paper was written while the author, supported by a fellowship from
the Science Research Council of Great Britain, was enjoying the hospitality of the
University of Bordeaux.
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shown that y need not be zero and that x is often zero [2], [3].
However, we here present an example (with 6° = Z) where neither
x nor y is even independent of the choice of 01Z .

The presentation of this example falls into four parts. We use
a group G (in fact €33 x D^g) such that the images of ZG in the
semisimple components of QG are twisted group rings (with trivial
cocycle) with the group action tamely ramified and faithful. Lemma 1
investigates the maximal orders containing such rings and lemmas 1
and 2 calculate the 'difference' between the extensions of a module
to two different maximal orders, showing that this depends only on
the local structure of the module at the primes where the maximal
orders differ. Lemma 3 shows that in certain circumstances the local
structure of a module over one twisted group ring may be determined
from its local structure over another. (The point here is that the mo-
dules which we investigate are expressed as quotients of ZG-modules
which are not themselves modules over the image of ZG in question.
They are, however, modules over a different twisted group ring with
the same group.) Lemma 4 and the work which follows construct
the example. Lastly, the Theorem uses the four lemmas to expose
the desired properties of the example.

If M is a subset of an A-module then A^(M) denotes {a ̂  A
such that Ma C M .

LEMMA 1. —Let S be a Dedekind ring with field of quotient
L and group of automorphisms F. Suppose that S is tamely ra-
mified over S1^ = R. Let I and J be ambiguous ideals of S.

(i) OTc(I) = A^r(I) is a maximal order containing SF and
(ii) all such orders arise in this way. (Here SF and LF denote

the appropriate twisted group rings.)

(iii) The minimal projectives of OTC(I) are (isomorphic to) the
a I where a is an ideal of R .

(iv) 01Z(I) == 01Z(J) if and only if IJ~1 is extended from an
ideal of R.

(v) JJTc(I) = J ®gp JII(I) = a I where a is the minimal R-
ideal such that a I > J . i.e. a -1 = (IJ~1) H K , where K = L1^ .
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Proof, - (i) Considering LF as Hud^L), we have
ALr(I) = EndpCD and so, locally, A^I) = Mat|n(R).

(ii) Let Jn be a maximal order containing SF. A minimal
projective of Oil may be considered as a sublattice (and hence an
ambiguous S-ideal) I of L. Clearly J1Z(I) = JH. Moreover if
J C L is another minimal projective of Wi the local JlZ-isomorphisms
from I to J extend to local LF-isomorphisms from L to L.
Together these may be expressed as an idele a of K and so J = a I
where a is the ideal of R corresponding to a. As, clearly,
OTl(I) = JR<aI) for any R-ideal a we have (iii).

(iv) Is immediate as, from the proof of (i), we have that I is
a minimal projective of OH (I).

(v) JOTKI) is a minimal projective of JTl(I) containing J. . . .

With notation as in Lemma 1 we define det1 : Ko(SF) -> C(R)
by det^tM]) = (a) where M ®sr ^I(I) ^ <3 a, I (where the a, are
R-ideals) and a = ria,. (In fact M ® J)I(I) ^ a I C I . . © I in
this case. We can also use the injection C(R)—^ C(S,F) to describe
a as the equivariant Steinitz class : detg (M ®gr ^t(I). I"1) ̂  C(S , F),
see [7]). We define ^(x) = dei\x) det^jc)-1 .

LEMMA 2. - Let I and J be ambiguous ideals of S.
(i) // x EKo(Sr) then Nrd^^ ®^ OTl(I)) = det^x)

(ii) det^J) = ((IJ-^nK)-1

For every prime ideal ^ -^ 0 of R let (j>(^) be the maximal
ambiguous S-ideal lying over \> . Then ^S=0(^y ? o ) ) .

r/aQ-iaol r7 (^1
(iii) W=^^ L ^W ] ~ [ e w ] ^^ ^^^yw

and Jp =0(^)^).p

(Here [x] denotes the greatest integer not greater than x.)
(iv) In particular if I = 0(^y then §i(x) depends only on

the image of x in K^S^F) -or, indeed, that in Ko(S^r(^)), where
^ is a prime of S over p and r(^) its decomposition group.

(v) Specifically, if \Y\ = e = 2 and x goes to n[S^] +m[0(^))p]
in Ko(S^F) then 6^(x) = (ft-").
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Proo/ - (i) If xeKo(SD then
n

x ® ^ ( I ) = ^ ^[a,I] where 2^. = 0
< = 7

== 1 ^([^I]-[ID.
/

The first expression gives det^x) = II a l and by (1) the se-
cond gives NrdQc ® 01c(I)) = no?1 .

(ii) Is immediate from Lemma 1 (v).

-r-^1(iii) (IJ-1) =((t>Wi~!^ and 0(^0 K = P L^J .
(iv) From (iii), if I = 0(.p)1 then 6i(J) depends only on

/ ( ^ ) m o d ^ and as the distinct irreducible projectives of SpF
are 0(^ , z = 0 , . . . ^ - 1 and those of S^r(^) are ^^,
r = 0 , . . . e — l , see [6], 6i(J) is determined by the image of
J in Ko(SpF) or in K^S^FC^)). The general result follows.

(V)W"[^~^(<M-[?]MM-®
-(P-").

LEMMA 3. —Let S be a complete discrete valuation ring with
maximal ideal ^. Let F be a finite group of automorphisms of S
with inertia subgroup C = ( r ) of order e prime to I S/^|. Then
Pf =SPI , i = 0, . . . e — 1 are the distinct minimal projectives of
SF and JLI, ^V^1 , ; = 0,. . . e - 1 are the distinct simple SF-
modules. Choose a generator IT of ^ such that ir7 /TT = 17 ^ a^ 0th

root of 1 . Let RQ be a sub-valuation-ring of S0 containing
r] with ; P Q = R Q ^ ^ and suppose that r = = r k ^ (S) and
f = dim^/^ (S/^P) fl^ /im^.

L^r S\ ^', F\ C\ P;, JLI;, TT ' , 7?', Ro , /-', /' be another
such set of data with C' = C a^rf R-o = Ro •

(i) Choose x e G^(SF) a^rf x 'GG^(S 'F ' ) ^c/z r^r r/z^

fm^g^ ^ Go(RoC) agree. If x = S^JJLI,] r/z^ x '= 2 — M^[^]

where T/ = 17^ (suffixes are taken modulo e) .
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(ii) Let M be an SF- and an ST'- module with identical
RpC actions and commuting S and S ' actions.

If [M] = e^ m,[P,] in G,(SF) and e^ m;[P;] in G^ST)
o o

r/^ m\ = m;_i + -7 (m^ - m^^^,).

(iii) 7>2 particular if \ F \ = \ F ' \ = 2 = e and

[ M ] s r = ^ ( [ P o ] + [ P i ] ) + ^ P i ]

then Ws'r' == ^'([Po] + [P'lD + ̂  [P'i]
r b / r f \

where a = a^ + ^ (^7 - ̂ ) •

Pwo/ - (i) Let .̂ = (Ro/^o) G/^ - T7 f). ? = 0, . . . ^ - 1 , be
the simple RoC-modules. Then we have restriction isomorphisms

G^SF) ^ G^RoC) ^ G^ST),

where [JLI/] i-̂  /[^,] and[^']t-^ /'[^-r]- The result follows.
(ii) Let M = M^/M^ where M ^ , M^ are torsion-free S ®^ S'C-

modules (we assume F = F' = C in view of the restriction isomor-
phisms between Ko(SF) and K()(SC) etc.) and put M = M^Tr ' /M^Tr ' .

If N ^ M,, N ^ P .̂ then NTT' ̂  P^,. Hence in Go(SC)

[M] - [M] = [MJ - [M.TT'] - [MJ + [M,7r'] = 2m,([PJ - [P,^])
=2(m, . -m,_ , ) [PJ .

Now if [M^/MiTT'] - ̂ /M^TT'] = 2x,[jLi,] in G^SC) then
[M] - [M] = 2^([P,] - [P,,J) = 2^, - x,_,) [P,] in Go(SC).

But, in G^(S'C), [M^/M^TT'] - [M^/M^TT'] is the 'semisimpli-
fication' of [M^] — [M^] and so is 2m^[jLi^] .

/ /So m; =-;x,, =m;_i +-7 (m,, - m(,_^)

(iii) follows.

Let A be a finite group. The intersection, 9€, of all maximal
orders which contain ZA is the minimal hereditary order contain-
ing ZA. I am indebted to Anne-Marie Berge for the following cons-
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truction of a Galois extension L of Qp , p an odd prime, such that,
with A = Gal(L/Qp) and S == int(L), S9€p^ 9€p. (The fact that
this is so will emerge later although my proof, using the preceeding
lemma, is somewhat different from that of Mile Berge.)

LEMMA 4. - (i) Let to = Qp [>/p] and let L be the extension
of 4 with norm group N = < Q^ , ^ / p , (1 +vW2 > c 4 •
Putting H = Gal(L/Lo) we have ramification groups H° ==H1 ^ C 3 ,
H2 = H3 ̂  Cp , H4 = {1} and Gal(L/Qp) is dihedral. p

(ii) Ho = H ^ - C,, H, = . . . = H^,, - C^, H^ = { ! } •
(iii) Let a be a generator of H and TT^ a prime of S^ = S

^^ tr^, S = Tr^-1^ .

Proof. — (i) L/LQ is clearly cyclic of degree p2 and, as
(1 + VP) (1 - \/P) = 1 - P e N, L/Qp is dihedral. Moreover
l +Vpeu l \u 2 and (l +vW== i +p\/p+(\/p)p + ...eu^u4

and the result follows by local class field theory.

(ii) rf = H^,) where \^(x) = fx |H° : H" \du so V/(0) = 0,
V / ( l ) = l , ^ ( l + r ) = l + r p , 0 < r < 2 . Hence the result.

(iii) Put ff = GaKL/L^^^. Then

Ho = H'i = . . . = H^+i = Cp , H^+2 == {1^ •
So the value of the different of S over Si is

dp + 2 ) ( p - l ) = 2 p 2 -2 .

r î- î
Therefore tr^(S) = TTi L p J S, = Tr^-1 S^ .

Choose a prime p > 2 and n € N* prime to p such that,
with 0 = yr, the prime p ^ over p in Z[0] is not principal
(e.g. p = 3 , ^2 = 23). We put G = C^ x (C 2 x F) where € 2 = <cr > ,

F = < r > of order 2 and ar = a-1 . Put T=Z[0 , ? ] , where ^ = ^T,
and TI = Z[0, ^p ] and let ^i , p i , ^ , ^ be the primes over \> o in

/ /) i_^ n

T^, T^, T, ^ where r : ' ^ c - i . We note that all these primes
are non-principal. ^

Choose a D ., (= C /> x r)-extension L of Q such that^ 2?^ p"
L is the L in lemma 4 (we can do this as p is odd see [1] ch. 10
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Thm5), and an extension M of Q disjoint from L, cyclic of
degree n and non-ramified where L is ramified. Then E = LM
is a galois extension of Q with group G and if S, V and W are
the rings of integers of L, M and E respectively we have
W = SV = S ® z V .

We put Li = L^ and Lo = L^ with rings of integers S, ,
SQ and we choose ^ , ^ 1 , ^ 0 , prime elements of L, L^ , L^ so that
^r = — TT etc.

Let x ? Xi ? be the characters of G induced from the C 3
characters p ̂  0 , a ̂  ? and p ̂  Q , a ̂  ^ p and let AX ,
AXi be the corresponding factors of QG. Choose Die, OTL^ , maxi-
mal orders containing the images of ZG in the complements of AX
and A X i . Note that the projections of ZG into AX and AXi
are, respectively, TT and T\r. We recall that CHt(T) is a maxi-
mal order containing TT etc.

THEOREM. — With the above data

(i) Nrdo(W ®zc (01Z © <)Tc(^))) ^ Nrdo(W ®^ (Drt ® ̂ (T))).
(ii) Nrdo(W. (Olti C 01c(^))) ̂  Nrd^W. (OtZi C 3Tc(Ti))).

Proo/ - (i) We write tr = tr^^ . As

Z[?] = Z[or]/(l + OP + . . .o^-1)),

[S ®zc , Zp[?]lsor = [S/trS] = [S] - [trS] = [S] - [7r^-1 SJ

by lemma 4 = [So] + [TrSo] + . . . + [pr^2 -1 So]
— \^Tlp~vf\ 1 _ — \<J^3f)~l^ 1I71! ^ol • • • L" l ^ol

p2 - p + 2 .
=-——f——[SoF]-2[$o]

where 60 = T^SO as TT^SO ^Sor^^o ^ ^o and SoF ^sor ^o e ^o •

Also V^zc^^o ^z [0^o as vy/z istameat P ((^P)= 0.
Hence

[W ®zc^ T^^r = KV ®z S) ®zc,xc^ (Z^lpo ^Zp ZP^DI

= KV ®zc, Z[0],o)®z? (s ®zc 2 ^^l)]
yn2 _ n + 2\ -

=/(-——^——) [Sor]-2/[$o],
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where / = rk^ (Z[9]^) = dimp^ (Z[0]/^) = dim? (T/SP) . Now
dim^ (So/$o) = 1 so, by lemma 3 (iii), "

[w ®zc^2 Tspl^r = s[^r] - 2^1 for some s
= 2 [Tip] as its T-rankis 2.

Hence

Nrdo(W ®zG(31c® JK(<p))) x Nrd,,(W ®ZG (Ore ® 3K(T)))-1

= Nrdo(W ®ZG ^cOP)) x Nrdo(W ®zc orc(T))-1

^([^zoTn-rrr]) by Lemma 2 (i)
= 5,p([W ®zc^2 T] - [TF]) = §,p([T] - [^])

by Lemma 2 (iv)

= (f~ 1) by Lemma 2 (v)
^0 .

(ii) The kernel of the epimorphism, s ® 1 •->• (tr^)

S ®zc^2 Zt^]-^ trS/(So n trS)

is a torsion group as the ranks of the two modules are equal. The
image module is, however, torsion-free and so

[(S®zc^Z[?p]/(torsion)]s^=[trS/trSnSo]=[^p- lSl]-^[7r2So]

=-^y3 [Sor ]+2[$o] . . . (2)
Hence

[W ®zc^ T^ /(torsion)]^ = [Z[9]] ®z (^y3 [S<,r] + 2W)

(cf(D)

=£7J/[So^]+2/[6J.
Hence

[w ̂ n^ Tl^/(torsion)]^ ̂  = ̂ [(TiD^] + 2[^]
by Lemma 3 (iii)

= 2 R ? i ^ ] as the rank is 2 . . . (3)
Hence

Nrdo(W. (Orci © 3H (^))) . Nrdo(W . (^1 © OTl(Ti)))-1

= Nrdo(W ®2G Or<,(<(?;)/torsion). Nrdo(W ®ZG <5rc(Ti)/torsion)-1
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= 6^ ([W ®zc T/torsion] — [TF]) (as®Tr ^W is exact)1 /ip-
= §^W - [TJ) = (^) by Lemma 2 (iv) and (v)

^=0.

Note that, from (2), we deduce easily, using lemma 3 , that
S . Z[^] ̂ p^ (1 - ?) ® (1 - ?) ̂  Z[^] r showing that, in the
notation above with A = D^ 3 , S .9€p ^=9€p . Also, of course,
from (3) we have that, with A = G, W . 3€p ^ 3€p .
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