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ON THE FRACTIONAL PARTS
OF x/n AND RELATED SEQUENCES. III

by B. SAFFARI and R.-C. VAUGHAN

1. Introduction.

The object of this paper is to investigate the behaviour of
@, (x, h) (for notation see [2] and [3]) when

h{n) (n > 1)

"~ logn
and h(n) = log n. In contradistinction to the case h(n) = 1/n
1t i1s immediately apparent that the behaviour of ®,, 1s
non-trivial even when y is a large as e¢”. For simplicity we
only investigate the situation when & 1s the Toeplitz trans-
formation formed from the simple Riesz means (R, 2,) with
A, = 1.

Theorems 1 and 2 deal with the case A(n) = 1/log n, whereas
Theorem 3 deals with A(n) = log n. While 1t is well known
([1], Example 2.4, p. 8) that the sequence logrn is not uni-
formly distributed modulo 1, Theorem 3 shows that it 1s uni-
formly distributed in the present context.

2. Theorems and proofs.
2.1. Let
(2.1) B, () =y ¥ culzflogn).

2Lagy

1
Tueorem 1. — Suppose that 0 < « < 1 and logy < z?.
Then
. ,(s) = « + Ofay~ (log 2)) + O~ log? y).
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Cororrary 1.1. — Suppose that 2z = o(yloga) and
1
logy=o(x2> as x — . Then

B,y (x) >« as x— .

Proof. — Clearly by (2.1),

(2.2) yE, ,(«) = 5(0) — S(«)
where . _
23) S =3 8 1
m=t n é:w'll(fzzﬁ)

and 0 < 8 < 1. Let

w0 e
and ' '
(2.5) TE®) = 2 Y L

_x_ @/(m+8)
M <m< g2~ B 2EnKe

Then, by (2.3),

- (26) S(8) = T(8) + ([y] — HM;.
By (2.5),

T(B) = i+ §) o
(B) MP<mZ€H—B ‘ + 2<n§e.wln log n

— He"™ 4 O(H) + O(e*™)
where H is a real number at our disposal. Hence, by (2.4),

(27) T(O) — T(oc) — 2 etim __ 2 eac}(ni+a)
Mo<m<H M, <m<H—a
_ + O(H) + O(e™™)
whenever H > M, + 1. Thus

(2.8) T(0) — T(«) = I(0) — I(«) 4+ O(H) + O(e"™),
where
H—3 u
28 1p) = [ ([u] = Myeresh e

Let b(u) denote the first Bernoulli polynomial modulo one,
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b(u) = {u} — 1/2. Then, by (2.9),
(2.10) 1(8) = j;:ﬂ (v — Mg — B — 1/2)e*"wp2 dy

— M:p b(u — B)e*"zv2 do.
The argument now divides into two cases according as
M0=Ma or M0=Ma+1.
The case My = M,. Write M for the common value. Then,
by (2.10),

Mo 1 H »
I(0) — I(a) = j;{ (v —M-— 7> "z do 4 o ﬂu e“'zo? do

H H
— f b(v)e™” xp~t dv + by — a)e zo=2 dp.
M

1 M+-a

The first integral contributes < e”™zM-2, the second 1is
a(e”™M+®) — ¢#M) gnd by partial integration the last two are
easily seen to contribute < ¢zM-2. Hence, by (2.8),

(2.41) T(0) — T(a) = ae*®™+o 4 O(H)
+ 0(e”™) + O(e*MzM-2).

Recall that M = M, = [2/logy] and logy < 2. Thus
"% = exp (log y + Oz log* y)) = y(1 + Oz~ log® y))

and e"MzM2 = O(yz~'log?y). Hence, by (2.2), (2.6) and
(2.11)

YE.y(¢) = ay + O(H) + O(e™) + O(ya~ log* y).

now gives the desired conclusion.

. X
The ch01ce H = m

The case My =M, -+ 1. Write M for M, Then, by
(2.10),
H

[(0) — I(a) = (& — 1) ez do
M41
M1

— v—M—m—i>ew/”x0‘2dV
Mo 2
+ O(e*M+ag(M + a)~2).
Now proceeding as in the previous case we obtain

T(0) — T(«) = (« — 1)y 4 O(H) + O(e”™) + O(ya™ log* y).
3
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Since My, = M, + 1, this with (2.6) and (2.2) and the choice

H= Wsﬁogx) gives the required result once more.

2.2. One might expect that the theorem holds even when y
1s close to e”, but this is false. In fact the next theorem indi-
cates that Theorem 1 is essentially best possible, at least as
for as the upper bound on y is concerned.

4
2

and y = exp (2). Then limsup E, («) =1 and

Taeorem 2. — Suppose that 0 < a < 1, <6 <1

lim inf 8, ,(«) = 0.

&Z>0

Proof. — We begin by following the proof of Theorem 1 as
far as (2.7). Suppose that 0 < B < 1,

(2.12) y = exp («
and
(2.13) H =z

Then, by (2.4),
x
(Mg + 2)(Mg + 3)
Thus, by (2.13),

E e=Hm+() < a;e“’”"(“.%*‘l'*‘p)exp (_ C1x20—1).
My+1<m<H—

Hence, by (2.7) and (2.13),
(2.14) T(0) — T(x) = (e"MetD) — gelM 414a))
(1 + O(z™)) + O(a).

To obtain the inferior limit, let N be a large natural number
and let

(2.15) v = @y — (N + a)is.

Then, by (2.4) and (2.12), M, = M, = N. Hence, by (2.2),
(2.6), (2.12), (2.14) and (2.15),

YEa,y(2) = M) = o(y)

> @t (log yf = a*

as N — oo.
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For the superior imit, take instead

1

(2.16) & = zy = N0,

Then, by (2.4) and (2.12), M, =M, — 1 =N — 1, so that,
by (2.2), (2.6), (2.12), (2.14) and (2.16),

YEayle) ~ — eI 4y ~ y
as N — oo.

2.3. The latter part of the paper is devoted to h(n) = log n.
It is well known that the sequence logn 1s not uniformly
distributed modulo 1, and in view of this the next theorem is
perhaps rather surprising. However, one can take the view
that z being permitted to go to infinity, however slowly by
comparison with y, crushes any unruly behaviour of the
logarithmic function.

Let
(2.17) Q,,(a) =y 1Y c,(xlogn).

n<y

Tueorem 3. — Suppose that 0 < « < 1,2 > 2 and y > 2.
Then

Q, (a) =a 4+ O(z log x + 2*3y~23 (log ay)*?).

CororLrary 3.1. — Suppose that a'?logax = o(y) as
x — 0. Then
Q,,(x) >a as x> oo.

Proof. — Let
(2.18) M = [y*Bz1? (log xy)2®] + 1.
Then, by Theorem 1 of [2] and (2.17),

(219) Q, (a) — x <y + M- + y—léfl k| 3 effwlog n)|
Let

(2.20) Y =[y] +
and

(2.21) T = 4rks.
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Then, by Lemma 3.12 of Titchmarsh [4],

1 :
1 1+l—ogy+tT

Y, e(kx log n) = 7— f

n<y 27”

C(s — 2rika) % ds

410 <<% n 1) log :vy>

where ¢ 1s the Riemann zeta function. By moving the path
of integration to the line o = 1/logy, one obtains

. —= +-iT
E n . _y1+2mkac i flogy . . E
2, e(kx log n) = 11 Inika + 2 Us — 2mikz) . ds
log ¥

+ O(((kz)? + y log kx)T).
Hence, by (2.21),

Y e(lkxlog n) < (kx)? fT __dar 4 (kz)-12 4 y log kz
0

n<y L + 1 kx
log y
< (kz)* (log log y + log kx) + y (log kx)(kz)!.
Thus
M
S k1Y e(kxlog n)| < (Mx)t2 (log log y+log Mz)+yz* log @.
k=1 ngYy

Therefore, by (2.18) and (2.19), we have the theorem.
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