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AN INVERSION FORMULA AND A NOTE
ON THE RIESZ KERNEL

by Andrejs DUNKELS

0. Introduction.

For a certain class of kernels K every compact set E < R™
has an equilibrium distribution (Q, whose potential

U2 =K=«Q

is constant, equal to 1, on Int E (see [2, p. 126], cf. also [1],
[6]). If the kernel is the Riesz kernel, K(r) = r*™, of order
« with 0 < « < 2, then Q 1sidentical with the capacitary
measure A of E (see [2, p. 144]). When « > 2 then Q
no longer coincides with 2A; the capacitary potential U}
is then strictly greater than 1 on Int E; moreover the
support of A lies on the boundary of E, which is not the
case for Q wunless « is an even integer. (See [2, p. 125],
[5, pp. 103-104], cf. also [4, pp. 10, 30-38].)

Wallin [9] has studied the regularity properties of Q
when 0 < « < min (2, m) and proved, among other things,
that the restriction of Q to Int E 1is an absolutely continuous
measure with analytic density which may be expressed by
an explicit formula. In this paper we shall extend Wallin’s
result to 0 < « < m (Theorem 2). We shall use a kind of
inversion formula (Theorem 1) by which it is possible to
express Q in terms of the potential and an elementary solution
Dx for K, 1.e. a distribution such that Dg x K = 8. The
method employed is based on Fourier transforms of distri-
butions. One of the difficulties encountered  due to the fact
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198 ANDREJS DUNKELS

that one 1s led to dealing with convolutions of distributions
with non-compact support. The method in Wallin [9] is
not applicable for « > 2 (cf. [9, p. 75]).

A result similar to Theorem 2 holds for the Bessel kernel of
order o (see [4, p. 7]).

I wish to thank Professor Hans Wallin for suggesting the
topic of this paper and for his kind interest, advice and gui-
dance during the work with 1t.

1. Statement of main results.

In connection with distributions we have adopted the
notation of Schwartz [8]. For details of definitions and nota-
tions the reader is referred to [4]. The kernels considered will
be such that they satisfy Deny’s Condition (A), see [2, p. 119],
which 1s as follows. (Cf. also [3].)

Conprrion (A). — A distribution K satisfies Condition (A)
if it s of positive type, K isa positive function in L} (R™),
and there exists an integer q > 0 such that

———I—A(—(L < an < 00
St < d fK +|a|>‘E

Here and elsewhere the integrations are to be extended over
the whole space R™, when no limits of integration are indica-
ted.

Our first theorem is a kind of inversion formula for poten-
tials Uf = K« T (see [2, p. 118]). We shall actually use the
formula for the Riesz kernel only but we present it in a more
general setting since the proof in the special case is no sim-

pler.

Taeorem 1. (Inversion formula) — Let K be a distribution
satisfying Condition (A). Assume that K € (217),1 < ¢ < oo,
that Dg exists and Dx e (9y). If T e (8') then for every
¢ € (2) we have

(1) T(¢) = UE(Dx * o).
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Cororrary 1. — If, in addition, T has finite energy (see [2],
[3]) Lk(T) = f K(&)|T()|2de, K s a positive distribution,
and Ug.¢ € L{R™), where ¢ = Dx * @, then

2) T(o) = [ Uk(a)o(a) da

CoroLLARrY 2. — If, in addition to the assumptions of Cor. 1;
E = R™ s compact and T = Q s the equilibrium distribu-
ton of E with respect to K then

A
1%

(3) = Dx(0) [ 9(2) dz + [ (UR(z) — 1)(Dx * ¢)(2) da.

TaeoreMm 2. — Assume that E < R™ 1s compact and has
non-empty interior. Let Q be the equilibrium distribution of
E with respect to the Ruesz kernel r*™ of order, «,0 < o < m.
Then Q|Int E s an absolutely continuous measure. Its den-
sity fo. s, after perhaps modification on a set of Lebesgue
measure zero, an analytic function on Int E defined by

(4)
\ful@) = B(a, m) [ (US(y) — D]w — y|=mdy, if o # 2k,
f2k( ) = 0’

where k 1is a positive integer and B(a, m) a constant given by

Bo,m) = = § e (M) p (1)

2. Some lemmas.

In this section we present lemmas needed to prove our
results. Some of the lemmas might be of intrinsic interest.

Lemma 1. — (Schwartz [8, p. 201]) Assumethat 1 < p < o
and 4 € (2). Then T € (1) if and only if T*¢ € LP(R™).

Lemma 2. — (Schwartz [8,p.270]) If Se (21¢),1 < p < 2,
and T e (P11), 1< q <2, then

F(S*T) = #(S). #(T).
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We proceed with two lemmas concerning the behaviour
for large |z| of certain potentials. The first one is of « Weyl

type » and the second is well-known for measures rather than
distributions.

Lemma 3. — Let E and F be compact subsets of R™.
If Te (&), with suppT = E, and K s a kernel such that
K e C*(R™F), then Uge C*((E + F)9).

The straight-forward proof is omitted here. (See [4, p. 11].)

Lemma 4. — Assume that F < R™ is compact and K a
kernel such that K € C*(R™\F) and, for each multiindex v,

'K(z) - 0, as || — oo.
Then for any T € (&) we have
Ug(x) — 0, as |2| — 0.

The proof uses (see [4, pp. 12-13]) Lemma 3 and a represen-
tation (see [8, p. 91]) of T as a finite sum of derivatives, in
the distribution sense, of continuous functions with compact

support; the differentiations are shifted from these functions
to the kernel.

CoroLrLary. — Let F and K be as in Lemma 4. Then for
any multiindex ~ and any T € (&) we have

o*Ug(x) — 0, as |z| — 0.

The corollary 1s proved by shifting all the differentiations to
T, thereby producing another distribution in (&’) to which
Lemma 4 1s applied.

Our next lemma is a companion of Lemma 2 above. Lemma 2
does not contain our lemma but is used in the proof. The
reason why Lemma 5 cannot be proved exactly as Lemma 2
is that, although each distribution in (92ys) has a represen-
tation as a finite sum of derivatives, in the distribution sense,
of functions in LP(R™) (see [8, p. 201]), their Fourier trans-
forms are not functions when p > 2 (cf. [8, p. 270]).

Lemma 5. — Assume that

Se(2i), 1<q< ® F(S)eLl,(R",
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and T € (2y). Then
(5) F(8*T) = #(8). #(7).

The proof uses a sequence of distributions to which Lemma 2
1s applicable and which converges to S in an appropriate way.
A complete proof is found in [4, pp. 14-16].

3. Proof of the inversion formula.

Choose ¢ € (2). From Ug = K T one formally obtains
(6) Dy » Ug =T,
and so, again formally,
(7) T(9) = Tr. T $ = Tr. U » (Dg » &) = UE(Dx o),
which gives (1).

If supp K is non-compact then so is supp U as well as
supp Dg, unless Dg 1s a pointmass (cf. [8, p. 211]), and
so the above formal uses of the associative law for convolu-
tions need justification.

Furthermore it is necessary to make certain that the right
hand side of (1) is well defined, even though Dx * ¢ is not
a testfunction. That this is indeed the case is readily checked
(see [4, p. 17]) with the aid of Lemma 1 and the fact that
(2v) € (D) for every p > 1, since Dgxo¢ € (Dy) (see
below).

It remains thus to justify (6) and the second equality of (7).

Since Dge(2y) and Ugfe (21) their convolution
Dx » Ux 1s a well defined distribution in (214) ([8, p. 203]).
The kernel K 1is assumed to satisfy Condition (A), hence
Z(K) € L},(R™). Therefore also

F(UD) = #(K). #(T) € Li(R").

Furthermore Lemma 1 gives Dg x ¢ € L}(R™), and since for
any multiindex » we have ?*Dx % ¢) = Dg % (3%¢), we con-
clude, by Lemma 1, thatinfact Dg * ¢ 1sin (2y:), hence consi-
dered as a distribution, in (2y:). Therefore also Ug  (Dg * ¢)
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1s well defined. Thus we can use Lemma 5 to obtain

# (Dx » Ux) = #(Dx). # (Us)

= #(Dx). #(K). #(T) = #(T),
which establishes (6); and
F(Uk = (Dx * ¢)) = #(Ug). #(Dx x ¢) = #(T). #(¢),
which shows that we have
Uk * (Dxx ¢) =T« ¢,

and so the second step of (7) is justified, and the proof com-

plete.

Proof of Corollary 1. — Take ({;)52, = (2) so that, as
jho, 0<{¢x)41l for every xzeR” and, for each
multiindex v, ¥'¢;(x) =0 uniformly on R™.

With ¢ = [v)K* ¢ we conclude, as before, that ¢ e (2y).

Since T has finite energy and K 1is positive, U may
be interpreted as a function in L}, (R™) (see [2, p. 138]).
Introducing the testfunctions ¢; = ¢;.¢ we have

(8) Uk(v fo x)v(x) da.

On the right hand side of (8) the integrand tends to
Uf.¢o e LYR™) for every zeR™ and so by Lebesgue’s
dominated convergence theorem the right hand side tends

to f Uk(z)¢(z) dz, as j— oo. Moreover,
¢j.v—>v in (211), as ] — oo,
hence in (2,+), where 1/¢ + 1/¢ =1, and so
Uk(v;) > Uk(¢) in (9Dy7), as ]—> oo.
This completes the proof.

Remark. — 1f the distribution T 1is a measure p > 0
(defined at least on the Borel sets of R™) and K = r*"
0 < « < m, then our formula (2) reduces to the inversion

formula (3.5) derived by Wallin [10, p. 155].
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Proof of Corollary 2. — We now have U =1 on Int E
(see [2, p. 127]), hence (2) gives
Q) = [ 1-9(@) dz + [, UR(@)o(a) da
= 4(0) + [ (UR(x) — 1)(x) dx,
where the last integral is actually extended over (Int E)° only.
Since ¢ = (Dg * ¢)* = Dx.4, (3) follows, and the proof is
complete.

4. Proof of Theorem 2.

If o« # 2k (k integer) then a fundamental solution,
D,, of the kernel under consideration, r* " 0 < « < m,

1s known to be (cf. [2, p. 153], [4, pp. 20-21], [7])
D, = B(«, m).Pf.r~C+m,

where Pf. denotes Hadamard’s « partie finie » and B(a, m)
1s the constant in (4).

With the aid of Lemma 1 we now get (for details see [4,
p. 21])

D, e (2i) and r*me (2}, with q=g+_1_
— &

Assume that E < R™ 1is compact and has non-empty
interior. Let Q be the equilibrium distribution of E. Choose
¢ €(2) with supp ¢ < Int E, and set ¢, = D, * ¢. Then
for every z € (Int E)° we obtain

Va(x> = Da(’rw(\{))
— B(s, m).lim ( [ 1d-eme,8)(0) de

3 Hlk m) 8°2)(0) g )

2k — «
= B(x, m) [ |z — t|==+mo(1) dt,
where H(k, m) are explicit constants emerging from the
definition of Pf. (see e.g. [8, p. 44]).

The Riesz kernel satisfies Condition (A). Furthermore it
1s a positive distribution and Q has finite energy, hence
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UQ € L,(R™) (cf. Cor. 1 above). For large |z|, according
to Lemma 4, U is a bounded function, and, according to
Lemma 1, ¢, € (2y). Hence U2.¢, € LAR™). Thus (3) is
applicable, and since we have D, = D, and ]3,,(0) =0,
we obtain

Q(e) (#) — 1)(Dq * ¢)(2) dz

(U2
_f Ug(a) — 1) (B(a, m) [ |& — f|=mg() dt) da.

The order of integration may be changed by virtue of Fubini’s
theorem giving

= [ o) (Blo, m) [ (U3(@) — Dl — -+ da) .

A straight forward calculation shows that the inmost integral
defines an analytic function on Int E. This completes the
proof when « # 2k.

Finally for the polyharmonic case o = 2k, k integer,
we have (see [7, p. 4], [2, p. 153], [4, p. 23])

(— 1yT <7 = k)
D, = b(2k, m).A*S, where b(2k, m) = - ,
22km 2 (k — 1)1

and so supp (Dy,*¢) = IntE for any ¢e€(2) with
supp ¢ < Int E. Hence, since the integration in (3) is in
fact extended over (Int E)* only, we get

Q9) = [ (US(x) — 1)(Dy, * 9)(a) dz = 0,

whence f,,(z) = 0, and so the proof is complete.
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