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HARMONIC MORPHISMS BETWEEN
RIEMANNIAN MANIFOLDS

by Bent FUGLEDE

Introduction.

The harmonic morphisms of a Riemannian manifold, M ,
into another, N , are the morphisms for the harmonic struc-
tures on M and N (the harmonic functions on a Riemannian
manifold being those which satisfy the Laplace-Beltrami
equation). These morphisms were introduced and studied by
Constantinescu and Cornea [4] in the more general frame of
harmonic spaces, as a natural generalization of the conformal
mappings between Riemann surfaces (1). See also Sibony [14].

The present paper deals with harmonic morphisms between
two Riemannian manifolds M and N of arbitrary (not
necessarily equal) dimensions. It turns out, however, that if
dim M < dim N , the only harmonic morphisms M -> N
are the constant mappings. Thus we are left with the case

dim M ^ dim N .

If dim N = 1 , say N = R , the harmonic morphisms
M —> R are nothing but the harmonic functions on M .

If dim M = dim N = 2 , so that M and N are Riemann
surfaces, then it is known that the harmonic morphisms of

(1) We use the term « harmonic morphisms » rather than « harmonic maps »
(as they were called in the case of harmonic spaces in [4]) since it is necessary (in the
present frame of manifolds) to distinguish between these maps and the much wider
class of harmonic maps in the sense of Eells and Sampson [7], which also plays an
important role in our discussion.
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M into N are the same as the conformal mappings f: M -> N
(allowing for points where df= 0). However, if

dimM = dim N ^ 2 ,

the only non-constant harmonic morphisms (if any) are the
conformal mappings with constant coefficient of conformality
(i.e., the local isometrics up to a change of scale, Theorem 8.)

In the general case where just dim M ^ dim N ^ 1 we
find (Theorem 7) that /*: M —> N is a harmonic morphism
if and only if f is both a harmonic mapping in the sense of
Eells and Sampson [7] and a semiconformal mapping in the
sense that the restriction of f to the set of points at which
df ̂  0 is a conformal submersion (see § 5 for a more explicit
definition). The simple case N = R71 is settled independently
in Theorem 2 below (2).

The symbol a^f) of a harmonic morphism f: M -> N at a
point a e M is a harmonic morphism ^a(/*) ^ M^ —- N^)
(Theorem 9). Using this we prove that every non-constant
harmonic morphism f: M -> N is an open mapping (Theorem
10). This theorem extends the classical fact that every non-
constant conformal mapping f between Riemann surfaces
is open, even if points with df = 0 are allowed. Theorems 9
and 10 also treat the more general case of semiconformal
mappings. The methods employed are classical.

Constantinescu and Cornea proved in [4] that every non-
constant harmonic morphism /*: M -> N between Brelot
harmonic spaces M and N is open with respect to the fine
topologies (3) on M and N , provided that the points of N
are all polar (which in the case of a Riemannian manifold N
amounts to dim N ^ 2). This important result was obtained
by purely potential theoretic methods, and it neither implies
nor follows from our result (in the case of Riemannian mani-
folds). It is not known whether every non-constant harmonic
morphism f: M -> N between Brelot harmonic spaces M

(2) Recall that, in the case N == R/1, a mapping f: M —> R^ is harmonic in the
sense of Eells and Sampson if and only if the components f1, ... , /'7l are harmonic
functions on M .

(3) The fine topology on a harmonic space is the coarsest topology making all
subharmonic functions continuous. It is finer than the initially given topology
on the space.
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and N is open in the initially given topologies on M and N
when the points of N are polar (4).

After giving some examples of harmonic morphisms (§ 11),
I close by indicating briefly an easy extension of the preceding
development to what I call /i-harmonic morphisms (§ 12),
an example of which is the classical Kelvin transformation.

Acknowledgements. In working out the present paper I
have received valuable information in conversation or corres-
pondence with C. Berg, H. Eliasson, K. Grove, V. Lundsgaard
Hansen, I. Laine, and other colleagues.
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(4) The hypothesis that the points of N be polar cannot be removed, as shown
by an unpublished, simple example due to Cornea (personal communication). In this
example N == R (so that all points of N are non-polar), while the harmonic space
M is a well-behaved Brelot harmonic space (not a manifold), and the fine topology
on M coincides with the initial topology, just as in the case of N == R .

Added in proof (February 1978). — The hypothesis of the Brelot convergence
axiom cannot be removed, as shown recently by an example due to H. and U.
Schirmeier (personal communication).
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1. Notations and preliminaries.

The Riemannian manifolds to be considered should be
connected, second countable, and (for simplicity) infinitely
differentiable.

The metric tensor on a Riemannian manifold M is denoted
by g or gM • The Laplace-Beltrami operator on M , denoted
by A or A^ 5 is given in local coordinates x1 by

. 1 & / /—, .. b \

^Tw^^)-
using here and elsewhere the customary summation conven-
tion, and writing

|g] =det(g,,).

A real-valued function u of class C2, defined in an open
subset of M , is called harmonic if AMU == 0 . It follows
that u is of class C°° . The constant functions are of course
harmonic.

As shown by R.-M. Herve [9, Chap. 7'], the sheaf of harmonic
functions in this sense turns the manifold M into a Brelot
harmonic space (in the slightly extended sense adopted in
Constantinescu and Cornea [5] in order to include the case M
compact) (5).

A C^function u defined in an open set U c: M is sub-
harmonic if and only if Au > 0 [9, Prop. 34.1].

We shall make extensive use of the Carleman-Aronszajn-
Cordes uniqueness theorem for harmonic functions: It the
partial derivatives of all orders of a harmonic function u
on M (using local coordinates) vanish at a point of M ,
then u is constant. (See [I], [6].)

According to an interesting, recent result by Greene and
Wu [8], every non-compact n-dimensional manifold N
admits a proper embedding ^ into R2^ such that the
components ^k are harmonic on N . It follows in particular

(5) If M is ^P-harmonic space (that is, if there exists a potential > 0 on M) ,
then M satisfies all the axioms in Herve [9, Ch. 6]. In any event, M can be covered
by open subsets which are ^p-harmonic in their induced harmonic structure. (For a
general result to this effect see [5, Theorem 2.3.3].)
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that one can always choose harmonic local coordinates for a
Riemannian manifold.

From now on, let M and N denote two Riemannian
manifolds as above, of dimension

dim M == m , dim N = n ,

and consider a mapping

f: M-> N .

DEFINITION. — A continuous mapping f: M -> N is called
a harmonic morphism if v o f is a harmonic function in ^(V)
for every function v which is harmonic in an open set V c: N
{such that /^(V) -^ 0).

Every harmonic morphism f: M —^ N is of class C°°.
In fact, using harmonic local coordinates (^/c) in N (invo-
king [8]), we arrange locally that the components fk == yk o f
become harmonic and hence C00 in M .

Among the general results obtained by Contantinescu and
Cornea in [4, § 3] for harmonic morphisms (between harmonic
spaces), we shall only make use of the following two basic
properties :

A non-constant harmonic morphism f: M -> N « pulls
back » subharmonic functions, in the sense that « harmonic ))
can be replaced by « subharmonic )) in the above definition
[4, Cor. 3.2]. In our case of Riemannian manifolds M , N we
therefore have

(1) A^ ^ 0 in V=^AM^O/*) ^ 0 in /^(V)

for any C^function ^ defined in an open set V <= N .
The pre-image /^(P) of any polar set P c N is polar

in M if the harmonic morphism /*: M —^ N is non-constant
[4, Theorem 3.2] (6).

Constant mappings are of course harmonic morphisms,
and so are locally isometric mappings in the case m = n .

(6) A subset P of a Riemannian manifold (or a harmonic space) M is called
polar if every point of M has an open neighbourhood U in which there exists a
subharmonic function s such that s== — oo in P n U .
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Every harmonic morphism /*: M -> N with M compact
and N non-compact, is constant. In fact, via a harmonic
embedding ^ : N -> R27^ (invoking [8]), we obtain harmonic
functions ^k o f on M , and the harmonic functions on a
compact Riemannian manifold M are all constant according
to the maximum principle.

Returning to general Riemannian manifolds M and N ,
it is obvious that the notion of a harmonic morphism is purely
local. Explicitly: The assignment, to every nonvoid open set
U <= M , of the set of all harmonic morphisms of the sub-
manifold U into N , defines a sheaf (more precisely a
complete pre-sheaf).

If L denotes a further Riemannian manifold, then the
composition of a harmonic morphism 9 : L —> M with a
harmonic morphism f: M -> N determines a harmonic
morphism f o cp : L -> N , as it should be.

2. The case N == B/1.

THEOREM — For any m-dimensional Riemannian manifold
M and any Euclidean space R" (with its standard Riemannian
structure), the following properties of a mapping f: M -> R"
are equivalent:

1) f: M -> R71 is a harmonic morphism.

2) For every harmonic polynomial H on R" of degree 1
or 2 , H o f is a harmonic function on M .

3) The components f^ , . . . , f^ of f are harmonic in M ,
and their gradients are mutually orthogonal and of equal length
\(x) at each point x e M :

gM(VA^)-^2^
for every /c , 1 = 1 , ... , n .

4) f is C2, and there exists a function X ^ 0 on M such
that

^v.f)=^v}of]

for every C2-function v on R\
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If f is a non-constant harmonic morphism, then m ^ n ,
and the functions X in 3) and 4) are uniquely determined and
identical, and X2 is C°°. Moreover, the first differential
df: M^.-> R'1 is surjective at any point x e M at which
df 7^ 0 , hence in a dense, open subset of M (by the uni-
queness theorem [I], [6]). We call X the dilatation of /*.

Proof. — The implication 1) =^ 2) is trivial. To prove that
2) ==^ 3), take first H(i/) = y^ (k == 1,. . .,n) to show that
each f,, is harmonic (in particular C00). Next take H(y) = y^y^
and HQ/) = y^ — y2 with k -=^ I to show that

2gMW/,V^) = AM(/^) - f, AM A - f, AM /, == 0
and similarly that the function X ^ 0 given by

^ = gM(V/,,V/,)

is independent of k = 1 , . . . , n .
The implication 3) ==^ 4) is straightforward on account

of the elementary identity

A»(. . f) = ft,W.,Vft (̂  . /•) + (A,,/,) (̂  . /•)

(with summation over k , I = 1, . . . , M in the former term
on the right, and over /c = 1 , . . . , n in the latter).

Finally, 4) =^ 1) because property 4) can be localized as
follows : For any open set V '= R" and any p e C^V), the
stated relation holds in /"^(V). In fact, for any given x e /^(V),
v agrees in some neighbourhood W c V of f{x) with a
function w e C^R"), and so we have ^ o f = w o f and
(A^) o f = (Aw) o f in the neighbourhood /^(W) of x ,
showing that the desired relation holds in ^(V).

At any point x e M , V/^ , . . . , V/*^ span the orthogonal
complement K^- of K^. = ker rf/* (at x) within the tangent
space MLp . Hence 3) shows that if df 7^ 0 at x , then
X(o;) > 0 , and the orthogonal vectors V/i(^), . . . , ^fnW
are linearly independent, so that K^- is n-dimensional and c?/*
surjective at x .

Remark. — In the case M c R" = N the equivalence
of 1) and 3) in the above theorem can be traced back essentially
to Cioranesco [3]. The above simple proof of the theorem does
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not seem to extend to the case of a general n-dimensional
Riemannian target manifold N except for n = 2 . For
although it is possible, by virtue of [8], to choose local coor-
dinates (?/') in N so that each yk is harmonic in N , one
cannot arrange that also ykyl and (y^)2 — {y1)2 be likewise
harmonic for k -=fc I , except if N is locally conformally
Euclidean, and even locally isometrically Euclidean if n=^2 .
(In fact, the stated properties of the local coordinates ^
would mean that the coordinate mapping from N into R^
would be a harmonic morphism by 2) of the above theorem,
and hence a local isometry up to a change of scale (if n ^ 2)
by Theorem 8 below).

In the sequel we shall see that, nevertheless, the above
theorem extends, after deletion of Property 2), to the case
of a general Riemannian manifold N of any dimension n .
This extension will be accomplished in Lemmas 3 and 4 and
in Theorem 7.

Examples. — 1) The multiplication of quaternions is a
harmonic morphism H X H —> H (when the quaternion
field H is identified in the standard way with R4 as a
Riemannian manifold). The dilatation is given by

X(a;,^=|^[+|</12.

The verification is simple. Similarly with C (or R) in place
of H .

2) Every holomorphic function f: M -> C, defined in a
domain M in C"1 == R2^, is a harmonic morphism of M
into C == R2 with dilatation ^ 0 given by

m ^f [2
x2 = v -L .A ̂ \

This follows e.g., from 2) of the above theorem since f and f2

are complex harmonic functions on M . (See also § 11.1.)

3. On the regular points for a harmonic morphism.

DEFINITION. — A regular point for a ^-mapping f: M —> N
is a point of M at which the differential df is surjecti^e. The
open set of all regular points for f is denoted by M'.
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LEMMA. — The set M' of regular points for a non-constant
harmonic morphism f: M ->• N is dense in M .

Proof. — If n = 1 , we may assume that N = R (with
its standard Riemannian metric), and hence that f: M ->• R
is a non-constant harmonic function on M . By the uniqueness
theorem [I], [6] 5 f cannot be constant in a neighbourhood U
of a point of M , and hence df = 0 cannot hold in all of U .

Now let n ^ 2 , and consider a non-void open subset U
of M . Let r denote the highest rank of df attained in U ,
and let x e U be such that df has rank r at x . Choose an
open neighbourhood V <== U of x in M such that df has
rank r at evety point of V and further that the restriction
f jV is a submersion of V onto an r-dimensional submanifold
/'(V) of N . According to [4, Theorem 3.5], /'(V) is a fine
neighbourhood of f(x) in N , and hence r == n (7).

We prefer, however, to give also another proof that r = n ,
using less advanced tools. Consider an embedded submanifold
P <= /'(V) of dimension

p = min (r, n — 2).

Since p < n — 2 , P is a polar subset of N , and hence
/^(P) is polar in M by [4, Theorem 3.2] quoted above.
Clearly V n /^(P) contains an embedded submanifold of M
of dimension p -{- {m — r) , and since this submanifold is
polar in M , we obtain

p4~ m — r ^ m — 2 ,

showing that p ^ r — 2 . In particular p < r , and hence
p = n — 2 by the definition of p . Consequently

n — 2 ^ r — 2 ,

and so n = r since trivially n ^ r .

(7) By a fine neighbourhood W of a point y e N is understood a neighbourhood
of y in the fine topology on N (the coarsest topology making all subharmonic
functions continuous). Equivalently, N\W should be « thin » (effile) at y in the
sense of Brelot. An r-dimensional embedded submanifold of an n-dimensional
Riemannian manifold N has no finely interior points except if r == n. In our
alternative proof of the conclusion r = n above we shall use instead the equally
well-known fact that an r-dimensional embedded submanifold of N is polar if and
only if r ^ n — 2 .
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COROLLARY. — If m < n {that is, if dim M < dim N),
then every harmonic morphism of M into N is constant.

Remark. — Once Theorem 7 below is established, the above
Lemma 3 becomes obvious in view of the uniqueness theorem,
as explained above in the case n = 1, and earlier in the case
N = R" treated in Theorem 2. In fact, Theorem 7 implies
that every critical (= non-regular) point x e M for a harmonic
morphism /*: M -> N has rank 0 , that is, df = 0 at x .
The lemma may be sharpened as follows :

The set Mo of all critical points for a non-constant harmonic
morphism f: M —^ N is polar in M .

Since every critical point for f has rank 0 , it follows from
Sard [13, Theorem 2] that E=/'(Mo) has Hausdorff measure
pia(E) = 0 for every a > 0 (here we use that f is C°°).
When n ^ 3 , we may take a < n — 2 and conclude that E
is polar in N . As mentioned in § 1, this implies that
Mo <= /^(E) is indeed polar in M .

An alternative, more elementary proof, valid for any
dimensions m and n, can be given, using the implicit
function theorem after having reduced locally to the case
of a harmonic function u == v o f y where ^ is chosen har-
monic and non-constant in an open subset of N . And it
turns out that the set of critical points for any non-constant
harmonic function u on M can be covered by a countable
family of (m — 2)-dimensional submanifolds imbedded in M,
and consequently the critical set is polar.

If the manifolds M and N are real analytic, then so is the
harmonic morphism /*, and hence the set E = f(M.o) of
critical values for f is countable, cf. Kellogg [10, p. 276].

4. A first characterization of harmonic morphisms.

LEMMA. — A C2•'mapping f: M -> N is a harmonic mor-
phism if and only if there exists a function X > 0 on M (neces-
sarily unique and such that X2 is C°°) with the property that

(2) AM(P o f) = X2 [(A^) o f]

for all (^-functions ^ : N -> R .
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Remark. — The stated condition can be localized so as to
apply to functions v defined merely in open subsets V of N .
This is shown just like in the special case N = R", see the
proof of 4) ===^ 1) in Theorem 2 above.

Proof of the lemma. — The « if part )) is obvious in view
of the above remark. The uniqueness of X and smoothness
of X2 are established by choosing, for any given point x e M ,
a C°° function Wy, in some open neighbourhood W .̂ of
f(x) so that AN^ > 0 in W .̂ (8). Then X is determined
uniquely in the open neighbourhood /^(Wa.) of x by X = X^. ,
where

(3) ^-AMK0^ in f-W,(A^wJ o /

and this function X^ is C00 because Wy, and the harmonic
morphism f are C°°.

The « only if part » is obvious (with X = 0) if f is constant.
Suppose therefore that f is non-constant. We shall prove
below that, for every regular point p e M' there are open
neighbourhoods Up and Vp of p in M and of f{p) in N ,
and moreover a function {Xp ^ 0 on Up such that f(Vp) cz Vp
and that (2) holds in Up (with X = p.?) for all v e C^Vp)
(hence for all v e C^N)).

Suppose for a moment that this has been achieved. It
follows then, for any x e M and p e M', that

(4) X, = ̂  in /^(W,) n Up,

in particular at the point p e M' if p e /^(WJ. (Use the
above remark, taking v = w^ restricted to V = W^. n Vp .)
From this we obtain for any x , y e M

UP) = ^p(p) = ̂ (P)

(8) In terms of a local coordinate system [y1, . . . , y " ' } for N centered at f[x)
it suffices to define

n
^(y\ . . . , y-} = ^ l^)2-

/c=l

n

Then A^w^. takes at f(x) the value 2 ^ g^(fM) > 0, and hence A^w^p > 0
in some neighbourhood of /"(a;) . ^'==i

7
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for pey-^W.,) n y-^Wy) n M ' ; and hence

X, = X, in /--^WJ n /--i(W,),

because M' is dense in M according to Lemma 3. This
shows that all the functions \p(^ e M) have a common
extension to a function X ^ 0 on all of M and such that
X2 is C00. And this function X likewise extends any of the
functions ^p(p £ M') in view of (4). For any p e C^N) we
therefore have (2) in M' (namely in the abovementioned
neighbourhood Up of any given point p e M'). Finally (2)
extends by continuity to all of M , again by Lemma 3.

It remains to establish the above assertion concerning an
arbitrary given point p of M'. Since df is surjective at p ,
a suitable choice of open neighbourhoods Up of p in M
and Vp of f(p) in N will allow us, via local coordinates,
to reduce the situation to the case where M and N are open
subsets of R^ and R", respectively, (though not with the
standard metrics), such that

M = N x Z

for some open set Z <= R7""", and further that

/N == f{y^) = y
for every x = (y,z) e M .

To complete the proof we shall show that under these
particular circumstances, there does exist a function X ^ 0
on M such that (2) holds for every ^ e C^N) (under the
hypothesis that f: M -> N is a harmonic morphism).

For any function y \—>• v(y) on N , v o f is the same
function ^ , but now viewed as a function of x == (y,z) £ M
not depending on z e Z . For fixed z e Z , A^(^ ° f) is the
result of the action on ^ of an elliptic differential operator L^
of the form

T hi ^^ I ^(^L v = a"1 —,——; + b —L;^y ^y ^y
(with summation over k , I = 1 , . . . , n). The coefficients
akl = g^(.,z) and bk are C^-functions of y e N for our
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fixed z e Z . Thus we have

(5) A^o/^^o/1 .

Now L^ and A^ are both linear elliptic second order ope-
rators with C°° coefficients and with no term without deri-
vatives. Since f is supposed to be a harmonic morphism we
infer from (1), § 1, that A^p ^ 0 implies A^ o f) ^ 0 ,
and hence L^ ^ 0 by (5). It follows therefore from the
argument given by Bony [2, § 5] in a quite similar situation
that there is a continuous function p^ on N (depending
on the temporarily fixed point z e Z) such that

L^ = P^AN^

for all v e C^N), and hence by (5)

AM(^ o f) = (p,A^) o f= (p, o /•)[(A^) o f]

for all v e C^N). Clearly p^ 0 since (g^,z)) and
(g^j(y)) (both with kyl == 1,. . ̂ n) are positive definite
matrices, and they determine the leading terms in AM^ o f)
and (A^^) o ^, respectively. The function X == \/p^ o f
depends on y e N and also on z e Z , thus altogether on
rr = (y?^) ^ M , and we have established (2) for this function
X ^ 0 under the circumstances specified above. This com-
pletes the proof of the lemma.

5. Semiconformal mappings.

DEFINITION. — Suppose that m ^ n , that is,

dim M ^ dim N .

A ^-mapping f: M -> N is called semiconformal if the restric-
tion of f to the set of points of M at which df -=^ 0 is a (hori-
zontally) conformal submersion.

Explicitly, this means that, for any point x e M at which
df ^ 0 , the restriction of df to the orthogonal complement
K1 of K^. == ker df within the tangent space M^ should
be conformal and surjecti^e.
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DEFINITION. — The dilatation X : M -> R of a semiconformal
mapping f: M -> N is the coefficient of conformality of the
above restriction^ interpreted as 0 at points where df = 0 .
TAu5

^Q-IWL
^e operator norm of df at x .

Altogether, a semiconformal mapping with dilatation X
is a C^mapping f: M -> N such that df is surjective whe-
never ^ 0 , and that df\ K^- simply multiplies distances
by HX):

(6) g^) (df(X^df{X,)) = X(^gM(X,,X,)

for every pair of tangent vectors Xi , Xg £ K^- . Clearly
X = \\df\\ is a continuous function on M .

If n = 1 , every C1-mapping f: M -> N is semiconformal
(with X^ = g^f^f) if N = R).

If n = m , then /*: M -> N is semiconformal if and only
if df is conformal off the points where df= 0 .

In the general case m ^ n we have the following dual
characterization of semiconformal mappings and their dilata-
tions :

LEMMA. — A ^-mapping f: M -> N is semiconformal with
the dilatation X ^ 0 if and only if

(7) ^(V/'WO^.^o/-)

/or k , I == 1 , ... ,n, whereby the f" = yk ° f cire the compo-
nents of f in terms of (any) local coordinates y1, . . . , y "
for N , and V = V^ denotes the gradient operator on M .

Proof. — Clearly (7) holds at a point x e M with X(r^) =0
if and only if \7f1 = = . . . = V/*" = 0 5 which means df = 0
at rr . It therefore remains to consider the case where the
points of M are regular^ and where X > 0 .

Since Vy^) , . . . , V^rr) span K^- , we see from (6)
that f is semiconformal with the dilatation X if and only if

(8) gNWWWW)) ° f = ̂ gMWW)
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for all k , I = 1 , . . . , n . Now the contravariant components
of df^f) are ^(V^W'"), a = 1 , . . . , n . Hence (8) reads

(9)i (g?p ° f)g^fw)^w^n = ̂ (vy-wo,
where the g^p denote the covariant components of g^ ,
and we sum over a, (B == 1 , . . . , n .

If we introduce the symmetric n X n matrices

G = (g^i o n, A = (gM(Vf.Vf)),

then (9) takes the form

(10) AGA = ^A .

Now, if f is semiconformal with dilatation X ( > 0), then
df is surjective (at each point x e M), and hence V/'1, . . . , V/^
are linearly independent (at x). It follows that their Gram-
mian with respect to the inner product gM (dt ^) is ^ 0 ,
that is, det A =^= 0 . Hence (10) implies

(11) A -: ̂ G-1

because also G is invertible (at rr). Conversely (11) trivially
implies (10).

Since the elements of G~1 are the contravariant compo-
nents of g^\ (11) is a reformulation of the desired condi-
tion (7), and the proof is complete.

Without recourse to local coordinates in N , the lemma
reads as follows :

COROLLARY. — A ^-mapping f: M —>• N is semiconformal
with the dilatation X ( ^ 0) if and only if

gM^M^ o f)^W o f)) = X^g^V^.V^) o f]

for e^ery pair of C1-functions v , w on N .

Remark. — As in the case of Lemma 4, the condition stated
in the above corollary extends to a localized version, in which
^ and w may be defined just in open subsets of N . Also
note that, by polarization, it suffices to consider pairs (^,w)
with v = w .
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6. Harmonic mappings.

DEFINITION. — The tension field T(/*) of a C^-mapping
f: M -> N is the sector field along f which to each point x e M
assigns the tangent sector, denoted ^{f)(x){e N^)), whose
contrawriant components ^{f){x) in terms of local coordinates
(y1,. . .,?/") in N are defined by

(12) T^) = A^f + gMW.V/^r^ o f)

with summation o^er a , [ 3=1 , . . . , n . jy^re f k = y k o f ^
and the I^p denote the Christoffel symbols for the target mani-
fold N .

DEFINITION. — A harmonic mapping is a C2-mapping
f: M -> N such that T(/*) = 0 .

For a study of harmonic mappings and their role in diffe-
rential topology see Eells and Sampson [7].

A harmonic mapping M -> R is the same as a harmonic
function on M .

Remark. — Let 9 : L -> M be a harmonic morphism and
f: M -> N a C^mapping. Then <p is semiconformal according
to Theorem 7 below. Denoting by X the dilatation of 9 ,
one finds

T ( / * o < p ) = X 2 [ T y ) o C p ]

by use of Lemma 4 and the corollary to Lemma 5. Hence
f o 9 is a harmonic mapping if f is one. (Generally, the compo-
sition of harmonic mappings does not lead to harmonic
mappings, see [7, Chap. I, § 5]).

In particular, the harmonic mappings f: M -> N depend
only on the harmonic structure on M , in the sense that two
Riemannian metrics on a manifold M determine the same
harmonic mappings of M into another Riemannian manifold
N if and only if the two metrics determine the same harmonic
sheaf on M (that is, the same harmonic functions in open
subsets of M). And the rather restrictive condition for this is
explicitated in § 8, first corollary.
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Since the identity mapping id: N -> N is harmonic
[7, p. 128], we have (9)

(13) ^(id) = A^ + g^ = 0 .

LEMMA. — Let f: M —> N be a semiconformal C'^'mapping
with dilatation X . The tension field T(/*) is then given in
terms of local coordinates {y^ in N by

^(f) = AM/-" - ̂ [(A^) o /•].

JTZ particular, ^{f) = A^/^ i/* (Ae local coordinates (y1') in N
are harmonic functions.

Proof. — Inserting (7) in (12), we obtain

T^) = AMf + ̂  o f){F^ o ̂

whence the stated expression for ^{f) in view of (13).

7. The connection between harmonic morphisms,
harmonic mappings, and semiconformal mappings.

THEOREM. — A mapping f: M -> N 15 a harmonic mor-
phism if and only if f is a semiconformal, harmonic mapping.
In the affirmative case the dilatation X of f is determined by (2)
in Lemma 4.

(9) A direct proof of (13) runs as follows (using the summation convention throu-
ghout, and writing x in place of y , and for brevity ^ == <)/^a^ ' etc') : ^Y tne

definition of F^o we have

S^P = ̂  S^S^ (&affpY + <^aY-&Tgap)

= — ̂  ft^ + 6^ + g*T&^ log |g|)

^—Aa^.

As to the second inequality note that, for every a , y >

g"? dg^ + g^ dg^ = d(g^g^) = d8^ = 0 ,

and hence, for any k and a ,

g^g^ dg^ == — g^g^ dg^ = — §i rfg^ == — dgkct,

showing that, e.g., g^g^ ^a^py =:= —^a^- l^^ally, as to g^ ^g^ , use the
identity

d\8\
^ll » ^12 » • • • gin

dgnl , gn2 , ... g^n
+ ... 4-

^11 > §12 f • - • În

gnl , gn2 , ... dg^
== l^l^^^a^-
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In other words, for any C^mapping f: M -> N , (2) in
Lemma 4 is equivalent to the conjunction of (7) in Lemma 5
and r(/*) == 0 (see § 6), using local coordinates (^) in N ,
and writing f k = y k o f '

Proof. — Suppose first that f: M —> N is a harmonic
morphism (hence C00), and let X ^ 0 denote the function
on M determined by (2) in Lemma 4.

To verify (7) in Lemma 5, note that

(14) AM(/V) = fAMf + fA^f + 2gM(Vf,Vf),
(15) A^y) = 2/-A^ + ̂ A^ + 2g^.

Compose with /* in (15), multiply by X2, and subtract
from (14). Then (7) comes out as a consequence of (2), and
so f is semiconformal according to Lemma 5.

To show that T(/*) = 0 , apply once more (2) in Lemma 4
to v = yk^ and invoke Lemma 6.

Conversely, suppose that f: M -> N is a harmonic mapping
(hence C2) which is also semiconformal, and let X denote
the dilatation of f . Then (7) in Lemma 5 holds, and Lemma 6
applies. For any CMunction v on N we have the identity

c6) A"'=<S^+(A"»>^
with summation over / c , 1=1, • • • ? ^ - Similarly, after
some calculation,

(17)

A,,(. .f) = y.W.Vf) (̂  . /) + (W) (̂ i . /).

The desired relation (2) in Lemma 4 now follows by composing
with f in (16), multiplying by X2, and comparing with (17).
(Use (7), and insert ^f = 0 in Lemma 6.)

COROLLARY. — A harmonic morphism is the same as a
semiconformal mapping f: M -> N whose components
^k ̂  yh• ^ ^ ^ terms of harmonic local coordinates (?/") in Y
are harmonic in M .
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This follows from the theorem together with Lemma 6.
Alternatively, just proceed as in the above proof. The existence
of harmonic local coordinates in N follows from Greene and
Wu [8], as mentioned in § 1.

8. The case of equal dimensions.

THEOREM. — Let dim M == dim N == n .
a) If n == 2 , the harmonic morphisms M —> N are precisely

the (semi) con formal C2 -mappings of M into N (10).
b) If n ̂  2 , the harmonic morphisms M -> N are precisely

the (semi) con formal C^-mappings with constant dilatation
(= coefficient of conformality) (11).

Proof. — We proceed in two steps.
1) Consider any C^mapping f: M -> N such that df

is bijectwe at every point of M . In local questions we may
then suppose that M and N are one and the same domain
in R71 and that f(x) = x for all x e M . However, M is
endowed with one Riemannian metric, gM 5 and N with
another, gy . For any C^function v on N we have from(16)

A kl ^ I / ^ ^ l O ^ I ^ I , ^^\<^ATM^ === sff ——— 4- ( oy-i ——° ' & ^ 1 -4- —& -̂ \ —
' ON ̂ xk 0^ ' \^ 2 ^k ' 0^ / On;^

and similarly for A^(^ ° f) = AM^ .
Suppose first that /> === ^ : M -^ N is a harmonic morphism.

Then, by Lemma 4,

AMP == ^2 AN? ,

from which we get by comparing coefficients

(18) gM = ^2^ ,
and a corresponding proportionality relation between the
coefficients to c^/Or^ in A^^ and in A^^ . In this latter

(10) That is, the mappings f which are conformal off the points where df == 0 .
(n) In other words, the only non-constant harmonic morphisms f: M —> N

in the case m = n ^= 2 are the conformal mappings with constant coefficient of
conformality, that is, the local isometries (up to a change of scale).
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relation we insert (18) and the following consequence thereof:

(19) |gMl ^^IgNl.

The result is simply
^Og^Q

v / ^xk

for k = 1 , . . . , n , showing that X is a constant if n ^ 2 .
By the preceding theorem, f is conformal (since m = n),
and X is the dilatation, or coefficient of conformality, of f .

Conversely, suppose that the immersion f: M —> N is
conformal (and C2). Then we have again (18) by Lemma 5,
and hence (19) holds as before. If furthermore the dilatation
X( > 0) of f is constant, or if n = 2 , then the above calcu-
lations may be reversed, showing that (2) in Lemma 4 is
fulfilled, so that f is indeed a harmonic morphism.

2) In the general case we may apply what was obtained
above to the restriction f of f to the open set M' of all
regular points for f (cf. § 3).

First let f: M -> N be a harmonic morphism. By the
preceding theorem, f is semiconformal, and its dilatation
X ^ 0 is the function determined by (2) in Lemma 4. Suppose
that n^2. According to Step 1 above, ^=\\df\\ is cons-
tant and > 0 in each component of M'. (We leave out the
trivial case of a constant mapping /*.) Thus VX2 ===0 in
M', and hence in all of M by Lemma 3. This shows that,
actually, X2 is constant in all of M .

As to the opposite direction, consider separately the two
cases a) and b).

Ad a) Let n = 2 , and suppose that /*: M -> N is semi-
conformal and of class C2. Then we may suppose that M
and N are open subsets of C with its standard Riemannian
structure (12). Without reference to Step 1 we may now
argue as follows :

Let M+ , M_ , and Mo denote the subsets of M in which

(12) This is because every 2-dimensional Riemannian manifold is conformally
flat, that is, may be mapped locally conformally and diffeomorphically into C.
And every conformal dineomorphism between 2-dimensional Riemannian manifolds
is a harmonic morphism (along with its inverse) according to what was proved
above in Step 1.
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the determinant of df is > 0 , < 0 , and = 0 , respectively.
Then M+ and M_ are open, and f is holomorphic in M+ ,
antiholomorphic in M_ , and constant in the interior of the
closed set Mo . Hence

A/" = 0 in M+ u M_ u int Mo ,

that is, in the dense complement of the boundary of Mo .
By continuity, A/* ==0 in all of M , and therefore ()/*/oz
and b/Yoz are likewise complex harmonic in M . If M+
is not void, the harmonic function ^f/^z on M equals 0
in M+ and hence in all of M , showing that M+ = M ,
so that f is holomorphic in all of M . Similarly, f is anti-
holomorphic in M if M_ 1=- 0 . Finally, f is constant in M
if M"^ == M_ == 0 . The proof of a) is thus completed by
remarking that every holomorphic (or antiholomorphic)
function /", defined in a domain of C , defines a harmonic
morphism into C (cf. § 2, Example 2).

Ad b) Let 7 Z ^ 2 . If /*: M —^ N is a semiconformal
C^mapping with constant dilatation X , then either X = 0 ,
and so f is constant, in particular a harmonic morphism,
or else X > 0 , in which case df is bijective at every point
of M , so that we are back in Case 1.

COROLLARY. — Two Riemannian metrics g and g' on the
same manifold M determine the same harmonic sheaf on M
(that is, the same harmonic functions in open subsets of M)
if and only if they are proportional: g' = X2^ , and with a
constant X ( > 0) in the case dim M ^=- 2 .

COROLLARY. — a) A mapping f of a Riemann surface (13)
into another is a harmonic morphism (or equivalently : C2

and semiconformal) if and only if f is either holomorphic or
antiholomorphic.

b) When n -^ 2 , the non-constant harmonic morphisms

(13) It is not necessary to fix a particular Riemannian metric on a Riemann
surface M since the harmonic sheaf on M is completely determined by the natural
requirement that the holomorphic functions in open subsets of M should be complex
harmonic, that is, of harmonic real and imaginary part.
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of a domain M c R71 into R" are precisely the (restrictions
to M of the) similarities^ that is, the affine conformal mappings
of R" into itself,

Here a) is well known; it follows from the proof of a) in
Step 2 of the above proof. And 6) follows from b) of the theo-
rem since it is easy to show that every locally isometric
mapping f: M -> R" must be affine (because f preserves
local, hence also global Euclidean distances).

9. The symbol of a semiconformal mapping.

Consider a smooth (for simplicity C°°) mapping f: M -> N
of a Riemannian manifold M of dimension m into a Rieman-
nian manifold N of dimension n , and let a point a e M
be given.

The order O^/*) of f at a is defined in terms of local
coordinates {x1) in M and (y^ in N , centered at a
and f{a), respectively, as follows :

Oa(/*) is the smallest among those integers p ^ 1 such
that, for some k = 1 , . . . , n , the /c'th component

f = ^ o / * of f,

expressed as a function of the local coordinates (x1) of x ,
has a non identically vanishing p'th order differential

rfPf(0)(^)= S ^D,f(0)^^0.
|a| ̂  p a •

Here the multiindex a = (04 , . . . , a^) of order

Ia! = 04 + • • • + a,n = P

ranges over all m-tuples of integers o^ ^ 0 with the sum p .
Moreover a ! = a^ ! . . . a^ ! , and

( ?\ \ai / ^ \ a m
Da = ^) • • • (̂ ) ; sa = ̂ al • • • ̂

where ^ , . . . , ^m are the contravariant components of the
generic vector ^ e M^ . We write O^/*) = oo if ^'(O)
vanishes identically for all k = 1 , 2 , . . . , n and all p ^ 1 .
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DEFINITION. — The symbol a^f) of a C30-map ping f: M -> N
at a point a e M at which f has finite order p is the mapping

^{f) : M, -> N^)

defined in terms of local coordinate systems {x1) and (y^
for M and N , centered at a and f{a), respectively, as
follows : The contravariant components a^(f) of a^(f) are

^(f)W=-LdPfk{0)^)= S -^D^O)^,
P - | a |==pa 1

with the notations and conventions explained above.

It is easily verified that the notions of order CU/*) and
symbol ^(f) of f at a are invariant under changes of
local coordinates in M and N centered at a and f(a),
respectively. (In contrast to this, the differentials ^(O)^
defined by the same formula as above, have no invariant
meaning for p > O^/*).)

In the case N = R of a C°°-function f: M -> R of finite
ordre p at a e M , the symbol c^(/1) is given by

^{n=^dpfw.
For any C'-function f: M-> R , any a e M , any

t == 1 , . . . , m , and any integer p ^ 1 one easily obtains
the identity

f20) ^dpf{om) = (^^^(^(^(^

in terms of local coordinates (a;1,. . .^m) in M centered at a .
Here D, == ()/c^1.

THEOREM. — a) If f: M -> N is semiconformal and of
class C00 with the dilatation X , and if f is of finite order
^a(f) == p at a point a e M , then the symbol CT^/*) : M^ -> N^)
is semiconformal with the dilatation \/c^(X2).

b) If f: M -> N is a harmonic morphism, then f is of finite
order at every point a e M , and the symbol a^f) is a harmonic
morphism- of M^ into N^) .
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Proof. — Ad a) The assertion is evident if p = 1 , noting
that then ^a{f) == df (at a). In the case p > 1 choose local
coordinate systems (x1) and (z/^) for M and N , centered
at a and /*(a), respectively, and so that moreover

(21) gl.(a)=^, g^))-^
for i , /' == 1 , . . . , m , / c , Z = = l , . . . , n . Thus the tangent
spaces M^ and N^) can be identified with R7" and R'1

with their Euclidean metrics. In the sequel all differentials
refer to the given point a e M , or rather to 0 e R7", since
all calculations will be performed in terms of the local coor-
dinate systems chosen above. In particular, f1' = yk o f is
considered as a function of the local coordinates in M .

For any i = 1 , . . . , m and k = 1 , . . . , n we have

O.(D^) > 0,(f) - 1 ^ p - 1,
and hence we obtain from (20), by Taylor's formula,

D^^^^-W'+OM

=^D^f+0(rP)

for r —> 0 . Here r denotes the Euclidean norm of the
generic point of M (near a), identified with a point of R7"
(near 0) via our local coordinate system in M . (We now
write Di also for c)/^1.)

Since ^^dpfk is a homogeneous polynomial of degree
p — 1 in (S1,. . .5^), it follows in view of Lemma 5 together
with (21) that

^kl = S D,f.D^
1=1

=——SD.^fD^/-'+O(^-i)
P - i=l

for / c , ? = = 1 , . . . , T Z . Here the leading term in the last
expression is a homogeneous polynomial of degree 2p = 2 .
Since X2 is of class C°° along with f, it follows that
^(x2) =0 for 0 ^ q < 2p — 2 , and that

A /| m

'——^^(x^^^ S D^f.D^f.^p — ^ i pi i=i



HARMONIC MORPHISMS BETWEEN RIEMANNIAN MANIFOLDS 131

This shows that indeed the mapping a^f) is semiconformal
with dilatation [L given by

1
n2 ^ -L ^2p-2/^2\
^ (2p-2)! l ;-

Since Oa(/') = p , there is an index k such that d^ ^ 0 .
Being homogeneous of degree p > 0 , d^ cannot be constant
and hence D,^/^ ^ 0 for some i = 1 , . . . , m . Conse-
quently, d2?-2^2) ^ 0 , 0,(X2) == 2p - 2 , and

^)=^-^^-W=^.

Ad 6) A harmonic morphism /*: M -> N is C", and f
has finite order at every point a e M by the uniqueness
theorem [I], [6]. According to [8], N admits local coor-
dinates (y^), centered at f{a), which are harmonic in N .
Replacing these harmonic coordinates by suitable linear
combinations of them, we may arrange again that (21) holds.
Note that fk = yk o f is harmonic in M (near a) :

(22) A^f = 0 .

As before let 0^(f) = p . Since f is semiconformal by
Theorem 7, so is a^(f) according to Part a), and it remains,
by the corollary to Theorem 7 (or just by Theorem 2) to show
that the coordinates of a,,(f) are harmonic functions in M^ .
Since M,, is identified with R^ with its Euclidean metric,
we shall thus prove that Arf^ =0 in R7" for k = 1, . . . , n ,
where A denotes the classical Laplace operator on R^ We
may assume that p > 2 , since dfk is a linear form, hence
harmonic.

By a two-fold application of (20), and by summation over
i = 1 , . . . , m , we get

(23) ^^-(ir1^'"-2^"-
m

Next A/"" = S ̂ y should be compared with
1=1

AMf^S^D.^+^.l^D.loglgMl +D,^)D/'C}.
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Inserting

fk =^d^)fk + Q(^+1)

D^=(7^LL^^-lD^+o(rp)5

etc., and g^ = 8^' + 0(r), log^l = 0(r), etc., we obtain
from (22)

0 = AM^ =—l-d^ Af + O(^-i).
IP ~ z; •

Since rf^2 A/^ is homogeneous of degree p — 2 , it must
vanish identically, and we conclude from (23) that indeed
A^f = 0 .

10. Openness of semiconformal mappings.

LEMMA. — Let 9 be a semiconformal C2-mapping of
R^^O} into R'1 (m ^ n ^ 2) such that 9 i5 positive homo-
geneous of some degree p e R\{0} :

<p(pa;) = p^rr)

/or aH p > 0 and x e Rw\{0}. Further suppose that 9
15 normalized as follows :

(24) sup 1 9 ( ^ ) 1 = 1 .
|a-|=l

T/ien </iere exists^ for e^ery gwen ZQ e R^-j^O}, a continuous
mapping ^ of R"\R+ZO into Rm\{0} such that 9 o ^ = id
and

\W\=\y\11"
on R"\R+ZO , and consequently

I 9(^)1 =\^V
for every x in the range of ^ .

Proof. — For any dimension q the unit sphere in R^
will be denoted by S^-1. By the homogeneity of 9 it suffices
to construct for each ZQ e S"-1 a continuous mapping

+: S^Y^o} -> S7"-1
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such that 9 o ^ == id , and next to extend ^ to R^VR+ZQ
so as to become positive homogeneous of degree 1/p .

Denoting by X the dilatation of the semiconformal mapping
9 : R^^O} —> R", we have from Lemma 5 (or Theorem 2) :

(25) V9,.V9^X2^

for / c , Z = = l , . . . , n .
In view of the homogeneity of 9 , (24) extends to

19 (^ )1 ^sup " v /i == 1 .
a-eR^NtO^ \x\p

The supremum is attained on the cone R+r\{0}, where

(26) F = { x e S-| 19(^)1 = 1 }
is non-void and compact by (24). Since l^]^ — 19(rr)[2 ^ 0
in R^^O}, with equality on F , we have

1/2 V(|^ - | 9W) = p\x\^x - S 9^)V?^) = 0
/c=l

for x e r . When combined with (25), this shows that \{x) > 0
for x e r , and further that

p2 ̂  p2|^4p-2 ̂  ^(^)2 ^ ^^(^)2 ̂  X^)^^)]2 = X(^)2,

/c=l

that is,
(27) Hx)=\p\ for x e F .

Choose a point e e F . Since |9(e)| == 1 , we may arrange
(after an orthonormal change of coordinates in R") that

(28) 9(^=(0, . . . ,04) .
For any ( e R and any point

,, __ /,, ,, \ ,= ^n-2 / c: P71-1^u — \u^ . . . ,u^_i; e o v - •tv /
write

(29) Y(^u)=Y(t,Ui,...,u,_i)
== (ui sin(,. . .,u^_i sint, cost).

When considered as a function just of ( e R for fixed u e S'1"2

we shall usually write

yW = (?/i(t),...,^(f)) =Y(t,u).
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Let us consider for fixed u e S"-2 the following first order
ordinary differential system with the unknown function
x == x(t) = (a;i((),. . -,x^(t)), writing x = d , x [ d , t , etc :

(30) X^A == 1 y^v,(x)
fc=l

n-1

= cos t ^ u^cf^x) — sin ^Vcp^)
/c=l

with the initial condition a;(0) = e . Since e e F , it follows
from (27) that X(e) > 0 , and hence that X > 0 in a neigh-
bourhood of rc(0). Our initial value problem is therefore non-
singular and determines a unique solution

x{t) = X{t,u) = X(^,...,u,_i)

along which \{x) > 0 , all in some maximal open interval
I(u) c R containing t = 0 . It is well known that the
mapping ((,u) i—>- X((,u) is continuous.

For ( e I(u) we have from (30) and (25)

^^(x{t))=^7^(x(t)).x{t)

= W))-2 S 2/^)V9^(<)).Vy^(^))

= ^(^).

showing that 9fc(o;(()) = y^t) because this holds for ( = 0
in view of (28), (29), and x(0) = e . Thus

(31) <p(^)) = y{t) for ( e I(u).

Using Euler's identity for positive homogeneous functions :

x^^(x) =p^{x),

we further obtain from (30) combined with (31) :

X(^))2^).^) = 5 y,(t)x(t)^<p,(x{t))
k=l

n

== P 2 yk{t)<p,.{x{t))t=i
=P^)•^)=0
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since \y{t)\2 = i . It follows that x(t).x(t) = 0 , and so

(32) \x{t}\ =1 for t e I(u),

because this holds for ( == 0 .
From (31) and (32) we conclude that x{t) e F for ( e I(u),

again since \y(t}\ = 1 . Hence by (27)

•h{x{t)) =\p\ for t e I(u).

Having thus found that \[x(t)) remains constant > 0 ,
we derive from the theory of first order ordinary differential
systems that

I(u) = R

since x{t) moves on the compact sphere S7""1 by (32).
Altogether we have now constructed, for any given point

e e r , a continuous mapping X , viz.

(33) (t,u) ̂  X(^u),
of R X S71-2 into S7"-1 with range in F and such that

(34) 9 o X = Y ,
(35) X(0,u) = e .

Since Y , defined in (29), maps R X S""2 onto all of
S71-1, while X maps R X S"-2 into F , it follows from (26)
and (34) that

cp(r) = s-i.
As mentioned in the beginning of the proof, a point ZQ e S'1"1

is given. Since 9(F) == S71"1, we may choose the point e e F
(the starting point for the preceding construction) in such
a way that

(36) 9(e) = — ZQ .

With this choice of e we consider the mappings Y and X
from (29) and (33), but from now on with t confined to the
interval

0 < ( < TT ,

as far as Y is concerned. Then Y becomes a homeomorphism
of ]0,7r[ X S""2 onto S^V^o,—^}) and so we have a
continuous mapping

^ = X o Y-1



1-00 B. FUGLEDE

of S^^Zo,—^} into F c S7"-1 with the desired property

(37) ^ o ^ = id ,

according to (34), although so far merely on S71-1^^,—-^}.
It remains only to extend ^ by continuity to the point

-zo=cp(,)=(0,...,o,l),
cf. (28) and (36), by putting ^(<p(e)) = e , for then (37)
holds also at — ZQ :

(? ° +)(—^o) = 9(^(9^))) = <?{e).

To verify the continuity of this extension of ^ to — ZQ ,
note first that

Y-iy=(^) (e]0,7r[ x S-2)

need not converge (in R X S"-2) when y -> — ZQ (through
points of S71-1^^,—^)})? but we do have ( -> 0 on account
of (29) which shows that cos t = Y^,u) = y^ -> 1 as
y -> — ZQ = (0?- • -Al)- Consequently

W = X o Y-i(2/) = X((,u) -> X(0,u) = .

by (35) and the uniform continuity of the mapping (33) on the
compact set [0,7r] X S""2.

THEOREM. — a) If dim N ^ 2 then e^ery semiconformal
C"-mapping f: M -> N is open at any point of M at which f
has finite order.

b) Every non-constant harmonic morphism f: M -> N is an
open mapping. In particular, f(M) is open in N .

Proof. — Ad a) Choose local coordinates in M and N as
in the proof of a) in Theorem 9. Let p = O^f) denote the
finite order of the semiconformal mapping f at the given
point a e M . According to Theorem 9 the symbol a^{f) (^ 0)
is a semiconformal mapping of R/" into R" (with the Eucli-
dean metrics). Write

(? = ̂ .(/^

where the constant a > 0 is so chosen that (24) is fulfilled.
Since ^a(f)j ^d hence <p , is homogeneous of degree p ^ 1 ,
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the above lemma applies to cp . The components 9^ of 9
are the polynomials

^{x)=^d^Wx), k = l , . . . , n .

For any dimension q we denote by B^ the closed unit
ball in R^. Via the local coordinates chosen, M and N may
be identified with open neighbourhoods of 0 in B/" and R",
respectively (but with metrics that need not be Euclidean
except at 0). Now let r > 0 be given so that the ball rB7"
is contained in M . We shall prove that /'(rB7") is a neigh-
bourhood of f{0) = 0 in R/1. By Taylor's formula there is a
constant [B such that

(38) |a/*(a;)—(p(a;)| ^ (B|^+1 for xer^\

We propose to show that

^B-) ^ ^-W

where we write

(39) 8=4min(^)

Thus let

(40) yoe-^B"
oc

be given. Since f{0) = 0 , we shall assume that yo + 0 .
Now consider the continuous mapping ^ constructed in the
lemma, taking ZQ = — yo . Further write

(41) g = a/'o ^ .

Since 9 o ^ = id and [^(z/)| = \y\llp (on R^R+^o), we
have from (38), applied to x = ̂ {y) for any y e r^VR^o
(hence ^(y) e rB7")

(42) \g{y)-y\ ^ Pl+^l^-PlyI1^.
Now consider the closed ball K <= R"\R+ZQ of radius a[yo|/2
and center a?/o . By (40) and (39),

\V\ ^ -|^l2/ol ^ |-8 ^ rP
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on K , and hence we have from (42) and (39) for all y e K :

\g{y)-y\ ^ W^ ^ ^^Y-J-8)^ ^ ̂ ^
^ \ ^ / 0

which is less than the radius a| y^\ 1/2 of K . It follows
therefore from a well-known version of Rouche's theorem
and Kronecker's existence theorem that there exists y G K
with g{y) = OC2/0 (the center of K), and hence according
to (41)

f{W)-^g{y)=y^

The point x = ^ / ( y ) e rB"1 thus satisfies f{x) = y^ .
Ad b) The case n ^ 2 is covered by Part a) in view of

Theorems 7 and 9. In the remaining case n = 1 we may
assume that N = R (with, the standard metric), so that f
is simply a harmonic function on M : A^/* = 0 . Every neigh-
bourhood of a point a e M contains a connected open neigh-
bourhood U of a . Since f(V) <= R is connected, it is an
interval containing f(a), and indeed a neighbourhood of f(a);
for f{V) cannot reduce to {f(a)} according to the uniqueness
theorem [I], [6], nor can f(a) be an end-point of f{V) on
account of the maximum principle for harmonic functions
on M .

Remarks. — 1) Part a) of the theorem fails to hold for n = 1,
as shown e.g. by the mapping f{x) == \x\2 of R7" into R,
which is trivially semiconformal and has finite order 2 at the
only singular point x == 0 , but is not open at that point.

2) In the more general frame of Brelot harmonic spaces
it was shown by Constantinescu and Cornea in [4, Theorems
3.3 and 3.4] that every infective harmonic morphism /*: M -> N
is open and that f~1 is a harmonic morphism of f(M) into M .
However, in our case of Riemannian manifolds M and N ,
we obviously must have dim M == dim N if f: M -> N is
injective, and so the stated results from [4] become well
known in the manifold case in view of the classification in
Theorem 8 above.
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11. Supplementary results and examples.

In this section R" is always endowed with its standard
Riemannian metric and hence with its classical harmonic
structure. Also, C is identified, as a Riemannian manifold,
with R2.

11.1. Holomorphic mappings. Let M and N be complex
(analytic) manifolds with

dime M = m , dime N = n .

Suppose that M , and similarly N , is endowed with a C°°
Hermitian metric h^ with the property that every holo-
morphic function on M is complex harmonic with respect to
the Riemannian metric

m __

dsl,= S h^dz^'dz1-
j , fe=i

on M (14). Explicitly, this requirement means that

^ b,(/^ dot (^)) = 0
j=i

for k = 1 , . . . , m , where the matrix {h^) is inverse to
WJ-

Under this assumption on M and N , a holomorphic
mapping f: M -> N is a harmonic morphism it and only if
f is semiconformal, or explicitly : it and only if there exists
a function X ^ 0 on M (the dilatation of /*) such that

m ___

s ^ v v^= X2/^ ° f
J,k=l

for every a, (B = 1 , . . . , n , whereby />a = w^ o f denote
the components of the holomorphic mapping f in terms of
local holomorphic coordinates w"- in N .

This result is a particular case of the corollary to Theorem
7 (15).

(14) It is well known that every Kdhler manifold has this property. (The converse
is false except for n ^ 2 .) More generally, any holomorphic differential form on
a Kahler manifold is harmonic.

(16) It might be added at this point that every holomorphic mapping f: M ->- N
between Kahler manifolds is a harmonic mapping [7, p. 118, third example].
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11.2. Riemannian submersions. Let again M and N be
arbitrary Riemannian manifolds, and consider a Riemannian
submersion f: M -> N , or slightly more generally a semi-
conformal mapping with constant dilatation X > 0 . It is
known that f is a harmonic mapping if and only if each
fiber f~l{f{x)), x e M , is minimal (as a submanifold of M)
[7, p. 127 f.]. Invoking Theorem 7, we see that this condition
of minimal fibers is also (necessary and) sufficient for f to be a
harmonic morphism.

Examples. — 1) For any two Riemannian manifolds M
and N , the projections M X N -> M and M X N -> N
are harmonic morphisms with dilatation X = 1 .

2) Multiplication on a Lie group G endowed with a bi-
invariant metric. When G X G is given the product metric

^GXG((XI,Y,),(X,,Y,)) = ̂ (Xi,X,) + go(Yi,Y,),

the multiplication mapping G X G ->- G is a harmonic
morphism with the constant dilatation X = \/2 . (Like the
preceding example, this can also be easily verified directly.)

Specific examples : G = S0(n) (the special orthogonal
group), and G = S3 (the unit quaternions).

12. Extension to /i-harmonic morphisms.

Let again M and N denote two Riemannian manifolds
of dimensions m and n, respectively. In this section we
shall suppose that a C^-function h > 0 is given on M .

DEFINITION. — A C2-function f: U -> R , defined in an
open set U <== M , is called h-harmonic if

(43) AMU + 2gM(Vlog h, Vu) = 0 .

Clearly the constant functions on M are /i-harmonic.

Remarks. — 1) If h is harmonic: ^h = 0 , then (43)
is equivalent to

AM(AU) = 0

in U . Thus the /^-harmonic functions are obtained from the
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harmonic functions in U in this case simply by division by h ,
as it is standard in potential theory.

2) If m 7^ 2 , we may perform a conformal change of
metric on M so as to reduce the notion of A-harmonic functions
(with respect to the given metric g^ on M) to that of a
harmonic function with respect to the new metric g^ on M
given by

(44) ^^^g^.

In fact, the Laplace-Beltrami operator A^0 on M with
respect to the metric g^ is found to be

A^u = h~^ (AMU + 2gM(Vlog h, V u)).

DEFINITION. — An h-harmonic morphism is a continuous
mapping f: M -> N such thaty for every harmonic function v
in an open set V <= N , the composite function v o f is h-har-
monic in ^(V).

Remark. — This notion is of interest only for m ^ 3 .
In fact, for m = n -= 2 the argument given in the proof of
Theorem 8a shows that there are no non-constant A-harmonic
morphisms M -> N except in the previous case where h is
constant (==!) .

In the sequel we shall therefore assume that m -^=- 2 .
Then /*: M -> N is an A-harmonic morphism if and only if f
is a harmonic morphism with respect to the modified metric (44)
on M (and the given metric on N). Hence we can carry
over mutatis mutandis the general results of the preceding
sections.

While Lemma 3 carries over to A-harmonic morphisms as it
stands, (2) in Lemma 4 should now be replaced by

AM(^ o f) + 2gM (Vlog h , V(p o /•)) == X2[(A^) o /•].

The notion of a semiconformal mapping f: M -> N (§ 5) is
the same for both of the conformally equivalent metrics g^
and g^0 on M , but the dilatations X and X'70 of such a
mapping with respect to g^ and g^0, respectively, are
related by

(45) \w = h~^~h .
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From the corollary to Theorem 7 and from b) in Theorem 8
we now obtain the following result, which implies that, for
m = n ̂  2 , a mapping f: M —^ N is an A-harmonic mor-
phism for some h > 0 if and only if f is a conformal C2-
mapping.

THEOREM. — a) If m ^ n and m ^ 2 , a mapping
f: M -> N is an h-harmonic morphism if and only if f is
semiconformal and the components f1' = yk o f of f are h-har-
monic functions for some (and hence any) choice of harmonic
local coordinates (y^ in N .

b) If m = n ̂  2 , then /*: M -> N is a non-constant
h-harmonic morphism if and only if f is a conformal C2-mapping
with dilatation

2

X = const. A71-2.

Remark. — The fact that what we call an A-harmonic
morphism between domains in R3 must necessarily be
conformal (if not constant) is mentioned in Kellogg [10,
p. 235].

We close by two examples of A-harmonic morphisms well
known from potential theory, one with m > n , the other
with m = n .

Example 1 (Axial symmetrization in R4). — Let M c: R4
be the domain in R4 consisting of all x = (rci,. . .,^4) such
that

p = (.r2 + xl + xl}^ > 0 ,

and define f: M — R2 by

fW = (AW2(^)) - (P^4).

Then f is clearly a Riemannian submersion, that is, a semi-
conformal mapping with dilatation X = 1 . Since the func-
tions 1 and n^/p are harmonic on M , /i and f^ are A-har-
monic functions on M when we take

h=^- (onM).
P

It follows therefore from Part a) of the above theorem that
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f: M -> R is an A-harmonic morphism for this function h .
There is an immediate extension to the case m > 4 , n=m—2 ,
taking for p and h the above functions of x^ , x^ , ^3 .

Example 2 (The Kelvin transformation). — Let M be a
domain in R71. As shown by Liouville [II], the only non-
constant, smooth conformal mappings of M into R" with
n > 3 are the Mobius transformations, that is, a similarity
(see the second corollary to Theorem 8) possibly composed
with an inversion in a sphere. If the sphere has centre a e R71

and radius p , then the inversion f: R^^} -> P"^^
is given by

/N^+^^-a).

The dilatation X of this conformal mapping f is given
(for any dimension n) by

<46) ^=^r———

According to Part b) of the above theorem, f is an /i-harmonic
morphism with

h(x) = -,————,— ,x / \x — a^-2

and this morphism is the classical Kelvin transformation in R"
(see Kellogg [11, p. 232] for the typical case n = 3). Note
that also in this case, h is harmonic in M (= R^^a}),
cf. the first remark to the definition of A-harmonic functions.

Remark. — Stated in more modern terms, Liouville's proof
essentially amounts to establishing that a Riemannian metric
of the form g^ = X2 S^. (with X > 0 a scalar of class C3)
has curvature tensor 0 if and only if X is either a constant
or else of the form (46), and this fact is easily obtained by a
straightforward calculation. Another classical proof is based
on the conformal invariance of the lines of curvature on a
surface. Liouville's proof requires that f be of class C4. The
problem of weakening the smoothness hypothesis was solved
completely by Resetnjak [12] who showed that C1 (and even
less) will do.
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