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ON THE GREEN TYPE KERNELS
ON THE HALF SPACE IN R*

by Masayuki ITO

1. Let R* be the n(> 2)-dimensional Euchdian space
and D be the half space {x=(z,2,,---,2,) € R*; 2, > 0}.
For a point z = (2,,%,, --,2,) € R*, we write

— n 172
T = (— Ty, Toy. .., T,) and |x|=<2x§> .
j=1

When n > 3, we put Gy(z,y) = |z —y|>" — |z —7|*" in
D X D. Then G, is the Green kernel on D . Analogously

we set, for a number « with 0 < « < n,
Gu(z, y) =]z — y|*" — |z — g|*"

in D X D, and we call it the Green type kernel of order «
on D . The following question was proposed to me 1n a letter
by H. L. Jackson : Does G, also satisfy the domination
principle provided that 0 < « < 2.

This paper is inspired by this question. Let C/(D) and
C(D) be the usual topological vector space of real-valued
continuous functions in D with compact support and the
usual topological vector space of real-valued continuous
functions in D, respectively. We set

Ci(D) = {fe C(D); f > 0}

and C*(D) = {feC(D); f > 0}. For a given Hunt convo-
6
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lution kernel x on R", we define the linear operator
Vi:C(D)af— (xxf—n=*f)peCD)1),

where [ is the reflection of f about the boundary 2D of D
and where (x*f— x=%f), 1is the restriction of

xxf—nxf

to D. If V, is positive (thatis, f > 0 = V,f > 0), we say
that V, 1is the Green type kernel associated with x .

The purpose of this paper is to show the following two
theorems.

Tueorem 1. — Let »x be a Hunt convolution kernel on R*
and (%,),50 be the resolvent associated with x . Suppose that »

1s symmetric with respect to D . Then the following iwo
conditions are equivalent :

(1) V, s a Hunt kernel on D .

(2) For each p >0, 5% %, < 0 in the sense of distributions
in D. 1

Tueorem 2. — Let x be a Dirichlet convolution kernel on
R" and o bethe singular measure (the Lévy measure) associated
with x . Suppose that » s also symmetric with respect to dD .
Then the following two conditions are equivalent :

(1) V. s a Durichlet kernel on D .

0 . ST .
(2) s S 0 in the sense of distributions in D .
Ty

This theorem gives immediately that the question raised
by H. L. Jackson is affirmatively solved.

2. Let x be a convolution kernel on R" (?). Similarly we
define V,. When V, 1is positive, we set
2+(V,) = {f€ C+(D); V,fe CH(D)},

where

V.f(z) = sup {V,g(z); ge Ci(D), g < f}

() An feC,D) may be considered as a finite continuous function in R* with
compact support < D .

(3) In potential theory, a convolution kernel means a positive measure.
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m D. Put 2(V,) = {feCD);f, f € 2+V,)} and, for an
fea\V,), Vuf = V.ft — V,f~. Then V, is a linear operator
from 2(V,) into C(D).

Lemma 3. — Let x and %' be two convolution kernels on R™.
Suppose that » and ' are symmetric with respect to dD
and that the convolution x % %' s defined. If V, s positive,

then, for any fe C/(D), V,.fe 2(V,) and
V.Vof) = (s s f—xxn %f)p.

Proof. — We may assume that f > 0. Since xx %'
is definedand |V,.f] < ' «f+ »" «f, wehave V,fe2(V,).
Our convolution kernels » and x' being symmetric with
respect to 0D, x % f(x) = x = f(z) and

¥ * f(x) ="« f(z)
For the sake of simplicity, we write h(z) = V,f(z) in D
and h(z) =0 on R* — D. Then,fora ge C*( ), we have

[ VulVa )82 da

fx*h;v—x*h( x))g(z) da

)% * g dx—f h(z)% * glz) dx
f % % flx) — %’ *f(x))y{* g(x) da
J

I

— faop (¢ % Fl@) = % 5 f@)% = gla) da
x);"c*g(x)dx——fx * f(z)% » g(z)dx
=[x % » (f—)@)g(a) da

where 3 1s the adjoint convolution kernel of » ; that 1s,

Vv

*(E) = x({— z; z € E}) for any Borel set E. Since g 1s
arbitrary, we obtain the required equality.

Remark 4. — In the above lemma, we have V,fe 2(V,)
and V,(V.f) = V,.(V,f) provided that V, 1is also positive.

Lemma b. — Let »x be a convolution kernel on R". Suppose
that » s symmetric with respect to dD . Then V, is positive

if and only if so X S 0 tn the sense of distributions in D .
1
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Proof. — First we shall show the « if » part. Fora t e (0, o),
put H, = {z = (z,,2,,---,2,) e R*; 2, =t} and

D'zgx:(xl,xz,--, eDf x——O

It suffices to prove that, for any fe C;*(D) and any z e D',
x % f() > % = f(x), because ﬁ)_n, dr =0 and

% % f(z) = % = ().

We choose a sequence (¢,)7_, of non-negative, spherically
symmetric and infinitely differentiable functions such that

f ¢,dx =1 and that the support of ¢,, supp (¢.), 1s
contained in {x € R*;|2| < 1/k}. Then x % ¢, 1issymmetric

. 0 .
with respect to dD and o o(xz) < 0 in
T

{xeR"; 2, > 1/k}.
Let feCHD) and z = (2,2, --,2,) € D’. Then

ﬁh—-—z.l?llm f(y)x * (Pk(x o y) dy > ﬁh—xal)llm f(y>x * (pk(; o y) dy

provided with 0 < m < k. Byletting k - c© and m - o,
we obtain that

x * f(z) ff ) dk x ¢,
yﬂ*%w

v
=u 3

S f(y) di <=l
> x f(2) — (SURIF ) [y, e = % *[(@)

where ¢, denote the unit measure at z. Since f and =z
are arbitrary, the « if » part 1s true.

Next we shall show the « only if » part. Suppose that the
« only 1if » part i1s false. Then there exist a number ¢ > 0,
a point z= (2,2, ---,2,)€D with 2, >t and a non-
negative, spherically symmetric and infinitely differentiable
function ¢ in R* with supp (¢) = {zeR"; |z|] <t} such

that bix-xwp(x) > 0. Hence we can choose a number
Ty
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s >0 such that s < 2 —t¢ and that, for every yeD
with |y| < s, xx9(x —y) < x* ¢(x — ¥). Since
%9z — ) =x* o —y),
we have, for an f # 0 € CS(D) satisfying
supp (f) < {y e R*; |y| < s},
x*f* (p(x) < x*f* cp(x)zx*f* (p(.’l?)

But this contradicts the inequality x*f>xxf in D.
Thus we see that the « only if » part is true.
In the same manner as above, we obtain the following

Lemma 6. — Let « be a positive measure in R" — {0}.
. . . 0

Suppose that o is symmetric with respect to dD . If . <0
1

in the sense of distributions in D, then, for any fe Ci(D)
ff:v—ydoc ffw——yda (y)
in D n Csupp (f).

3. We say that a convolution kernel x on R is a Hunt
convolution kernel if » ::fmoct dt, where («,),5, 1s a vaguely
o

continuous semi-group of positive measures in R"; that 1s,
®y = ¢ (the Dirac measure), o, % a; = o, (V¢ > 0, Vs > 0)
and the application R+ = [0, ©)>t—>« 1s vaguely
continuous. In this case, («,),5, is uniquely determined (see,
for example, [3]) and called the vaguely continuous semi-
group associated with ». For a peR*, put

%, zf exp (— pt)a, dt ;

then (x,),5, 1s called the resolvent associated with x .
This is characterized by a family (x,),», of convolution
kernels on R" satisfying

xp_xq:(q—p)xp*xq(vp > Oa Vq > O)

and limx, = %, = x (vaguely).
pP>0
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Lemma 7 (see [3] or Theorem 5 in [6]). — Let %, (@),
and (x,),5, be the same as above. Fora p >0 anda t > 0,
put

a, = exp (— )21;{—( %,)* and Xy 0 = €;

then (%, );», s a vaguely continuous semi-group of positive
measures and we have

x—l—%z':fmotp,tdt and lhmoa, , = «, (vaguely) (t > 0).
0

p>0

Lemma 8. — Let » = | “a,dt be a Hunt congolution kernel
L)

on R" and (x,),5, be the resolvent associated with » . If x
18 symmetric with respect to dD , then, for any p and any
t,x, and «, are also symmetric with respect to dD .

Proof. — For a p > 0, we denote by %, the reflection
of x, about dD. Evidently (%,),5, 1s the resolvent asso-
clated with %. By using x =% and the unicity of the
resolvent associated with x, we have, for each p > 0,
%, = %,. This means that x, is symmetric with respect
to dD . This gives also that, for any fe C/(D),

ﬁ‘”exp (— pt)f da, dt :ﬁ‘”exp (— pt)f do,dt  (Vp > 0).

The Laplace transformation being injective, we have, for each
t>0, ffdoc, szdoc, . Hence, [ being arbitrary, we see
that o, 1s symmetric with respect to dD .

Similarly we have the following

Remark 9. — If » 1s symmetric with respect to the origin 0
(resp. spherically symmetric), then x, and «, are also
symmetric with respect to 0 (resp. spherically symmetric).

Let »x be a convolution kernel on R". We say that x

1s a Dirichlet convolution kernel if the (generalised) Fourier

transformation % of x is defined and equal to —iﬂ where ¢

1

1s a real-valued negative definite function in R" such that —
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1s locally summable. By virtue of the Lévy-Khinchine theorem,
we have, for any z = (2, 2, ---, 3,) € R",

Yao)=c+ 3 2a,,xx,+f (1 — cos (2nz-y)) daly),

i=1 j=1

where ¢ 1s a non-negative constant, 2 2 axw; 1s a
. . . . . . i:1 j:1 .
positive semi-definite form, z-.y is the inner product in R"
and where o« 1is a positive measure in R" — {0} symmetric
with respect to 0 and satisfying f [2]2/(1 4+ |2|?) da(z) < o0 .
It is well-known that the above decomposition of ¢ 1is unique.
The positive measure « in R" — {0} 1is called the singular
measure associated with x . Since, for each t > 0, exp (—tJ)
is of positive type in R", there exists a positive measure «,
in R" such that & = exp(—ty). Evidently («),, 1s
a vaguely continuous semi-group of positive measures and
x = j; “«,dt. Hence a Dirichlet convolution kernel is a

Hunt convolution kernel and symmetric with respect to 0.

4. A positive linear operator V: G (D) - C(D) 1s called
a continuous kernel on D (Evidently V is continuous).
Similarly as in the section 2, we define 2+(V) and 2(V).

We say that V 1s a Hunt kernel on D if V= j;m V, dt
(that is, for any fe C/(D), Vf(z)= f *Vf(z)dt n D),
where (V,)),5, is a continuous semi-group of continuous
kernels on D ; thatis, V, = I (the identity), forany ¢ > 0,
s > 0 andany fe C(D), Vife 9(V), V.(Vf) = V(V,) =V, f
and the application R*st— V,f is continuous in GC(D).

Similarly as in [3], we see that (V, )izo 1s uniquely determined,
and we call it the continuous semi-group associated with V.

Fora p>0, put V,= j; exp (— pt)V,dt; then we call
(V,)p>o the resolvent associated with V. It is known that,
for any p >0, ¢>0 and any feC(D), V,fe 2(V,),

Vif € 2(V,),

Vof = Vof = (g = P)Vo(Vif) = (g — PIV,(Vaf)
(the resolvent equation) and hmV o = Vof = Vf in C(D).
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Let V, and V,; two continuous kernels on D . If, for any
fe C(D), Vyofe 2(V,), the application C,D) s f— Vi(Vyf)

1s positive linear, we denote it by V; - V,.

Remark 10 (see [2]). — A Hunt kernel V on D satisfies the
domination principle; that is, for two f, ge CHD), Vf < V
on supp (f) implies the same inequality on D.

5. We shall show Theorem 1 mentioned in the section 1.

(1) == (2). By Lemmas 5 and 8, it suffices to prove that,
for each p > 0,V,, is positive. Let (V,),,, be the resolvent
associated with V, . Then, for an fe CH(D) and a p >0,
V.f = (pV. + I)(V,f). On the other hand, Lemmas 3 and 8
give the V, fe 2(V,) and

Vif = (% (f — o = ((px + ) x %, % (f — F))o
= (pV. + D(V,,f).

By using the resolvent equation, we have

Vi = Voo f = (1= pV)(PVe + DVif — Vo, ) = 0.
The function f being arbitrary, we have V,=1V, , and
hence V, 1s positive. .

(2) = (1). By Lemma 5, V, is positive (¥p > 0). Let a,’
be the positive measure defined in Lemma 7 (Vp > 0, vt > 0)

and ()5, be the vaguely continuous semi-group associa-
ted with x. By Lemmas 3 and 7,

Ve, = exp (= p) 3 BT (V)

where (pV,)° =1, (pV, ) =pV,, and
(PV,)"t = (pVy,)"-(pVy,)-

Therefore V., is positive. From Lemma 7, it follows that,
for any fe C( )y im V, f=V,f in C(D) (vi > 0). Hence
V,, 1s positive. Bp;rm using Lemma 3, we see that (V,).,
i1s a continuous semi-group of continuous kernels on D and
that V, = ﬁ ) V., dt. Consequently V, is a Hunt kernel
on D . This completes the proof.
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Question 11. — Let x be a Hunt convolution kernel on R"
satisfying x = % . Is it true that V, is a Hunt kernel on D
provided that V, 1is positive?

Remark 12. — Let k(z) be a non-negative continuous
function in the wide sense in R" satisfying k(z) = k().
Suppose that x = k(z)dr 1s a Hunt convolution kernel
and that V, 1s also a Hunt kernel on D . Put

G(z,y) = k(x—y) — k(z—7) n DxD.

If the function kernel k(z—y) satisfies the continuity prin-
ciple (3), then G satisfies the domination principle; that is,
for two positive measures p and v in D with compact

support and with pr. dp < o, then Gp < Gv on
supp (@) implies the same inequality in D, where

Gu(@) = [Glay) du(y).

It is known that k(z—y) satisfies the continuity principle
when x is a Dirichlet convolution kernel (see [4]).

We show this remark. We see that G also satisfies the
continuity principle. Therefore it suffices to prove that,
for a positive measure p in D with compact support and an
zeD, Gp < Ge, in D provided that Gu < Ge, on
supp (1) and that Gp 1s finite continuous (see [8]). Since V,
is a Hunt kernel, there exists f € C+(D) such that V,f=Gf>1

on supp (1), where Gf(y) f G(y,z)f(z) dz . Here we remark
that p 1s considered as a positive measure in R". For a given
positive number &, there exists a neighborhood U of 0
such that, for any finite continuous function ¢ > 0 in R”"
with supp (¢) < U with fcpdxzi, o, e, x e CHD)
and G(p x @) < G(e, * ¢) + 3Gf on supp (p * ). By letting
¢ dv — ¢ (vaguely) and 8 | 0, we have Gp < Ge,

(®) This means that, for a positive measure @ in R" with compact support,
el
the function | k(z—y) dp. (y) of z is finite continuous provided that its restriction

to supp (@) is finite continuous.
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6. Theorem 1 gives the following

Cororrary 13. — Let » = fw a, dt be a Hunt convolution

kernel on R". Then » is symmetric with respect to 3D and V,
ts a Hunt kernel on D if and only if, for each t > 0, o, is

0
symmetric with respect to 3D and —a«, < 0 in the sense of
JIuimetrte W oz,
distribution in D .

CoroLLARY 14. — Let x = f;w a, dt be a Hunt convolution
kernel on R" and u be a Hunt convolution kernel on R!
supported by R*. Suppose that x, = /;w a, du(t) s defined
(in the sense of measures) and that » is symmetric with respect

to d3D. If V, is a Hunt kernel on D, then V, is also a
Hunt kernel on D .

Proof. — We denote by (u,),», the resolvent associated
with . Since w, <, %, = [ du,t) is defined (vp>0).
It 1s known that x, 1s a Hunt convolution kernel on R"
and that (%, ,),», 1s the resolvent associated with x, (see

Theorem 1 in [5]). By Theorem 1 and Corollary 13, «, is

. . 0
symmetric with respect to dD and og Xt S 0 1in the sense
Ty

of distributions in D . Hence x, is also symmetric with
0 . . .

respect to 9D and 5p K S 0 in the sense of distributions
Ty

in D (Vp > 0). Consequently Theorem 1 gives this corollary.
In the same manner as above, we have the following

CororLrary 15. — Let (oc,),>0 be a vaguely continuous
semi-group of positive measures in R® and p be a Hunt
conyolution kernel on R! supported by R+. Suppose that

j;w o, du(t) is defined and that, for each t > 0, «, s symmetric
. (4] . C. .
with respect to 3D and PO TIES 0 in the sense of distributions

151

in D. Then V, s a Hunt kernel on D, where

*y = ﬁw a, du(t)
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We shall show that the question raised by H. L. Jackson is
affirmatively solved.

Remark 16. — Let v be a positive measure in (0, 2) such
that j: % dv(e) < o0 and ¢,, ¢; be non-negative constants.
Put

K_%cos—l— (f1al" dv(a)) do if n=2
"~ epe + (f|x]°‘_”dv(ot) + cfa>")dz  if n > 3.

Then V, 1s a Hunt kernel.
In fact, we have, with a positive constant c(a),

an 1 |2[* -
| x| %" = c(oc)f; P exp <— §>t 12-1 i

O0O<a<2if n=2,0<a<2i1f n>3). Evidently the

function c¢(a) of « 1s finite continuous. Put

e+ [e(@)=e=1 dv(a)) dt if n=2
e + ([el@)r=et dv(a) + cro(2)) dt i n>3

. . 21 . .
i R!. Since f —dv(e) < ©, %, 1is a convolution kernel
on R* and o &

’y = <f(‘2?1ﬁ exp (- %) dp.(t)> dz .

Hence p 1s a convolution kernel on R! supported by R+.
Then p is a Hunt convolution kernel on R!' (cf. [5]), and
Corollary 14 gives our remark.

Let G, be the Green type kernel of order « in D. Put

[ Ga(wyy) dv(=) if n=2
[Ga(my) dv(o) + aiGo(zy) it n > 3.

Then Remarks 12 and 16 give that G satisfies the domination
principle.

G(zy) =

7. Let Ly (D) be the usual Fréchet space of real-valued
locally summable functions in D . A Hilbert space H(D)
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contained in Ly (D) 1s called a Dirichlet space on D if the
following three conditions are satisfied :

(1) For each compact set K in D, there exists a constant
A(K) > 0 such that, for any ue D, fKIuI dx < A(K)|ul .

(2) C(D) n H(D) 1s dense both in C,(D) and in H(D).

(3) For any normalized contraction T on R! (*) and any
ueHD), T -ueHD) and |T - u| < [u].

This is the definition by A. Beurling and J. Deny (see [1]).
Here we denote by |-| and by (.,.) the norm in H(D)
and the associated inner product, respectively. For an fe C,(D),
(1) gives that there exists uniquely u,e H(D) such that,
for any u e H(D), (upu) = fufdx .

Let V be a linear operator from C,D) into L(D).

We say that V 1s a Dirichlet kernel on D if there exists
a Dirichlet space H(D; V) on D such that, for any

feC(D), Vf=u,.

Evidently H(D; V) is uniquely determined. We call H(D; V)
the Dirichlet space associated with V and V the kernel of
H(D; V). For a Dirichlet kernel V on D, we set

l uf daz '

b

@(V)zﬁfeono(Dﬁ S“pg lul
w# 0eCD) A HD; V)] < o

and 2+(V)= {fe 2(V); f> 0}, where |-| denote the
norm in H(D; V). By virtue of (2), for an fe 2(V), there
exists uniquely Vfe H(D; V) such that, for any

ueC(D) n HD; V), (Vfu) = fufdx,
where (-,-) denote the inner product in H(D; V). Thus V

may be considered as a linear operator from 2(V) into
H(D; V). It is known that V 1is positive (that 1s,

fe 2+(V)=- Vf > 0 ae.) (see[1]).

(4) This means that T is an application: R! — R! such that R(0) =0 and
|Ta—Tb| < |a—b| (Ya, Vb eRY).
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Lemma 17. — Let x be a Hunt convolution kernel on R*
satisfying x = x . If V, is a Dirichlet kernel on D, then V,
ts a Hunt kernel.

Proof. — For the sake of simplicity, we write H = H(D; V,).
Denote by |-| and by (-,-) the norm in H and the inner
product in H, respectively. Let L2(D) be the Hilbert space
of real-valued square summable functions in D. For a
p > 0, H, denotes the Hilbert space associated to the norm
lul, = (pfl ul® dx + |lull2)1/2 on HnN L3*D). Evidently H,is a
Dirichlet space on D . Let feC,(D). Forany ueC/(D) nH,

we have

[Viftu(e) de = — (V) — (Vi)
((Vufow) = (Vof)

(VA =+ 1V D)l

(R

<

P

where V, isthekernel of H, and where (-,.), is theinner pro-
ductin H,. Hence V,fe 2(V). Since, for any ueC,(D)n H,

p(Vu(V, 1)) = p [ w(@)V,f(z) do
= (fo7u)p - (fo’u) = (va— fo)“’),
(2) gives V.f— V,f=pV,(V,f) ae in D. Let (x,),5,

be the resolvent associated with x . By Lemmas 3 and 8,
we have V,f—V, f=pV,(V,f). In the same manner as
in the proof of Theorem 1, we have V,f=V, f ae.in D,
and hence V, is positive (Yp > 0). By Theorem 1 and
Lemma 5, we see that V, 1s a Hunt kernel.

We shall prove Theorem 2 mentioned in the section 1.

(1) =~ (2). Let (%,),5, be the resolvent associated with x .
Then it is known that p?x —« vaguely in R" — {0} as
p - © (see [1]), and hence theorem 1 and Lemma 17 give

that bi « < 0 in the sense of distributionsin D .
Ty

(2) == (1). Since p?x, >« vaguely in R"— {0} as

p — ©, Lemma 8 gives that « is symmetric with respect to

dD . Let A be the diagonal set of D X D and B be the



98 M. ITO

positive measure in D X D — A defined by

[[t@)ey) ds(zy) = [[(fla—y) — Flo—y)glz) daly) da

for any couple f, ge C, (D) with supp (f) N supp (g) = @
(see Lemma 6). For any p, x, being symmetric with respect
to the origin, we have o« = «, and hence B is symmetric
with respect to A . Let C?(D) be the topological vector
space of real-valued and infinitely differentiable functions in D
with compact support (we identify an element of C>(D)
and an infinitely differentiable function in R" with compact
support in D).

Let fe C?(D). Consider the approximation of the function

If(@) — f@)l* of (y) by the functions of form 3 @,(@)}(y)
in D X D, where ¢, C?(D) and ¢, e C>(D) with

supp (¢;) N supp (¢;) = & .
Then we see that
0 < [fif) f(y)l2d6 2,y) +f|f (2)|%a(2) do

= [[1f@ — y) — f(@)]* du(y) da
o ff (flz—y)—f (@) (f(x—y)—f(z)) do(y) dz < oo (%)

where, for z = (z1,2,---,2,) € D, a(z)= 2flnl>w
Let H be the specialized Dirichlet space Wlth the kernel %
(see [1]). We denote by |||-]|| and by ((-,-)) the normin H

and the associated inner product. For a couple [, ge C7(D),
we put

g):ffé’(% >dx+42§1121 ‘ffgl;zfr
+7ff o) — f(y)(g(2) — gy)) d(zy)

=(f—T.8) =g —8) = % (f — .8 — 8)),

(5) The author would like to express his hearty thanks to Prof. F. Hirsch for the
correction of this formula.
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where » = <c + é é a;rx; + f(i — cos (2nx-y)) da(y))"L.

i=1 j=1
Then (-,-) is an inner product in C7(D). For a compact
set K in D, we have

cup [y lul do _ up ﬂﬁ|u—u|dx< .

vec2m Ul 2ECX (D) lw — ull]
uz#0 uF£0

where |u| = (u,u)'?. Hence the completion H of Cz(D)
by |- is contained in L, (D). Evidently, for any u e C>(D)
and any normalized contraction T on R!, T.ue H and
IT-ul < ful. For a wueH, we choose a sequence

(u), = C2(D) such that

Im |u, —u| =0.

Since (T - u,);>, converges weaklyto T - uw in H as k- oo
(see [1]), we have T -ueH and |T - u| < |u|. Hence H
i1s a Dirichlet space on D . We shall show that V, is the
kernel of H. For an integer m > 1, let T, denote the
- . 1 1

1 — . .
projection from R! into [ — m] Let feC/(D);
then x*(f—f) — T, -%x*(f—f)eH and

V.f — T, - V.f € C(D),

because x * (f — f)=0 on 2D and lmlll—:n x* (f — f)(z)=0.

Therefore there exists a neighborhood V,,:o of the origin such
that, for any non-negative, spherically symmetric and infi-
nitely differentiable function ¢ in R" with supp (9) = V,

and [¢dz=1,fx9eCs(D) and
(V.f — T, - V,f) * o € C=(D).

Since
ex(f—F) —Ta-xx(f—f))xeo
:(fo_Tm'fo)*Q_‘(fo-Tm'fo)*cp

and, fora ueH,

s el = [[((uxeu = e))e(@)9(y) de dy < ||lulll?,
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we have
I(Vaf — T - Vof) * 02 /
< —;—IHK #(f—f) = Tn- e (f =2 < 2= (f = I

By letting ¢ dz — ¢ (vaguely) and m — oo, we see that
V.fe H and, for any ue C>(D),

(Vufw) = (% (f — )w)) = [u(f — ) do = [ufda.

This 1mplies immediately that, for any we H,

(Vofou) = [uf d .

Consequently V, 1s the kernel of the Dirichlet space H.
This completes the proof.

Theorem 2 gives also that the question raised by H. L. Jack-
son is affirmatively solved. In fact, the singular measure
associated with the convolution kernel r*" 1is equal to
Co|z|~ %" dz provided that 0 < « < 2, where ¢, 1s a positive
constant, where |z|*™"dz 1s symbolically denoted by ro"
(0 <a<n).

We denote now by A the laplacian on R". We say that a
convolution kernel » on R" 1s a Frostman-Kunugui kernel
if » 1s spherically symmetric, vanishes at infinity (%), and if
Ax > 0 1in the sense of distributions outside the origin 0.
Theorem 2 and Theorem 1 in [7] give the following

CororLary 18. — Suppose n > 3. Then the following two
statements hold.

(1) For a Frostman-Kunugui kernel » # 0 on R" satisfying
gb— Ax < 0 in the sense of distributions in D, there exists
Z :
uniquely a spherically symmetric Dirichlet conyolution kernel '
on R" such that Vx, ts a Dirichlet kernel on D and that,
for any fe C(D), V,(V.f)(x) = Vi(V.f)(z) = Gyf(z) in D.

(2) For a sphencally symmetric Dirichlet kernel » on R™
such that NV, s a Dirichlet kernel on D, there exists uniquely

(6) This means that, for any finite continuous function f in R" with compact
support, % * f(z) >0 as |z|] > 0.
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. . . b
a Frostman-Kunugut kernel x' on R" such that v Ax <0
T

in the sense of distributions in D and that, for any fe C,(D),
VoV f)(@) = Vel Vif)(z) = Gof(z) in D.

Proof. — First we shall show (1). By Theorem 1 in [7],
there exists uniquely a spherically symmetric Dirichlet
kernel »° on R" such that x x x’ = r2=*., We have, with a
positive constant ¢, (Ax) *x ¥’ = — ce 1in the sense of distri-
butions in R". This implies that the singular measure asso-

ciated with %' 1s equal to 1—Ax outside 0. Theorem 2
c

and our assumption give that V, 1is a Dirichlet kernel on D .
Since Ax > 0 1in the sense of distributions in R® — {0}

. . . 0 . .
and x vanishes at infinity, aa " S 0 in the sense of distri-
Ty

butionsin D. By Lemma 5, V, is positive, and by Lemma 3
and Remark 4, we obtain the required equality. Let’s show
the uniqueness of »’. Let x” be a Dirichlet convolution
kernel on R" which is possessed of the same properties as of
x'. Since x 1s injective (see Theorem 1 in [7]) (*) and
xx (Vi f — Vo f) = % % (Vof — Voof)
in R" (%)), we have V,f=V,f (YfeC/(D)). This implies
that, for any feC,(D), (x' —x")f=(x"—»")*xf. In the
same manner as in Lemma 5, we have % (x — %"y =10 1n
1

the sense of distributions in D . Since x’ — x” is spherically
symmetric and vanishes at the infinity, we have x' = x".
Thus we see that (1) holds.

Next we shall show (2). By Theorem 1 in [7], there exists

uniquely a Frostman-Kunugui kernel x’ on R" such that
% % x’ = r?~". Since the singular measure associated with x

1s equal to —i—Ax' outside 0, Theorem 2 gives that

5o Ax’ < 0 1n the sense of distributions in D . Similarly as
Ty

() This means that, for an fe C(D), f =0 provided that » * |f| is defined
and that » % f=0.
(]) We may assume that V,f is a continuous function in R" with support

<D.
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above, we see that V,. is positive and the required equality
holds. Since x is also injective (see, for example, [1]), we can
similarly show the uniqueness of x»’'.

Remember the Riesz decomposition formula

re Ttk @0t =g 2 (0 <« < 2),

where a, 1s a positive constant (see [9]). Then, by this corol-
lary, we see that G, satisfies the domination principle
provided with n > 3 and 0 < « < 2.

Remark 19. — For a spherically symmetric convolution

0 . .. . .

kernel x on R",b— x < 0 1n the sense of distributions in D
Iy

if and only if 5 S 0 1n the sense of distributions in
r

R* — {0}, where r=|z|. In this case, x 1s absolutely
continuous outside 0.

By using Theorem 1, Corollary 13 and this remark 19,
we have the following

Remark 20. — Let » = j;"” a, dt be a spherically symme-
tric Dirichlet kernel on R". Then V, is a Dirichlet kernel
on D if and only if, for any ¢t > 0, «, 1s of form

a, = ¢e + k(|z|) dz

where ¢, 1s a non-negative constant and k, 1s a non-negative
decreasing (in the wide sense) function on R*.

8. First we shall show that the inverse of the question
raised by H. L. Jackson 1s also affirmative.

Prorosition 21. — If the Green type kernel G, (0 < « < n)
on D satisfies the domination principle, then 0 < « < 2.
Proof. — Since G, satisfies the domination principle, G,

also satisfies the balayage principle (see, for example, [8]);
that is, for a positive measure ¢ in D with compact support
and a compact set F in D, there exists a positive measure
pwr supported by F such that G,p > G,pr In D and
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Gy = Gupr Ggne. on F(®). Let w#0 and F be a
closed ball contained in D such that supp (p) N F=g.
Suppose that « > 2. Let t be positive integer satisfying
0<a—2t<2 and B =« — 2¢t. Then

Go(2,y) = [ Gal,2)Gg(z,y) dz

(see Lemma 3). Since Gy,(Gpp) = Gy(Ggur) a.e. on F, we
have Ggp = Gppr a.e. on F, because

AY(Gyy(Ggpr) — Goy(Gpur)) = (— ¢)"(Gpe — Gppr)

in the sense of distributions in D, where ¢ is the positive
constant satisfying Ar*=" = — cc. Since Ggp 1is continuous
on F and Ggpr 1s lower semi-continuous, we have
Gge > Ggur on F, andso [Geupdpr < o . The function
kernel Gg satisfying the domination principle, we have
Ggw > Ggur 1n D . By virtue of the injectivity of Gg,
we have Ggu # Ggpr. But this contradicts the equality
Go(Ggp) = Go(Ggur) Gy-nie. on F. Thus we achieve the
proof.
We raise a question.

Question 22. — Let x be a convolution kernel on R-"
satisfying » = x . Suppose that V, i1s a Hunt kernel on D .
Then 1s 1t true that x 1s the sum of a Hunt convolution
kernel and of a non-negative constant ?

The following proposition shows that the answer is « yes »
in a special case.

Prorosition 23. — Let » be a convolution kernel on R"
satisfying x = x . Suppose that V, s a Hunt kernel on D .
If f dx < o and x s absolutely continuous outside O,
then x is a Hunt convolution kernel.

Proof. — We may assume that f dx < 1. Fora pe(0,],
we put

= 3 (= p) ()"
k=0
(®) We write Gyu = G, Gyn.e. on F if, for any positive measure v in D

with supp (V) € F and | G,vdv < o0, fGay. dv = fGap.{: dv.
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then x, is a real measure in R", absolutely continuous
outside 0, x, =%, and fdlxpl < o0, where |x,| denote
the total variation of x,. Since (px 4+ ¢) * x,=x, Lemma 3
gives that, for any feC/(D), (pV,+ I(V,f) = V,f. Let
(V,)p=o the resolvent associated with V,. In the same
manner as in Theorem 1, we have, for any fe C(D), V,f=V,f
in D. Hence V, is positive. In the same manner as in
0 . C L. .
Lemma 5, we have 5 %o < 0 1in the sense of distributions
251

in D. We show that %, is a convolution kernel. It suffices to

prove that, for any fe C/(D), f;fdxp > 0, because

___ %({0}) _
xp<{0})_1+px({0}) >0, Xp = %,
and x, 1s absolutely continuous outside 0. For each integer

k >1, we choose a non-negative, spherically symmetric
and infinitely differentiable function ¢, in R" such that

fcp,‘. dr =1 and supp (9, < %xeR"; |2 < %g Since

o %, * ¢, () < 0 in the set
0x,

1
:v=(zv1,w2,---,x,,)ER";x1>?€
and |}|1.£ri %, * ¢i(x) =0, we have x,x¢q,(z) >0 in the

above set. Hence, for any fe C}(D),
[ f dx, = lim I 1 [(@)%,* @u(a) do > 0.

Consequently %, is a convolution kernel (Yp € (0,1]). Since
* — %, =px*%,,%x > x,. Fora pe (1, 2], we put

xp = ]E (1 — p)f(oy)**;

=0

then %, 1is also a real measure in R", absolutely continuous
outside 0, x,=X%,, fd]xpl < o and x —x, = px*x,.
In the same manner as above, x, is a convolution kernel.
Inductively we obtain a family (x,),5, of convolution ker-
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nels satisfying » — %, = px x x, and lim x, = x (vaguely).
p>0

By Lemma 3.2 in [6], we obtain that, for each p > 0 and
q>0,% —% =(¢g—p)x,*x%, and lim x, = x (vaguely),
p>0

where », = x . Since V, 1s a Hunt kernel on D, » # 0,
and hence, for any =z # 0 e R*, x # x x¢,, because

hm » x f(z) =0

|x|> o
for any finite continuous function f in R with compact
support. Hence, by Corollary 1 of Theorem 5 in [6], x 1is a
Hunt convolution kernel. This completes the proof.

Remark 24. — In the above proposition, if x 1s spherically
symmetric, the same conclusion holds without the assumption
that » 1is absolutely continuous outside 0. See Remark 19.

BIBLIOGRAPHY

[1] A. BeurLing and J. DEny, Dirichlet spaces, Proc. Nat. Acad. U.S.A.,
45 (1959), 208-215.

[2] J. Deny, Eléments de la théorie du potentiel par rapport 4 un noyau
de Hunt, Sém. Brelot-Choquet-Deny (Théorie du potentiel), 5¢ année,
1960-1961, n° 8.

(3] J. Deny, Noyaux de convolution de Hunt et noyaux associés a4 une
famille fondamentale, Ann. Inst. Fourier (Grenoble), 12 (1962), 643-667.

[4] M. ITd, Sur la régularité des noyaux de Dirichlet, C.R. A. S. Paris, 286
(1969), 867-868.

[5] M. It6, Sur la famille sous-ordonnée au noyau de convolution de Hunt
donné, Nagoya Math. J., 51 (1973), 45-56.

[6] M. ITd, Sur le principe relatif de domination pour les noyaux de convo-
lution, Hiroshima Math. J., 5 (1975), 293-350.

[7] M. I1o, Sur les noyaux de Frostman-Kunugui et les noyaux de Dirichlet,
Ann. Inst. Fourter (Grenoble), 27, 3 (1977), 45-95.

[8] M. Kisur, Maximum principle in the potential theory, Nagoya Math. J.,
23 (1963), 165-187.

[9] M. Riesz, Intégrales de Riemann-Liouville et potentiels, Acta Sc. Math.,
Szeged, 9 (1938), 1-42.

Manuscrit recu le 10 janvier 1977
Proposé par G. Choquet.

Masayuki IT6,

Mathematical Institute
Nagoya University
Nagoya, Japon.



