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GOOD/IRREDUCIBLE INNER FUNCTIONS
ON A POLYDISC (1)

by Eric SAWYER

In [8] Rudin and Ahern have studied to what extent the classical
factorization of a bounded holomorphic function on the unit disc U carries
over to the case of the unit polydisc U" (n>l). They show that every
bounded holomorphic function on U" factors as a product of a zero-free
function in H°°(U") (notation is as in [7] and [8]) and at most countably
many irreducible functions in the unit ball of H^U"). In contrast with the
case of the unit disc, they show that this factorization need not be unique.
However, the question of the uniqueness of this factorization remains open in
the case of a good inner function. Theorem 2.3 below bears on this question. It
is shown that if v|/(w,z) is an inner function on U x U"(^l) and if
« enough » of the boundary sections lim v|/(rw,.) are rational functions, then

r-»l
the Rudin-Ahern factorization of \|/ is unique.

In connection with the factorization problem, it seems desirable to
develop methods of constructing good and/or irreductible inner functions on
a polydisc. Theorem 3.5 below shows that i f / , g, and R are non-constant
inner functions on U"", U", and U2 respectively and if R is a product of
rational inner functions and is not divisible by a finite Blaschke product on
U2 , then the function (p^ R defined by

IT" x U"9(w,z)^R(/(w),^(z))

is a good inner function on U"" x U". The case m = 1, f(\v) = w, and

XV — OC
R(xj0=———— (oceU)

1 — cnxy

occurs in Theorem 3.6 of [8].

(1) Most of the material in this article is taken from the author's thesis ([11]).
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Theorem 4.5 gives necessary and sufficient conditions for the irreducibility
of (p^ R in the case m = 1, / is a Blaschke product of degree two, and

xy — a
R(x,^) = ——=—. (The case where / is a Blaschke product of degree one is

1 - axy
settled in Theorem 3.6 of [8]). The theory of the backward shift operator on
H^U) (see [3]) plays a decisive role here.

Two other results of independent interest (used in proving the above-
mentioned theorems) will be noted here. One is a generalization of a theorem
of Frostman on good inner functions ([4]). Theorem 3.2 below shows that if
h(^z) is bounded and holomorphic on U x U"(n^l) and if the closure of
{h(. ,z); z e U"} in the topology of uniform convergence on compact subsets
does not contain the identically zero function, then /i(a,.) is a good function
for a in U, except possibly on a set of capacity zero. Rudin has given a
generalization of Frostman's theorem in a somewhat different direction (see
[7]; Theorem 3.6.2).

The other result is a representation theorem for certain Nevanlinna class
functions on a polydisc. Theorem 1.4 shows that if /i(w,z) is in N(0'" x U")

(m,n ̂  1) and if « enough » of its boundary sections lim h(r\v,.) (w e T"*) are
r-» 1

rational functions, then h can be expressed as a rational function of z with
coefficients in N(1^). Additional information is supplied in the case that h
is an inner function.

We use the notation of [7] and [8]. Denote by U the open unit disc in C
(the complex numbers) and by T the boundary of U. Let U^T") be the
Cartesian product of n copies of U(T). The letter m will be used to denote
2?z-dimensional Lebesgue measure on C" and normalized Haar measure on
T" for n = 1,2,... . Denote by H^U") and N(U") the usual Hardy and
Nevanlinna spaces of holomorphic functions on U\ Denote by N^(U") the
class of functions / in N(U") for which the functions log + |/J, (/^(z) = f(rz)),
form a uniformly integrable family (0<r<l) . If / is in N(17"), then
/*(z) =lim/(rz) exists for almost every z in T". If / is in H^U") and

r-»l

|/*(z)| = 1 for almost every z in T", then / is said to be an inner function.

I f / is in N^(U"), then

lim f log \f(rz)\ dm(z) ^ \ log |/*(z)| dm(z)
r-'1 JT" JT"

([7]; Theorems 3.2.4 and 3.3.5). If equality holds, we say that / is a good
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function. Note that if / is an inner function on U", then this definition of a
good inner function coincides with that given in [7].

Suppose / is holomorphic on U"1 x U". If w is in U"1, then the
function U" 9 z i—> /(w,z) is referred to as a section of / and is denoted by

/(w,.). If w is in T" and lim /(nv,.) exists uniformly on compact subsets
r-»l

of U", then this holomorphic limit function is referred to as a boundary
section of / and is denoted also by /(w,.).

Finally, for n ^ 1, we define P^U") to be the collection of / in H^U")
such that there exists (p inner on U" and g in H^U") satisfying
(p*/* === g * almost everywhere on T". See [3] for a detailed discussion of
this class of functions in the case n = 1.

1. A Representation theorem.

1.1. LEMMA. — Suppose m and n are positive integers and 0 < p ^ oo.
If f ism NQJ^xU") (respectively H^IT" x U")), then /(w,.) is in N(U")
(respectively I-P(U")) for every w in L^.

Proof. — The assertion concerning H00 is trivial, so assume 0 < p < oo .
Denote by (po and (pp the functions log^l^.)) and LA.)^ on U"" x U"
for 0 < p < oo . For each z in U", (pp(. ,z) is either multiply subharmonic
or identically — oo on L^. Thus, if t, is in (rL^" for some 0 < r < 1 and
if z is in U" and 0 ^ p < oo, then (see [7]; paragraph 3.2.1)

f
(1) (p^,z) ^ (p^(rw,z) PI(VV) dm(w)

Jjm

where P|(w) is the usual Poisson kernel for the polydisc (rUy". Thus

f f / f \
(2) (p^,rz)rfm(z)^ (p,(nv,rz)P^v) dm(w) ] dm(z)

JT" JT" \ Jr" /
r

^ sup {P^(w); w e T"} (p^(rr|) dm(r\\
^m+n

Now fix ^ in U'" and let r -> 1. Inequality (2) yields the remaining
assertions of the lemma.

Suppose a and P are multi-indices of degree t , i.e. a , p e ( Z + y . If
z e U1, define z" = z^', . . . , z?'. Define a ^ P if and only if a, ^ P, for
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t
1 ^ i ^ t . Put [a| = ^ 0^. Part (A) of the following lemma is elementa-

1=1
ry and part (B) follows from chapter 5 of [7].

1.2. LEMMA. —Let R(^0) be a rational function on C1 with no pole in
IT. Then

A) R can be expressed uniquely in the form

z v
R(z) = owm———— zeIT

1 + ^ V
. l ^ l P l ^ n

where (i) m ^and n are non-negative integers; a^ b^eC for 0 ^ |a| ^ m,
1 ^ |P| ^ n; and there are multi-indices a and P with |a| = m and |p| = n
such that a^ ^ 0, b^ ^ 0, an^ (ii) r^ polynomials

P(z) = ^ a^ a^ Q(z) = 1 + ^ ^pZ^
O^la l^m I^ IPI^M

are relatively prime in C[z^,. . .,zJ.

B) 5^r a^ = fcp = 0 i/ |a| > m, |P| > n. If in addition R is an inner
function on L^, then m ^ n, there exists a multi-index T wfr^ |T| = m SMC/Z
^^? ^ = ^, = 0 if a ^o^s no^ satisfy a ^ T, ^n^ |aJ = 1 and
a,b^ = a,_p /or 0 ^ P ^ T.

DEFINITION. — Suppose that R is as in Lemma 1.2. The degree of R ,
denoted deg R, fs defined to be the ordered pair of integers (m,n) determined
uniquely by R as in Lemma 1.2. When R = 0, define deg R = ( — 1,0).

1.3. LEMMA. — Suppose that R, is holomorphic on L^ and rational of
degree ^ (m,n) /or 1 ̂  j < oo. ((fj) ^ (m,n) o i ^ m and j ^ n). If R .̂
r^n^s uniformly on compact subsets of V1 to h in 1-1(1̂ ) as j -^ oo, ^n /?
is a rational function of degree ^ (m,n).

Proof. - Suppose Rj == Pj/Qj where P -̂ and Q .̂ are polynomials of
degrees equal to or less than m and n respectively and Q/0) = 1 for all j.
Lemma 1 of [1] shows that sup {|Q/z)|; z e K, 1 </'< 00} < oo for any
compact subset K of U1. Since Rj -> h uniformly on compact subsets, we
also have sup {|P^z)|;z e K, 1 ^/<oo} < oo for any compact subset K of
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U^. Thus there are polynomials P and Q of degrees equal to or less than m
and n respectively such that Pj -> P and Qj; -> Q as 7 -> oo. Hence
/iQ = P where Q(0) = 1 and this completes the proof of the lemma.

The next theorem shows that if /i(w,z) is in N(U^ x L^) and has
« enough » rational boundary sections in z, then h(w,.) is rational of fixed
degree for almost every w in T^ and h can be expressed as a « rational »
function of z with coefficients in N(U9).

1.4. THEOREM. - Suppose that /i(w,z)(^0) is in N(U^ x L^) (q^ l,r^ 1)
an^ ^i^ ̂ r^ exists a set E contained in T4 w^/i positive measure such that
h(w,.) LS a rational function for w I'M E.

Then there exist unique non-negative integers m and n and functions hyk^
(0^|a|^m,l^|P|^n) in N(U^) such that

a) deg /i(w,.) = (m,n) for almost every w ?n T9.

b) /i(w,z) (1 + E Wz^) = ^ ^.(^z" (w G U^z e U1).
l^lPKn 0^|a|^m

Furthermore the following conditions hold :

(i) 1 + ^ ^p(w)zp ^ 0 /or (w,z) m U4 x U^ an^ the functions k^ are
l^lPl^n

mH°°(U4).

(ii) The functions h^ k^ are rational combinations (over C) of finitely
many of the functions {h(. ,z); z e LJ^}.

(iii) // h is in H^U^xU'), then h^ is in H^U^) for 0 ^ |a| ^ m an^
1 ^ p ^ oo.

Z/m addition h is an inner function on U4 x U^, then

(iv) m ^. n and there exists a multi-index T m'^/i |T| = m such that
h^ s k^ = 0 y a c/o^s nor satisfy a ^ T (s^r ^ = ^p = 0 ;/ |a[ > m,
|P| > n). Moreover the functions hyk^ are in P^U4),/^ is inner on U9, an^
^*^^ = ^*-p almost everywhere on T9 /or 0 ^ P ^ T.

Proof. - Let

fdeg g if g is a rational function on \J1

[(00,00) otherwise.
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There exists a Borel set ^ contained in r? with m{€) = 1 such that the map

(3) <T9w-^(w,.)6H(U)

is a Borel function ([13]; chapter 17). Lemma 1.3 now shows that the function
S 9 x -> 8(fc(w,.)) is Borel. Thus we can find a pair of integers m and n and
a Borel set E^ contained in T^ having positive measure such that
deg/i(w,.) = (m,n) for each w in E^ and such that the index (m,n) satisfies
the following minimal property;

(4) If deg/i(w,.) = (i, 7) for w in some Borel subset E^ of T4 and if
(ij) ^ (w,n) but (fj) 9" (w,n) then ^(E^) = 0.

Note that since h ^ 0, we must have w ^ 0. By Lemma 1.2(A) we have the
following unique representation of ^(w,.) for w in E^ ;

^ ^(nOz"
(5) /z(w,z) = 0^1^—————— (w € E,,z e V).

1 + ^ fcp(w)zP
l^lpl^^l

Our aim now is to show that the functions a^(.), fcp(.) defined on E^ by
(5) can be extended to quotients of Nevanlinna class functions on U4 in the
sense that a^(.\b^(.) give the radial limit values on E^ of these quotients.
One would hope to accomplish this by substituting a finite number of values
for z in (5) and solving the resulting system of equations by Cramer's rule.
One of the problems arising with this approach is that in order to apply
Cramer's rule, it is necessary that the determinant of the system of equations
be non-zero. In order to establish that this determinant is non-zero for an
appropriate choice of z's, it seems necessary to introduce the « nested »
sequence of matrices {Mj defined below. Actually we shall not follow
exactly the argument outlined above, but rather a slight variant of it.

We totally order the multi-indices of degree t as follows; u -< vo either
\u\ < \v\ or \u\ = |r| and there exists 5 (1 ^ s ^ t) such that u, < v, and
^ = ^ for 1 ̂  r < s. Let M (respectively N) denote the cardinality of
{^(ZJ^H^m (respectively n)} and define v : {1,2,.. .,M+N} -> (Z+y
to be such that v(l), v(2), . . . , i;(M) are the first M multi-indices arranged
according to << and such that v(M +1), v(M + 2), . . . . v(M + N) are the first
N multi-indices arranged according to -<.

For X (an integer) such that

1 ^ ^ ^ M -h N, and x = (x^ , . . .,x^)
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in U' x . . . U' = LP, and w in U4 u ^ (where ^ is as in (3)) define the
matrix M^ = M^(w,x) to be the ^ x ^ matrix whose ij^ entry is

(x^ if 1 ^ j ^ M
(6) (^(w,x,) x^ if M + 1 ^7 ^ X.

Note that when ^ > 1, the matrix M ^ _ ^ is obtained from the matrix M^
by deleting its last column and its bottom row.

For fixed x in U^, Lemma 1.1 shows that the entries in the matrix in (6),
when considered as functions of w in U9, are Nevanlinna class functions.
Since N(U4) is a ring it follows that the function

(7) U ^ 9 w -^detM^x)

is in N(U4) for each x in U^. («det » stands for determinant). The
definition of ^ together with (6) shows that the radial limits of the function
defined in (7) exist at w in € and are given by det M^(w,x) (recall that M), is
defined for w in ^}.

From equation (5) we obtain that det M^+N^^) = 0 for w in E^ and
x in U^^. Thus for each x in U^"^, the radial boundary values of
det M^^^-^) ^nish on E ^ . Now E^ is a set of positive measure in T4

and det M^^-^) ls m N(LJ^). Thus detM^+N^^) = 0 for each x in
U(M^ ^e. d e t M M ^ = 0 .

Let A = min { ^ ; 1 ^ ^ ^ M + N and det M^ = 0}. One can easily show
that detM^ 0 for 1 ̂  \ ^ M (if l^^M and detM^=0 expand
det M^ according to the bottom row to obtain a polynomial in x^. The
coefficient of x^, which must be identically zero, is precisely M ^ _ i .
Continuing in this fashion, we eventually obtain M^ s 0, a contradiction).
Thus A ^ M + 1. Let x = ( x^ . . . ,x^_i) and z == x^. Using (6) expand
det M^ according to the bottom row to obtain

(9) 0 = det M^(w,(x,z))

=h(^z)( f H>,x)z^))+ ^ H,(w,x)z^
V=M+1 / ?.=!

for x in U^"^, z in U^, and w in U^ and where (for any matrix M,
denote by [M]^ j the matrix obtained from M by deleting the I th row and
7th column)

(10) H,(w,x) = (- I)A^ det [M^(w,(x,z))]^ (1 <?^A).

Clearly the functions H^ are holomorphic on U^ x U^"1^.
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Now H^ = de tM^_i (see the comment following (6)) and by the
definition of A, is not identically zero. Thus there exists XQ in U^"^ such
that H^(.,Xo) ^ 0. The existence of such an XQ is the crux of the proof. Now
substitute XQ for x in (9). Changing notation we obtain

(11) h(w,z) ( ^ B,̂  ) = ^ A^z" (w e LJ^z e U^)
\0^|r|<n / O^jul^m

for A^(w) ='- H^w,xo) (u=v(k)^^M) and B,(w) = H^(w,Xo)
(v=v('k\'k>M). Equation (10) shows that the functions A^ and B^, are in
N(1^) by the same argument used to show that (7) is in N(U4). Since

^(A) = ^(-^o)^ 0» equation (11) shows that deg/i(w,.) is at most (m,n) for
almost every w in T^. The minimal property of (w,») given in (4) then shows
that deg/i(w,.) = (w,n) for almost every w in T9.

Suppose, in order to derive a contradiction, that B(Q o) EE °- Then

^.. .^^O and for each w in ^, equation (11) and Theorem 1.3.2 of [7]

show that the polynomials ^ B^H^ and ^ A^(w)zu have a
0<|c|0 O^|M|^W

common factor in C[zi,...,zJ. Together with (11), this shows that
deg/i(w,.) ^ (m-l,n-l) for almost every w in T9, contradicting (4). Thus
8(0,...,o) ^ 0- Henceforth we shall write Bo for B^,.^)-

At this point we appeal to a theorem of Ahern ([1]; Theorem 2) to
conclude that the meromorphic functions A^/Bo are actually holomorphic
on U^, that the meromorphic functions B^/Bo are actually bounded and
holomorphic on U4, and that the function

W x V 9(w,z) ̂  1 + ^ (B^nO/BoM)^
1 < |r| ^ n

is zero-free. Thus equation (11) can be written

(12) / i (w,z) ( l+ ^ Wz^ ^ ^(w)z"
\ I^I I- I^M / 0^|»|<w

where the functions ^, ^ are holomorphic, the functions ^ are bounded, and

1 + ^ fc,(w)zl; ^ 0
1 ^ |r| ̂  n

for (w,z) in U^ x U'.
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We now show that Ay is in N(U4). Indeed

log^J ^ log^AJ + log^Bol - log|Bo|.

Now BQ ^ 0 and hence lim log|Bo(nv)| dm(w) > — oo . Since both Ay
'•-I JT?

and Bo are in N(U4), it now follows that Ay is in N(IJ^).

Thus far we have established (modulo the uniqueness) assertions a) and b)
of Theorem 1.4. Clearly the integers m and n in a) are uniquely determined
by A . We now show that the Nevanlinna class functions Ay, fey in (12) are
uniquely determined by h. Suppose that Ay, fey are in N(U4) and that

(12V A(w,z ) ( l+ ^ Wz^ ^ Ay(w)z".
\ l^H^n / O^ |M|^W

Now suppose that vv in T4 is such that deg A(w,.) == (m,yz) and that each of
the functions Ay, fey, Ay, fey has a radial limit at w. The uniqueness assertion of
Lemma 1.2(A) together with (12) and (12)' shows that h^(w) = h^(w) and
k^(\v) = fe^(w) for 0 ^ \u\ ^ m, 1 ̂  \v\ ^ n. Since the set of such w in T4

has measure one, we must have h^ = h'^ and fey = fey. This completes the
proof of assertions a) and b).

Assertion (i) has already been established and assertion (ii) is an immediate
consequence of (6), (10), and the definition of the functions Ay, fey.

m

We now prove (iii). Let P(w,z) = ^ ^(nQz" = ^ ^(w.z^,.. .^)^i
0^|M|^m k=0

and Q(w,z) = 1 + ^ k^z" where ^(w.z^,... ,z,) is in
1 ^ |f| ̂  n

NU^CZ;,,. . .,zJ (O^fe^w). Since Q is bounded, it follows that P is in
H^U^xU^) whenever h is ( l^p^oo). Lemma 1.1. shows that
^(.) = P(.,(0,',. . . •)) is in H^U^xU'"1). Thus the function

U4 x U^ (w,z) -. P(w,z) - g^z^.. .,z,)
m

is in WOJ^xLT). Let Pi(w,z) = ^ ^(w.z^,... .z^"1. Since
f c = i

ZiPi(w,z) = P(w,z) - go(^z^. . .,z,),

it follows easily that P^ is in I-F(U9 x U^). Another appeal to Lemma 1.1
shows that g ^ ( . ) = Pi(',(0,-, . . . , • ) ) is in H^U^xU'"1). Continuing in this
manner we obtain that g^ is in H^U^xU^"1) for 0 ^ fe ^ m. Now write
each g^ as a polynomial in z^ with coefficients in N(11^)^3,. .. ,zJ. As in
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the above we can show that these coefficients actually lie in H^U4 x U'"2).
Continuing with this argument t times we finally obtain that ^ is in
H^) for 0 ^ \u\ ^ m.

It remains to prove (iv). If h is inner, then by (i) and (iii) the hy k^ are
bounded. Furthermore, for almost every w in T9, h(\v, •) is inner on U' and
rational of degree (m,n). Lemma 1.2(B) now establishes assertion (iv) and this
completes the proof of Theorem 1.4.

The following corollary is an easy consequence of parts b) and (ii) of
Theorem 1.4. We omit the proof. This corollary generalizes a result due to
Ahern ([1]; Theorem 5). Compare also with Theorem 2.1 of [9] where a
similar result is proved with boundary sections replaced by slices.

1.5. COROLLARY. - Suppose that h(^0) is in N(U")(n^2) and that for
each k between 1 and n inclusive there exists a subset Ej, of T"~1 having
positive measure such that the boundary section

U 9 Z f c ^^ (Wi , . . . ,Wfc_ i ,Z fc ,W^i , . . . ,W^)

is rational for every (v^,. . .^.^H^,. . .,wJ in E^. Then h is rational.

2. The Rudin-Ahern factorization.

H.DEFINITION. - Suppose Q is in P°°(U)[zi,.. .,zJ, i.e.

Q(w,z) = ^ k^(\v)z^ (fcpeP^U)), that Q(w,0) = 1, and that
0<|P[<M

Q(w,z) ^ 0 for (w,z) in U x U^. Let T be the least multi-index such that
T - P ^ 0 for all P such that k^ ^ 0 and let h^ be the inner function such
that

^H^U) = {h e H^U); h*kj e H^T) for 1 ^ |p| ^ n}.

Such an h^ exists and is unique up to multiplication by a constant of modulus
one by Beurling's theorem ([2]). Define

Q^(w,z) = h^ + ^ ^-pMz-P
KIPKn

where ^ _ p is bounded and holomorphic in U and satisfies ^i*_p = h*k^.
Q * is uniquely determined up to multiplication by a constant of modulus one.
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The quotient Q^/Q is an inner function on U x V ([1]; the discussion
following Theorem 3).

The following remark will be useful in § 2.2 and § 2.3.

Remark. — Suppose that P and Q are polynomials in P°°(U)[zi,. . .,zJ
of degrees m and n respectively (and where Q is as in the above definition).
Suppose also that P(w,z)/Q(w,z) defines an inner function on U x U1 such
that deg (P(w, • )/Q(w, •)) = (m,n) for almost every w in T. Then there exists
an inner function (p on U and a multi-index y such that
P(w,z) == ^(H^Q ̂ (w.z). Furthermore P is a constant multiple of Q * if
and only if m = n and there is no non-constant inner function on U which
simultaneously divides each coefficient of P. Note that ([3] ; Theorem 2.2.8)
iff.g are in P°°(U), then g divides/in P°°(U) if and only if g divides/in
H^U).

The proof is an easy application of Theorem 1.4, the definition of Q#,
and Beurling's theorem. We now present some algebraic preliminaries that
will be needed in § 2.2 and § 2.3.

Let R be a ring. For a and b in R, we shall say that b divides a (in
R), written b\a (in R), if there exists c in R such that a = be. A subset S
of R is said to be a prime set for R if whenever a e S , b and c are in R,
and a\bc, then there exists OQ e S such that ao\a and do divides at least
one of b and c. For example, the collection of non-constant inner functions
on U is a prime set for both H°°(U) and P°°(U).

The following lemma may be viewed as an analogue of Gauss' lemma. The
elementary proof is omitted.

LEMMA A. —Let R bearing and suppose that S(cR) is a prime set for R.
Then S is a prime set for R[z^,. . .,zJ , t = 1,2,. . . .

LEMMA B. - Let R denote either H°°(U) or P^U) and denote by F the
quotient field of R. Let Qo be in R[zi,...,zJ and let Q^ and Q^ be in
F[zi,. . .,zj. Suppose that Qo = QiQ;, and Qi(0) = Q^O) = 1. Then
Q^ and Q^ are in R[z^, . . . ,zJ .

Proo/ - Consider the case R = H^U) first. Let S be the collection of
all non-invertible elements (non-units) of H^U). It is easy to see, using the
classical factorization of bounded holomorphic functions on U, that S is a
prime set for H°°(U). Moreover, the classical factorization shows that there
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exist g^ and g^ in H^OJ) such that both of the following two conditions
hold (the assumption Qi(0) = (^(O) = 1 is used here).

(i) ^Q.eH-OJ)^,...^] for k = 1,2,

(ii) ^Qfe is not divisible (in H°°(U)[zi,.. .,zJ) by a member of S,
k = 1,2.

If ^2 eS, then applying Lemma A to g^g^Qo = (^QiX^^). we

obtain that some element of S divides either ^iQi or g^Qi^ contradicting
condition (ii). Thus g^g^ ^S, i.e. ^ and g^ are invertible. It follows that
Q, and Q, are in H°°(U)[zi,. . .,zJ.

The case R = P^U) follows easily from the above case with the aid of
Theorem 2.2.8 of [3] which shows that if / and g are in P°°(U) and f/g is in
H^QJ), then f/g is actually in P^U). This completes the proof of the
lemma.

The next lemma follows easily from Lemma B.

LEMMA C. - Let R denote either H^U) or P^U). Let Q be in
R[zi,. . .,zJ and suppose that Q(0) = 1. Then Q factors uniquely (up to

k

reordering of the factors) as Q = RJ Q .̂ where Qj is an irreducible element
j = i

in

R[zi,. . .,zJ and Q,(0) = 1 (1^/c).

2.2. LEMMA. — Suppose v|/(w,z) LS ^M inner function on U x U^ of the form
given in Theorem 1.4 wf?/! ^ = 1 a^ M ^ 1. TTia^ f5

h^V + ^ ^-pM^'13

(1) v|/(w,z) = —————^lpl^——————— (w e U,z e U^).
1 + ^ ^Cp(w)zP

l ^ lp l ^M

Then mth the notation of Theorem \ A and letting P(w,z) ^n^ Q(H; )̂ denote
the numerator and denominator respectively on the right side of (1),

A) v|/ is irreducible as an inner function on U x U1 if and only if both of
the following two conditions hold :

a) T is the least multi-index such that T — (3 ^ 0 for all P SMC/I r/ia?
fep ^ 0 a^rf /z^ is ^ «smallest» m^er function on U suc/i r/i^r
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^eH^T) for all P, i.e. WLJ) = {/e H^U);/*^ e H^T) /or a«
P}.

^) Q fs irreducible as an element of the polynomial ring P^U))^,. . . ,zJ .
k

B) 7/ Q = n Qj w^^ ^c/i Q .̂ 15 an irreducible element of
j = i

P°°(U)[zi,. . .,zJ , then there exist elements P .̂ in P°°(C/)[zi,. . .,zJ ̂  an
inner function (p on U fl^ a multi-index y SMC/I r^ \|̂ . == P^Q^ fs ^n
irreducible inner function on U x V for 1 ^ j ^ A; an^

fc
v)/(w,z) = (p^z7 n ^(w^) ( w e U , z e U Q .

j = i

Proof. — The proof of (A) is split into three parts.

(I) v|/ irreducible => (a) : Let a be the least multi-index such that
CT - P ^ 0 for all P such that k^ ^ 0. If T 9^ o, then T > a and the
non-constant inner function z^ divides v|/(w,z), i.e. v|/ is reducible. Let Y
be the closed invariant (for the forward shift operator) subspace {fe H^T);
/^eH^T) for all ?} of H^U). Let h be an inner function that generates
Y (Beurling's theorem), i.e. Y = hH2^). If Y ^ ^H^U), then since
h^ e Y, there exists a non-constant inner function (p on U such that
h, = (p^i. Thus

v(/(w,z) = ^(H^Q^zVQ^z)

for some y in (Z+y where Q# is as in § 2.1 and Q^/Q is a non-constant
inner function (n^l) on U x U^. Thus v|/ is reducible.

(II) v|/ irreducible => (b) : Assume that Q = QiQ^ where Q .̂ is a
polynomial in P^U)^,. . .,zJ of positive degree (/ = 1,2). Clearly we
may assume that Qi(0) = Q^O) = 1. Let S be the collection of all non-
constant inner functions on U. The Remark in § 2.1 shows that Q/ is not
divisible by an element of S, hence by Lemma A, neither is QfQf. The
Remark in §2.1 thus shows that Q# = QfQf and that there exists an inner
function (p on U and a multi-index y such that

P(w,z) = ̂ z^f^Ql^vv.z).

Thus

vKw,z) = ^^z^Qftw.zVQ^w^XQ^^w.zVQ^w.z)).
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Since Qi and Q^ have positive degree, the inner functions Qf/Qi and
Qf/Qz are non-constant and \)/ is reducible.

(Ill) (a) and (b) => v)/ irreducible : Assume that (a) and (fc) hold.
Suppose that v|/ = vj/^vl/^ where each v|̂ . is an inner function on U x U'.
We must show that either v|/i or v|/2 is constant.

Now for almost every w in T, ^(w,*) = ^i(w,')x|^(w,*) is a rational
inner function on U'. It follows that for such w, both x|/i(w,-) and vl/^w,')
are rational inner functions (if / and g are inner on U^ and fg is rational,
then for a.e. zeT,/^ is a rational inner function on U. Theorem VIII. 32
of [12] shows that both of the slices f^ and g^ are rational for such z.
Theorem 5.2.4 of [7] then shows that / and g are rational inner functions).
Thus Theorem 1.4 applies. Let v|//w,z) = P/w,z)/Q/w,z) where P^, Q^ are in
P°°(U)[zi,.. .,zJ be the representation of v|̂  as given in Theorem 1.4
(/==1,2). Now v|/ = v|/iv|/2 and

degv|/i(w,-) + deg^w,') = deg(v|/i(w,')\|/2(w,-))

whenever both v|/i(w,') and ^(w,-) are inner functions (this is certainly true
for rational inner functions on the disc as their zeroes and poles lie in disjoint
sets, namely U and C°°\U respectively. For the general case, apply this
result to slices and use Theorem 5.2.2 of [7]). Thus the uniqueness assertion of
Theorem 1.4 implies that Q = QiQ^ and P = P^.

Condition (fc) (Q is irreducible) shows that one of Qi and Q^ has
degree zero as a polynomial in P°°(U)[zi,.. .,zJ, say Qi. Since
Q^-,0) = 1, we have Qi(v) = 1. Thus there exists an inner function (p
on U and a multi-index y such that Pi(w,z) = v|/i(w,z) = (p^z7 for (w,z)
in U x \]1. Thus P(w,z) = (p^z^^w.z). Condition (a) and the Remark
in § 2.1 show that y = 0 and that (p is constant. Thus v|/i is constant and
the proof of part (A) of the lemma is complete.

B) Let v(//w,z) = Q/(w,z)/Q/w,z) where Q/ is as in §2.1 (1</^). By
part (A) of this lemma, v)/^ is an irreducible inner function on U x U'.
Arguing as in (II) above, we can show that there exists an inner function (p
on U and a multi-index y such that

k\i/(w,z) = ^(n^ n ^y^)7=1
and this completes the proof of the lemma.

2.3. THEOREM. — Suppose that \|/(w,z) is an inner function on U x L^ and
that \|/(w, •) is rational/or w in some subset of positive measure in T. Then the
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Rudin-Ahern factorization of \|/ 15 unique, i.e. v|/ factors uniquely as a product
of a zero-free inner function and at most countably many irreducible inner
functions.

Proof. — Theorem 1.4 and Lemma 2.2(B) show that v|/ has the
factorization

\|/(w,z) = ^(w)zy ]~[ v|//w,z)
7=1

where v|/, is an irreducible inner function on U x U for 1 ̂  j ^ k and
z7 == z\1, . . . , z]1 where z^ is an irreducible inner function on U for
1 ^ 5 ^ t. It is wellknown that the Rudin-Ahern factorization for (p is unique.
Thus it suffices to show that if X^ is any irreducible inner function on U x U
that divides v|/, then either X^ is independent of z and divides (p or X^ is a
constant multiple of one of the functions v|/i, .. .,v|/fc,Zi, .. .,z.. So suppose that
v|/ = X^X^ where X^ and X^ are inner functions on U x U and X^ is
irreducible. Let v|/ = P/Q(v|̂  = Pj/Qj) t^tne representation of v|/(v|/^) as given
in Theorem 1.4. Arguing as in the second paragraph in (III) above (see the third
part of the proof of Lemma 2.2(A)) we obtain that Xj has the
representation Xj = A/B^A^B^.e P^LOCzi,.. .,zj) as given in
Theorem 1.4 and that P = A^A^ and Q = B^B^. Now if B^ has degree
zero as a polynomial in P°°(U)[zi,.. .,z.], then

BI = 1 and Xi(w,z) = Ai(w,z) = ?i(w)Z5

for some inner function ^ and multi-index 5. Since X^ is an irreducible
inner function, it follows easily that either X^ is a constant multiple of one of
z^, . . . , z; or Xi divides (p. If B^ has positive degree, then since B^ is
irreducible (Lemma 2.2(A)), Lemma C of § 2.1 now shows that B^ is one of
the Q/s, say Qi . Lemma 2.2(A) now shows that X^ is a multiple of \)/^ and
this completes the proof of the theorem.

3. Good Inner Functions.

3.1. LEMMA. — Let [i be a positive finite Borel measure on C with compact
support contained in the unit disc U. Suppose that the function defined by

f
C 9 w -> \ log|z - w| d[i(z)

J
is real-valued and continuous. Then, if {fn}^=o c= H(U) and /„ ^ 0 Vn ^ 0,
we have

r
(i) log|/,(z)| ^i(z) > - oo, V n ^ O .
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(ii) If /„ -> /Q uniformly on compact subsets of U as n -> oo r/i^n

lim f log|^(z)| ̂ (z)
n--oo J

^xLsrs and equals log|/o(z)| d[i(z).

Proof. — Choose 0 < r < 1 such that supp p, is contained in

B(0,r)= {zeC; |z |<r}

and such that /o has no zeros on <9B(0,r). Suppose /o has k zeros (counting
multiplicities) in B(0,r). Then there exists an integer N such that /„ has no
zeros on 5B(0,r) and has k zeros (counting multiplicities) in B(0,r) for all
n ̂  N. Without loss of generality we may assume that N = 1. Clearly, for
each n ^ 0, we may enumerate the k zeros, {^}i^^, of/^ in B(0,r) in

such a way that lim a{ = a^ for 1 ̂  j ^ k. Now define
n-» oo

(1) ^(z) = ̂ (z) ]"[ (r2-za^ z 6 U, n ^ 0.
y=l V(Z-a,;)/

Clearly h^ is holomorphic and bounded away from zero on B(0,r) for each
n ^ 0. Also |^(z)| = |/^(z)| for |z| = r, n ^ 0. Since

log|^(-)| = log|^(-)| -> log|/o(')l = logM-)!

uniformly on 3B(0,r) as n -^ oo and log|^(-)| is bounded and harmonic in
B(0,r) Vn ^ 0, we must have that log|^(-)| -> log|^o(')l uniformly on
B(0,r). Hence

r r(2) lim log|^(z)| d^z) = \oMz)\d^z).
n-» oo I |•/ •/

From equation (1) we obtain for all n ^ 0

r r(3) log|/,(z)| ^i(z) = log|^(z)| dn(z) + kM log r
•/ v

k ( r r — \
4- E log|z-^|^(z)- log^-^zl^z) .

7=1 \J J /

Conclusions (i) and (ii) now follow easily from (2), (3), and the hypothesis on
the measure [i. This completes the proof of the lemma.
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3.2. THEOREM. - Suppose that H is in H^LT'xU) (where n^l ) .
Denote by K the closure in H(U) (with respect to the topology of uniform

convergence on compact subsets of U) of the set of functions {h(w,'); w e U"}.
If 0, i.e. the identically zero function, is not in K, then h ( ' , z ) is a good
function for quasi-every z in U, i.e. except on a set of logarithmic capacity
zero.

Proof. — Without loss of generality we may assume that \h\ ^ 1 on
U" x LJ. Let B = { z e U ; A ( ' , z ) is not good}. Now B is Borel and hence
capacitable. Assume, in order to derive a contradiction, that the logarithmic
capacity of B is positive. Then there exists a positive finite non-trivial Borel
measure \JL supported in B such that the function defined by

C 9 ^ -> log|z—^| d\ji(z) is real-valued and continuous ([5] ; 7.33 and 7.37).

Clearly K is metrizable and since it is contained in a bounded (with respect to
the supremum norm) subset of H(U), it follows that K is also compact.

Now define T : K -. R by T(/) = log|/(z)| ^i(z) for / in K. The

measure p. satisfies the hypotheses of Lemma 3.1 and K does not contain the
identically zero function by hypothesis. Thus Lemma 3.1 implies that T is
real-valued and, since K is metrizable, that T is continuous. In particular
we have

(4) lim f \og\h(rw,z)\ d[i(z) = \ \og\h(w,z)\ d[i(z)
r^1 Ju Ju

for w in ^ = {weT^^w, ' ) = lim h(rw,') exists uniformly on compact
r-+ 1

subsets of U}, thus for almost every w in T". Since K is compact, T is
bounded and hence

(5) sup sup \og\h(rw,z)\ d\i(z)\ < oo.
0 < r < l weT" |J^

Thus by Fatou's lemma and Fubini's theorem

lim log\h(rw,z)\ dm(w) d[i(z)
^ U \^1 •/T"

— r / r \^ lim ^ log|/i(rw,z)[ d[i(z) j dm(w)
r-l JT" V J u ^
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and by (4), (5), the bounded convergence theorem, and Fubini's theorem again

^ | ( [ \og\h(w,z)\dm(w)\d^(z).
Ju \JT" /

Thus we have

f / f f \
(6) log |/!(w,z)| dm(w) - lim log \h(rw,z)\ dm(\v)

Ju \JT" r-^1 JT" /

d[i(z) ^ 0.

Fatou's lemma shows that the quantity in parentheses in (6) is non-negative
for each z in U and hence it follows from (6) that

log |^(w,z)[ dm(\v) = lim log |/!(rw,z)| dm(\v)
JT" r--! JT"

for ^-almost every z in U. This says that h(-,z) is good for n-almost every
z in U and contradicts the fact that u is a non-trivial measure with support
in B = {z e U;^(',z) is not good}. This completes the proof of Theo-
rem 3.2.

The next result is a simple generalization of a result due to Nordgren and
Ryffin the disc ([6], [10]). Indeed the proof given by Nordgren in [6] applies
almost verbatim to the more general situation considered below. The details
can be found in [11].

3.3. LEMMA. — Let (pi, . . . ,(p^ be non-constant inner functions on
U\.. ., U^ respectively and define

(p : u" ̂  U" (n = k^ + • • • + fcj by (p(z) = ((pi(zi), , . . ,(pJzJ)

for z = (z^,. . ,,ZyJ in U^i x • • • x U^. Then

a) H^U^s/'-^/o (p defines a bounded linear map from H^U"") into
H^U").

b) (/o(p)* =/*o(p* almost everywhere on T" for f in H^U"*).

DEFINITION. — A finite Blaschke product on U" is a function of the form

H t ^ - " t \ , , ... .. ft ^.-»»"„.„„...,,„ ft (^-^)x——ft (̂
k = l \1 - f lkZ i / f c = i \1 - ^Z^/

vv^^r^ |c[ = 1 and the a{ are in U.
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3.4. THEOREM. - Let R be a non-constant irreducible rational inner
function on U2 that is not a finite Blaschke product on U2 (see above
definition). If f and g are non-constant inner functions on L^ and U"
respectively, then the function (p^ defined by
L^ x U" 9 (z,w) -> R(/(z),^(w)) is a good inner function on IT" x U".

Proof. - Lemma 3.3 shows that (p^ is an inner function on U"1 x U".
Chapter 5 of [7] shows that there exists a polynomial Q in C[x,^J with no
zeros in U2 and a monomial M in C[x,^] with coefficient of modulus one
such that

P(xjQ = M(x^)Qfi1)
\x y )

(Q denotes the polynomial obtained from Q by replacing the coefficients of
Q by their complex conjugates) is a polynomial in x and y that is relatively
prime to Q and such that

p . . M(^)Q(i1)•7) ^-^--^ -•nu i
Lemma 2.2(A) shows that Q is irreducible as a polynomial on C2. We claim
also that P is irreducible. Indeed, suppose (in order to derive a contradiction)
that P = P^ where each P .̂ is a non-constant polynomial. Now

Q(̂ ) = Pf^VMfl1) = M(^)Pfl1)
\x ^// \x y; "/ YX ^7

and clearly we can factor M as M = M^NL, where M, is a monomial such
that

'i rQ/xjQ = M/x^)P/^1')

is a polynomial for 7 = 1,2. Since P is not divisible by a non-constant
monomial (Lemma 2.2(A)), it follows that Q .̂ is a non-constant polynomial
for j = 1,2. Since Q = QiQ^, this contradicts the irreducibility of Q.
Thus P is an irreducible polynomial.

Now if the quotient of two good functions is in N^, then the quotient is
again good and hence the proof of the theorem will be complete once we show
that the function (p^p(z,w) = P(/(z),^(w)) is a good function whenever P is
an irreducible polynomial in two complex variables.

It will now be shown that the function defined by
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U x U" 9 (a,w) -> P(2a,^(w)) satisfies the hypothesis of Theorem 3.2 (the
« 2 » here could be replaced by any constant greater than one). Suppose (in
order to derive a contradiction) that 0 is in the closure of the set of functions
{P(2',^(w)); w e U"} <= H(U). Then there exists a sequence {wjJj^Li contai-
ned in U" such that P(2',g(\Vf)) -> 0 uniformly on compact subsets of U as
k -> oo . If Yo is a cluster point of {g{\v^)}^ ^ in U, then the continuity of
P forces P(2 • ,^o) to be identically zero on U and hence P( • ,^o) = 0 on
C. Since P{x,y) is not independent of x (by (7) and the hypothesis on R), it
is easily seen that P is a reducible polynomial and this yields the desired
contradiction. We now conclude from Theorem 3.2 that P(2a,^( •)) is a good
function for quasi-every oc e U. Since sets of logarithmic capacity zero are
invariant under dilations, we have in particular that P(a,^( •)) is good for q.e.
a e U .

It will now be shown that each of the functions

P(/*(4^(-)) and P(f(rz\g{-)) (0<r<l)

is good for almost every z in T"1. To this end, let B = {a e U; P(a,^( •)) is
not good}. The set B has logarithmic capacity zero and hence there exists a
positive superharmonic function v defined in a neighbourhood of U that
takes the value + oo on B ([5]; Theorem 7.33). Since v o/ is a positive
multiply superharmonic function on L^ we have for 0 < r < 1

r rv(f(rz)) dm(z) < oo and lim (v °/)(rz) dm{z) < oo .
Jr" Jr" r-"1

The first inequality shows that {z e T^/^z) e B} is contained in a set of
measure zero for 0 < r < 1. The lower semi-continuity of v shows that

lim (v °f)(rz) = + oo on {z e T"1 ;/*(z) e B} and hence the second inequali-
r-»l

ty shows that {z e ̂ m ;/*(z) e B} is contained in a set of measure zero. Thus
we have shown that if 0 < r ^ 1, then

r r(8) lim log|P(/(rz),^(5w))|^m(w)= log |P(/(rz),fif*(w))| ^n(w)
s-l J^ J-p

for almost every z in ^ where when r = 1 ,/(rz) is to be interpreted as
/*(^).

Now fix 0 < r ^ 1 momentarily and consider the following family of
measurable functions on T'" indexed by s (0<s<l )

(9) T" 9 z ̂  log |P(/(rz)^(5w))| dm(w).
JT"
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This family is uniformly bounded above and increases pointwise with 5.
Hence if we let h^ denote the function in (9) corresponding to 5, we have

that |^s(z)| ^ \hL{z)\ -h C for - < 5 < 1 where C is a constant such that

h^(z) ^ C for all 0 < s < 1 and all z in T". Now using (8) we apply the
dominated convergence theorem (|fcL(')| + C is integrable with respect to
Haar measure on T") to conclude that

r / r \
(10) lim \og\P(f(rz),g(sw))\dm(w)) dm{z)

s-1 Jr" \JT /

= [ ( I \og\P{f(rz)^(w))\dm(w))dm(z)
Jjm \JT" /

for 0 < r ^ 1 where again, when r = 1 ,/(rz) is to be interpreted as /*(z).
By symmetry we also have for 0 < s ^ 1

(11) lim ( log]P(/(rz)^(5w))|Jm(z))^m(w)
r^1 JT VJT- /

r / \= log|P(/*(z)^(5w))|^m(z) ^w(w).
JT"\ /

Let A = log|(p^p| dm and suppose that 8 > 0 is given. By (10)
jjm+n

with r == 1 there exists 0 < 5o < 1 such that

[ log |P(/*(z)^(5ow))| dm(z^) > A - e
Jjm+n

(the continuity of P has been used here) and now by (11) with s = 5o there
exists 0 < ro < 1 such that

(12) [ log \P(f(r^z\g(s^))\ Jm(z,w) > A - 8.
Jr"+"

Using the multiple subharmonicity of log |(p^ p|, we obtain from (12) that for
all t satisfying max(ro,5o) ^ t < 1

f log|(p^p(^)|^m(y>A-c.
J^m+n

This shows that (p^p is good and completes the proof of Theorem 3.4.
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3.5. THEOREM. - Let R be a finite or infinite (converging uniformly on
compact subsets) product of rational inner functions on U2. Suppose that R is
not divisible by a non-constant finite Blaschke product on U2. Iffand g are
non-constant inner functions on U"1 and U" respectively, then (p^ (seethe
statement of Theorem 3.4) is a good inner function on }3m+n.

Proof. — Without loss of generality R is non-constant. Now every
rational inner function on U2 factors as a finite product of irreducible
rational inner functions on U2 (Lemma 2.2(B)). Hence there exist non-
constant irreducible rational inner functions R, on U2 such that

R == H R, where I is an at most countable index set. By hypothesis, no R,

is a finite Blaschke product on U2 and hence Theorem 3.4 implies that (p. ^
is a good inner function on \Jm+n for every i e I. Now

(^pL = n (^R-L
( 6 I

for all w in T^". For almost every w in T^", ((p .̂̂  is a Blaschke
product for every i e I (Theorem 5.3.2 of [7]) and thus ((p^p)^ is a Blaschke
product for almost every w in rTm+n. Theorem 5.3.2 of [7] now implies that
^R is a good inner function on U^" and this completes the proof of
Theorem 3.5.

4. Reducibility of certain inner functions.

The purpose of this section is to indicate a technique for investigating the
reducibility of certain inner functions. Complete proofs will not always be
given. However, detailed proofs of all the results stated here may be found in
[11]. The following lemma follows easily from Theorems 2.2.1, 2.2.3, 2.2.4,
and 2.4.4 of [3].

4.1. LEMMA. - A) Suppose T is in H^U") (n^l) . / / a is an inner
function on U" and ar is in P^U"), then T is in P^U").

B) Suppose f is in H^U),/ is not rational, and f2 is rational Then f is
not in P^OJ).

C) If (p is a non-constant inner function on U" (d) and if f is in
H°°(U), then f is in P°°(U) if and only if f o (p is in P^U").
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4.2. LEMMA. - Suppose that F is in H(U") (n^2) and that m is an
integer greater than one. Then F admits a holomorphic m^ root in U" if and
only if F(vvi,. . .,v^_i,-,H^,. . .,w^) admits a holomorphic m^ rootin U for
every choice of w, in U and 1 ̂  k <^ n.

The lemma is proved easily by induction using the following claim.

Claim. - Suppose F is in HOJ^1)^!), m is an integer greater than
one, and F(w,-) admits a holomorphic m^ rootin U for each w in U9 and
F( • ,z) admits a holomorphic m^ root in U9 for each z in U. Then F
admits a holomorphic m^ rootin U^1.

Proof of Claim. - Without loss of generality F ^ 0. Fix WQ in U4 such
that F(WQ,-) ^ 0 and let (p be a holomorphic w111 root of F(WQ,-) in U.
Let G = U\Z((p) (if / is a function, then Z(/) denotes its zero-set). Clearly
G is an open, connected, and dense subset of U. Now for each z in G,
there exists a unique holomorphic m^ root g, of F(-,z) in U4 satisfying
^z(wo) = (p(z). Using this together with the fact that the family of functions
{^zLeK ^ a normal family on U4 whenever K is a subset of G that is
relatively compact in U, it is easy to see that the function
G 9 z -> g, e H(U9) is continuous.

We now claim that the function G 9z -^ g,(w) is a holomorphic function
on G for each fixed w in U^, that it admits a (necessarily unique)
holomorphic extension to U and, denoting this extension by /^, that
^(T = F(^-). To see this, fix w in U9 momentarily. If g^(\v) = 0 for
every z in G, let ^ be identically zero. If ^(w) ^ 0 for some Zo in G,
then by hypothesis there exists a holomorphic m^ root / of F(w,-) in U
such that /(zo) = ^(w). Let G' = G\Z(/) = U\Z((p/). Clearly G' is an
open, connected, and dense subset of G. Now if e = e2^ and z is in G',
then

0 = F(w,z) - F(w,z) =/(zr - ̂ (nT = R(z)S(z)

where R(z) =/(z) - ^(vv) and S(z) = ̂  (M - ^z(w)) tor z in G\
k = l

Both R and S are continuous functions on G' and thus their zero-sets,
Z(R) and Z(S), are closed relative to G'. Furthermore, Z(R) u Z(S) = G'
and Z(R) n Z(S) = 0. Now Z(R) ^ 0 since ZQ is in Z(R) and thus the
connectedness of G' forces Z(R) = G'. Hence/(z) = ^(w) for all z in G\
Since both sides of this equation are continuous for z in G and since G' is
dense in G, it follows that /(z) = ^(vv) for all z in G. Thus the claim
made at the beginning of this paragraph holds upon letting /^ = /.
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Now define .v|/ : W x U ̂  C by v|/(w,z) = h^z) for (w,z) in U^ x U
Clearly ^(w,-) is holomorphic on U for every w inU4 . Using once more
the fact that [g,}^ is a normal family on U4 whenever K c G and
K c: U, it is easy to see that v|/(-,z) is holomorphic on U4 for every z in
U. Hartogs' theorem now shows that v|/ is holomorphic on U4 x U and v)/
obviously satisfies ^w = F. This completes the proof of the claim.

4.3. COROLLARY. -Let m be an integer greater than one. Suppose f and g
are in H(U") and Z(f) Q Z(g) = 0. J//^ admits a holomorphic m^ root in
U", then both f and g do also.

Define (p^(z) = -——=— for z e U, a e U
1 — az

4.4. LEMMA. - 7/a a^ P are in U, then there exist y ̂  8 m U a^
6 in [0,27r) sMc/i r^ar

(1) (P^)<Pp(^) = ^"(p^cp^z)2), z e U.

Proof. - Without loss of generality, we may assume that a ^ p. Clearly
there exists y in U such that (p^x) - - (p^(p). Let 8 = (p^(a)2 = (p (p)2.
The function (p^-)2) is holomorphic in a neighbourhood of U, inner on
U, has zeros of multiplicity one at a and p, and has no other zeros in U.
Thus, up to multiplication by a constant of modulus one, (p^cp ( • )2) must be
the function (pj • )(pp( •) ([12] ; Theorem VIII.32). This completes the proof of
the lemma.

4.5. THEOREM. - If g is a non-constant inner function on U" and
0 < |u| < 1, then the inner function on U^1 defined by

(2) U" x U 3(w,z) -. .^^P^W-^
1 - H(po^)(pp(z)^(w)

is reducible if and only if a = ? and g admits a holomorphic square root in
U".

Proof. - Denote the function defined in (2) by H.

(if) Assume a = p and g = h2 where h is holomorphic on U".
Clearly h must be an inner function. Let v in U be such that v2 = u
Then •

H(w,z) = (^h^-v\(^Ww)^v\
V - v(p,(z)/z(w)Al + ^^z)h(w))'
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The two functions on the right side are non-constant inner functions on U"+1

(they are also irreducible; see the proof of Theorem 3.6 in [8]) and this shows
that H is a reducible inner function.

(onlyij) Define H(w,z) = H(w,(p_y(z)) where y is related to a and P as
in Lemma 4.4. Using (2) and Lemma 4.4 we obtain after some elementary
algebra that

P(w,z) A(w)z2 - B(w)
(3) H(w,z) == ——— = ———————--v / v ' Q(w,z) 1 - K(w)z2

where

(4) A(w) == cp_^(w)), B(w) = (p_,(8^(w)),

K(w) = (p_s(JWw)), 64 == ̂ .

Note that A is an inner function and that B and K are in P^U") (indeed
A*B* = K* almost everywhere on T"). Now assume that H is reducible.
Then so is H, say H = H^H^ where H^ and H^ are non-constant inner
functions on U"'^1. Now neither H^ nor H^ can be independent of z.
(Indeed, if H^ is independent of z and if Hi(wo,Zo) = 0, then
Hi(wo,-) = 0. Since H == H^H^ it follows that H(WQ,-) = 0. This is
clearly impossible from an inspection of (2). Thus H^ is zero-free. Now H is
a good inner function by Theorem 3.4 and hence H^ is also a good inner
function. This forces H^ to be constant, a contradiction, and we conclude
that Hi cannot be independent of z. This line of reasoning appears in the
proof of Theorem 3.6 in [8]).

Arguing as in the second paragraph in part (III) of the proof of Lemma
2.2(A), we obtain that Hj has a representation H^ = Pj/Qj
(Pj,Qj e P^OJ")!^]) as given by Theorem 1.4 and that P = P^ and
Q === Q^Q^. Since Hy is not independent of z, it follows that the degrees of
PI and P^ (as polynomials in P^U^z]) must each be one. An inspection
of (2) shows that H is not divisible by z and thus we conclude that the
degrees of Qi and Q^ are also each one. Thus both P and Q, considered
as quadratic polynomials in P^U^z], factor into linear factors. Hence the
discriminants of P and Q, respectively 4AB and 4K (see (3)), each have a
square root in P°°(U"). We claim that B also has a square root in P^U").
Indeed, the zero-sets of the functions A and B are disjoint (from an
inspection of (4)) and so Corollary 4.3 implies that both A and B have
square roots in H^U"), say a and b respectively. Now ab is in P^U")
and a is inner (since A is inner) and thus Lemma 4.1 (A) implies that b is in
P°°(U").
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Assume (in order to derive a contradiction) that 8 ^ 0. If |§[ ^ |u| then
the function defined by U 9 ̂  -> (p _ ̂ (8y is bounded, rational, and zero-free
on U. Let S be a holomorphic square root of this function in U. Now S2

is rational and S is a bounded holomorphic function on U that is not
rational. Thus Lemma 4.1(B) shows that S is not in P°°(U) and Lemma
4.1(C) then shows that S o g^ is not in P^U"), a contradiction since
S ° 04 = ± b. Similarly, by considering K in place of B, a contradiction
is derived from the assumptions 8 ^ 0 , [u| ^ |8[. Thus the assumption that
8 7^ 0 is false. So 8 = 0 and from (4), K = ji^i.

Now 8 = 0 implies that a = P (Lemma 4.4) and the equation
^ = H^i = H^ implies that g admits a holomorphic square root in U".
This completes the proof of Theorem 4.5.
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