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AN INVERSION FORMULA AND A NOTE
ON THE RIESZ KERNEL

by Andrejs DUNKELS

0. Introduction.

For a certain class of kernels K every compact set E <= R7"
has an equilibrium distribution Q, whose potential

Ug = K ^ Q

is constant, equal to 1, on Int E (see [2, p. 126], cf. also [I],
[6]). If the kernel is the Riesz kernel, K(r) == r^^ of order
a with 0 < a < 2, then Q is identical with the capacitary
measure X of E (see [2, p. 144]). When a > 2 then Q
no longer coincides with X ; the capacitary potential U^
is then strictly greater than 1 on Int E; moreover the
support of X lies on the boundary of E, which is not the
case for Q unless a is an even integer. (See [2, p. 125],
[5, pp. 103-104], cf. also [4, pp. 10, 30-38].)

Wallin [9] has studied the regularity properties of Q
when 0 < a < min (2, m) and proved, among other things,
that the restriction of Q to Int E is an absolutely continuous
measure with analytic density which may be expressed by
an explicit formula. In this paper we shall extend Wallin's
result to 0 < a < m (Theorem 2). We shall use a kind of
inversion formula (Theorem 1) by which it is possible to
express Q in terms of the potential and an elementary solution
DK for K, i.e. a distribution such that DK ^ K == 8. The
method employed is based on Fourier transforms of distri-
butions. One of the difficulties encountered due to the fact
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198 ANDREJS DUNKELS

that one is led to dealing with convolutions of distributions
with non-compact support. The method in Wallin [9] is
not applicable for a ^ 2 (cf. [9, p. 75]).

A result similar to Theorem 2 holds for the Bessel kernel of
order a (see [4, p. 7]).

I wish to thank Professor Hans Wallin for suggesting the
topic of this paper and for his kind interest, advice and gui-
dance during the work with it.

1. Statement of main results.

In connection with distributions we have adopted the
notation of Schwartz [8]. For details of definitions and nota-
tions the reader is referred to [4]. The kernels considered will
be such that they satisfy Deny's Condition (A), see [2, p. 119],
which is as follows. (Cf. also [3].)

CONDITION (A). — A distribution K satisfies Condition (A)
if it is of positive type, K is a positive function in L^o^R7"),
and there exists an integer q ^ 0 such that

C ., K ( i ; ) . ^ < QO and f-———1————^ < oo.j (i+m2)^ j ^)(i+i^
Here and elsewhere the integrations are to be extended over

the whole space R7", when no limits of integration are indica-
ted.

Our first theorem is a kind of inversion formula for poten-
tials Ui = K ^ T (see [2, p. 118]). We shall actually use the
formula for the Riesz kernel only but we present it in a more
general setting since the proof in the special case is no sim-
pler.

THEOREM 1. (Inversion formula) — Let K. be a distribution
satisfying Condition (A). Assume that K G (^i/O? 1 ^ q ^ °o?
that DK exists and DK e (^L1). If T e (<?7) then for every
9 G (^) we have

(1) T ( < p ) = U I ( D K ^ 9 ) .
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COROLLARY 1. — If, in addition, T has finite energy (see [2],
[3]) IK(T) = f K(S)|T(S)|2 d^ K is a positive distribution,
and Ui.p e L^R^), where v = DK ^ <p, ^n

(2) T(y) = J Ui(^)^) ̂ .

COROLLARY 2. — If, in addition to the assumptions of Cor, 1,
E <= R^ is compact and T = Q is the equilibrium distribu-
tion of E with respect to K then

(3) Q((p) = DK(O) f y(^) ̂  + J' (U2(n;) - I)(DK ^ 9)(^) ̂ .

THEOREM 2. — Assume that E c: R"* is compact and has
non-empty interior. Let Q be the equilibrium distribution of
E with respect to the Riesz kernel r^ of order, a, 0 < a < m.
TAen Q[ Int E 15 <m absolutely continuous measure. Its den-
sity /a i5, after perhaps modification on a set of Lebesgue
measure zero, an analytic function on Int E defined by

/ (4)
\f^x) == B(a, m) f (U?(y) - 1))^ - y[-(a+-) dy, if a ^ 2/c,
(/2.(^) = 0,

wAere /c is a positive integer and B(a, m) a constant gi^en by

B(a, m) = - a .-(-4-D s^ - p f^——^^ r f^^-'^.
^ 2 \ z ) \ 2 /

2. Some lemnias.

In this section we present lemmas needed to prove our
results. Some of the lemmas might be of intrinsic interest.

LEMMA 1. — (Schwartz [8, p. 201]) Assume that 1 ̂  p ^ oo
and + e (^). Then T e(^) if and only if T*^ e L^R^.

LEMMA 2. — (Schwartz [8, p. 270]) If S e (^), 1 ^ p ^ 2,
and T e (^L,), 1 ^ g ^ 2, ^n

^-(S^T) = ^(S).^-(T).
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We proceed with two lemmas concerning the behaviour
for large |.r| of certain potentials. The first one is of « Weyl
type » and the second is well-known for measures rather than
distributions.

LEMMA 3. — Let E and F be compact subsets of R7".
If T e (<^'), with supp T == E, and K is a kernel such that
K e C^R^F), then Ui e C°°((E + F)6).

The straight-forward proof is omitted here. (See [4, p. 11].)

LEMMA 4. — Assume that F ^ R7" 15 compact and K a
kernel such that K e (^(R^F) and, /or eacA multiindex v,

b^^) ->0, as \x\ -> oo.

TTien /br any T G (<^') we Aaw

US(.r) -> 0, as | o;| —^ oo.

The proof uses (see [4, pp. 12-13]) Lemma 3 and a represen-
tation (see [8, p. 91]) of T as a finite sum of derivatives, in
the distribution sense, of continuous functions with compact
support; the differentiations are shifted from these functions
to the kernel.

COROLLARY. — Let F and K be as in Lemma 4. Then for
any multiindex T and any T e (^/) we ha^e

yVi{x) ~>0, as \x\ —>• oo.

The corollary is proved by shifting all the differentiations to
T, thereby producing another distribution in (^ /) to which
Lemma 4 is applied.

Our next lemma is a companion of Lemma 2 above. Lemma 2
does not contain our lemma but is used in the proof. The
reason why Lemma 5 cannot be proved exactly as Lemma 2
is that, although each distribution in {^ip) has a represen-
tation as a finite sum of derivatives, in the distribution sense,
of functions in L^R"*) (see [8, p. 201]), their Fourier trans-
forms are not functions when p > 2 (cf. [85 p. 270]).

LEMMA 5. — Assume that

S e «.), 1 < q ^ oo, ^(S) e LL^R"),
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and T e «<). T/ien

(5) ^(S*T) == ^-(S).^(T).

The proof uses a sequence of distributions to which Lemma 2
is applicable and which converges to S in an appropriate way.
A complete proof is found in [4, pp. 14-16].

3. Proof of the inversion formula.

Choose 9 e (^). From Ui == K ^ T one formally obtains

(6) DK ^ U£ - T,

and so, again formally,

(7) T(<p) - Tr. T ^ 9 = Tr. U£ ^ (DK ^ 9) = UI(DK ^ 9),

which gives (1).
If supp K is non-compact then so is supp Ui as well as

supp DK, unless DK is a pointmass (cf. [8, p. 211]), and
so the above formal uses of the associative law for convolu-
tions need justification.

Furthermore it is necessary to make certain that the right
hand side of (1) is well defined, even though DK ^ 9 is not
a testfunction. That this is indeed the case is readily checked
(see [4, p. 17]) with the aid of Lemma 1 and the fact that
(^L4) c {^LP) tor every p ^ 1, since D K ^ 9 e ( ^ L 1 ) (see
below).

It remains thus to justify (6) and the second equality of (7).
Since DK e (^) and UK e (^i/?) their convolution

D K ^ UK is a well defined distribution in (^^) ([8, p. 203]).
The kernel K is assumed to satisfy Condition (A), hence
^(K) e LLc^). Therefore also

^(Ui)= ^(K^^eLU^).

Furthermore Lemma 1 gives DK * ^ e L^R""), and since for
any multiindex x we have ^(DK ^ 9) = DK*(^9), we con-
clude, by Lemma 1, that in fact D K ^ < P isin (^L1)? hence consi-
dered as a distribution, in (^i/). Therefore also UK * (DK * 9)
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is well defined. Thus we can use Lemma 5 to obtain

•^(DK * Ui) = ^(DK) . ̂ (UI)
= ^(DK).^(K).^(T) = ^(T),

which establishes (6); and

^(U? * (DK * ?)) = ^(U£). ̂ (DK * y) = ^-(T). ̂ (9),

which shows that we have

U£ * (DK * y) = T * y,

and so the second step of (7) is justified, and the proof com-
plete.

Proof of Corollary 1. - Take (̂ );°^ c= (^) go that, as
/ f oo, 0 ^ .̂(a;) f 1 for every x e R"1, and, for each
multiindex v, O^/a;) -> 0 uniformly on R".

With v == DK * 9 we conclude, as before, that p e (^i/).
Since T has finite energy and K is positive, Ui may

be interpreted as a function in LLc(R"1) (see [2, p. 138]).
Introducing the testfunctions ^ .=ip, .p we have

(8) U£(P,) = f Vi(x)^(x) dx.

On the right hand side of (8) the integrand tends to
Ui.^eL^R") for every x e R"1, and so by Lebesgue's
dominated convergence theorem the right hand side tends
to j US {x} v {x) dx, as / -^oo . Moreover,

^••P-»^ in (^L1), as /

hence in (^), where Ifq + 1/y' = 1, and so

00,

U£(P,) -> U£(P) in (^), as 7-^00.

This completes the proof.

Remark. — If the distribution T is a measure (A > 0
(defined at least on the Borel sets of R") and K = r"-'"
0 < a < m, then our formula (2) reduces to the inversion
formula (3.5) derived by Wallin [10, p. 155].
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Proof of Corollary 2. — We now have U§ = 1 on Int E
(see [2, p. 127]), hence (2) gives

Q(^) = fim E 1 • ̂ ) dx + ̂  ̂  Ug(^) dx
== P(O) + J' (UgQr) - 1)^) dx,

where the last integral is actually extended over (Int E)" only.
Since v == (DK * y)' = D^.y, (3) follows, and the proof is

complete.

4. Proof of Theorem 2.

If a ^ 2/c (A- integer) then a fundamental solution,
Da, of the kernel under consideration, r"-'", 0 < a < m
is known to be (cf. [2, p. 153], [4, pp. 20-21], [7])

Da=B(a,TO).Pf.r-(a+'"),

where Pf. denotes Hadamard's « partie finie » and B(oc, w)
is the constant in (4).

With the aid of Lemma 1 we now get (for details see [4,
p. 21])

D» 6 (S>i.) and r»-"1 e [Q>'^\ with q = m + 1.
m — v.

Assume that E = R"> is compact and has non-empty
interior. Let Q be the equilibrium distribution of E. Choose
<p e (3>) with supp y <= Int E, and set p^ == D» * <p. Then
for every x e (Int E)' we obtain

Pa(aQ == D,(T,y)

= B(a, m). lim ( f l([-(a+'»)(T,y)(() dt
e^-O ̂

+ S H(/c, m) A^T.y^O) -^-^
k Zk — ay

= B(a, m) J' |a; - ̂ -^^{t) dt,

where H(/c, m) are explicit constants emerging from the
definition of Pf. (see e.g. [8, p. 44]).

The Riesz kernel satisfies Condition (A). Furthermore it
is a positive distribution and Q has finite energy, hence
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U§ e L^R^) (cf. Cor. 1 above). For large \x\, according
to Lemma 4, U^ is a bounded function, and, according to
Lemma 1, ^ e (^). Hence U^.^eL^R7"). Thus (3) is
applicable, and since we have Da = Da and Da(0) = 0,
we obtain

Q(<?) == f Wx) - 1)(D, * <p)(^) dx
= f (Ug(^) -- 1) (B(a, m) f \x - t^^t) dt) dx.

The order of integration may be changed by virtue of Fubini's
theorem giving

Q(<p) = f <p(^) (B(a, m) f (US(rr) - i)\x - t\-^ dx) dt.

A straight forward calculation shows that the inmost integral
defines an analytic function on Int E. This completes the
proof when a ^ 2k.

Finally for the polyharmonic case a = 2/c, k integer,
we have (see [7, p. 4], [2, p. 153], [4, p. 23])

(- l)-r l^- - k\
Da, = 6(2/c, m) .A^S, where 6(2/c, m) == ————^ \ " /,

32^ (k— 1) !

and so supp (D^ * 9) c: Int E for any 9 e (^) with
supp 9 <= Int E. Hence, since the integration in (3) is in
fact extended over (Int E)6 only, we get

Q(9) = f (U^) - 1)(D^ * 9)^) dx = 0,

whence f^{x) = 0, and so the proof is complete.
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