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H-CONES AND POTENTIAL THEORY
by N. BOBOC, Gh. BUCUR and A. CORNEA

Dedie a Monsieur M. Brelot a V occasion
de son 70e annwersaire.

Introduction.

In many recently developed research works in potential
theory there were pointed out ordered convex cones, as for
instance the cone of positive superharmonic functions on a
harmonic space, or the cone of excessive functions with respect
to a resolvent family of positive kernels, for which various
order theoretical and algebraic properties were proved:
lattice-completeness, consistency of algebraic and lattice
operations, Riesz splitting property.

It was shown that properties of this type are sufficient in
order to build up a good deal of potential theory, especially
balayage theory and duality; they were taken as axioms in
the definition of the concept of H-cone which is an ordered
convex cone satisfying the above mentioned completeness
and consistency properties and also Riesz splitting property.
In the general theory of H-cones, two concepts are mostly
important namely, the balayage and the H-integral. A balayage
on an H-cone C is a map from C into C which is
additive, increasing, idempotent and continuous in order
from below. This generalizes the concept of balayage on
sets from classical potential theory. An H-integral on C
is a positive, numerical function which is additive, increasing,
continuous in order from below and finite on a set which
is a subset dense in order from below.
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The set of all H-integrals on C organized in a natural
way as an ordered cone forms also an H-cone, called the dual
of C. It may be shown that if C is the cone of positive
supersolutions with respect to a convenient elliptic operator L,
then it is an H-cone whose dual is isomorphic with the cone
of positive supersolutions with respect to the adjoint operator
of L (if such an adjoint does exist). One of the principal
aims of this paper is to give an integral representation theorem
and a representation theorem of an H-cone as a cone of
lower semicontinuous functions on a metrisable space which
is also the cone of excessive functions with respect to a resolvent
family of continuous kernels. This representation may be
performed for a particular type of H-cone called standard
H-cone which has the property that its dual is also a standard
H-cone, hence representable. Related with duality, very
important are those properties, which are simultaneously
true on a given H-cone and on its dual. Such a property is
axiom D, which in the case of harmonic spaces coincides
with the axiom of domination, and which is closely related
with a sheaf property when the cone is represented as
an H-cone of functions.

The paper is divided in four sections. In the first one we
introduce the principal concepts of the theory and in the second
we give the representation theorems for standard H-cones.

In sections three and four are studied for standard H-cones
of functions, some concepts, inspired from the existing poten-
tial theory on harmonic spaces, such as fine topology, thin
sets, polar and semipolar sets, balayage on a set. Finally the
sheaf property with respect to the fine topology is presented.

We assume that the reader is familiar with the main
techniques from potential theory in its axiomatic approach
and also with Hunt's potential theory. Therefore many proofs
are omitted or only sketched.



SECTION I.

H-cones and duals of H-cones.

A set C endowed with two composition laws

{x, y) -> x + y, x, y e C
(a, x) -> arr, a e R+, x e C

and with an order relation < is called ordered convex cone if
the following axioms are satisfied :

Ci x + (y + z) = (x + y) + 2, ,̂ y, z e C
€2 ^ + y = y + ̂  a ; ,yeC
€3 there exists an element, denoted by 0, in C, such

that
^-}-0==^, x e C

€4 (a + ̂ )x == ou; + prc, a, (B e R+, re e C
^{x + y) == aa; + ay, a e R+, x, y e C

Cs (a.|B)a; == a(^) a, p e R+, a; e C
Cg l.rc==n; . reC

0 .^=0-0
€7 x ^ y ==^ ^ + z ^ 2 / + ; s ? ^ y ? ^ 6 ^

x ^ y ==^ a.r < ay, a e R+, x, y e C

We denote by V (resp. A ) the eventual l.u.b. (resp. g.l.b.) in
the ordered set C.

An ordered convex cone C is called an H-cone if the follo-
wing axioms are fulfilled :

Hi {s (= C) ===> {s ^ 0)
Hg (5, (, u e C, s + u ^ t + u) => (s ^ t)
H^ the ordered set C is a lower complete lattice.
HLi for any increasing and dominated net (^i)iei anc^

any s e C we have

V (^ + ̂  - s + v ^
iei iei
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H5 for any net {s^^ and any s e C we have

/\ {s, + s) = s + A ^
(€1 iel

Hg Riesz splitting property holds in C (i.e. for any s,
5i, «2 e C such that s ^ s^ + ^2 there exists <i, (3 e C such
that

^1 ^ ^l? ^2 ^ ̂  5 == ^1 + ^2)-

Examples of fl'cones.

Exemple 1. — Let X be a harmonic space [7], [8]. Then
the convex cone C of all positive superharmonic functions
on X is an H-cone with respect to the pointwise order.

Exemple 2. — Let X be an ordered set. Then the convex
cone of all real positive and increasing functions on X is
an H-cone iff for any two elements x, y e X such that there
exist u, v e X, with

u ^ x ^ p, u ^ y ^ ^

we have either x < y or y ^ x.

Exemple 3. — Let (X, ^, pi) be a probability space and
V = (Va)a>o he a submarkovian resolvent on (X, ^) abso-
lutely continuous with respect to [L (i.e. Va(f) == 0 for any a
and for any measurable function f which vanishes pi-almost
everywhere). Then the convex cone So^ of all excessive func-
tions with respect to T) is an H-cone.

For the axiom He see [13], or |[11]; for the axioma H4, Hg
see [5].

From now on, throughout this paper we shall denote by C
a fixed H-cone.

Using only the above axioms Hi and H2 we may construct
in a natural way, the ordered vector space C — C of diffe-
rences of elements of C such that C becomes a subcone of
positive elements of C — C. Further using axioms H3
and H5 one can see that C — C is a vector lattice.

Since from axiom Hg it follows that for any subset A
of C A A is the intersection in C — C of A we shall
denote also by A the intersection in C — C.
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We denote by =^ the order relation on C defined by

s ^ t -<^> (there exists u e C with s 4- u == ().

This order relation will be called the specific order. The initial
order relation ^ on C will be called the natural order. We
denote by "r (resp. ^) the l.u.b. (resp. the g.l.b.) with
respect to the specific order. For any f = : s — (, 5, t e C
we denote

R(f)= : /\{sf eC^ ^ f}

and we call it the reduite of /*. One can prove [4] that R(f) =< s.
Further (see [4], [8], [10]) one can prove that C is a condi-
tionally complete lattice with respect to the specific order.
The following proposition is a key to the proof of many
important results from this paper.

PROPOSITION 1.1. — Let u, ^ e C and let {s^^ be a net in,
C increasing to u + ^. Then the nets (R(5i — ^))i, (R(5i — u))
increase to u and v respectively and we have

[R{s, - v) + R{s, - u) < s,]

A map B : C -> C is called a balayage (on C) if it is :

Hi : additive {s, t e C —> B{s + t) = B{s) + B(^).
B2 : increasing (s ^ (=^B5 ^ B().
B3 : a contraction (s e C ==> Bs ^ s).
B^ : idempotent {s e C =^ B(Bs) == Bs).
Bg : continuous in order from below (for any s e C and

any net (^^ increasing to s we have

V B(^) == Bs)
iei

If f e C — C, we denote by B^ the map from C into C
defined by

B/s) - V R« A s)
ngN

This map is a balayage (see [4]).
On the set of all balayages on C we may introduce the

following order relation

[Bi ^ Bg] ̂  [{s e C) -^ (Bi5 ^ B^)]
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We denote, by V (resp. A ) the l.u.b. (resp. g.l.b.), with
respect to this order relation.

PROPOSITION 1.2. — a) If B a balayage such that B ^ Bf
where f e C — C then there exists a family (/i)iei in C — C
such that

B = A B,,
iei

b) The ordered set of all balayages on C is a distributive and
a complete lattice.

c} For any family (Bi)^i of balayages and any s e C we
have

( V B.\ (.) = V (B.(s))
\i€I / iei

d} For any two balayages B^, Bg such that B^ ^ Bg we
have

B^B^ == B^BI = BI

THEOREM 1.3. — Let B be a balayage on C and denote
by CB t^e subcone of C — C of all elements of the form
s — Bs with s e C. Then CB endowed with the natural order
from C — C is an H-cone. Moreover if (^) is a net in C
and {Si — B^i) increases to s — B^, and s^ ̂  B^ == 0
then (Si)i increases, s^ ^ s and s — Bs = V ^i — V B$f

The key to the proof is the following.

PROPOSITION 1.4. — For any s, t e C we Awe

[{s — Bs + B() A t] e C.

Moreover if s — Bs ^ t — B( and 5 X Bs == 0 (A<m

s ^ t, Bs ̂  Bt.

We shall introduce now a dual for an H-cone. A map

^: C -> TL
will be called an H-integral if it is :

Ii additive : {s, t e C) ==^ [i(5 + () == ^{s) + (x(().
Ig increasing: {s ^ t) ====»-^i(s) ^ p.(().
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Ig continuous in order from below (i.e. for any net (s^^j^
increasing to s, we have

^(s) == sup ̂ ).)

14 finite on a subset dense in order from below (i.e. for any
s e C there exists a net (^i)iei increasing to s such that
[i{Si) < + oo for any i e I).

We shall denote by C* the ordered convex cone of all
H-integrals on C where the order relation and the algebraic
operations are defined pointwise (with the convention
0. oo ===0). This cone will be called the dual of C.

THEOREM 1.5. — The ordered convex cone C* is an H-cone.
For any two elements p-i, p-g if C* we have

a) (^ V ^)0?) = sup (^(si) + ^2))
Si+Sf=S

b) R(^ - ̂ ){s) = sup {^(t) - ̂ ))
«5, (JL,(0<oo

Proof. — The axioms H^, Hg are obvious from the defi-
nitions. Further for any ^4, pig e C* the map

s -> sup (^(^) + lAg^a))
s^s^^s

is an H-integral and represents the least upper bound of
(J-!? P-2-

Since for any increasing and dominated net (p^ei trom C*
the map

s -> sup [L^s)
iei

is an H-integral, we deduce that the axioms HL}, H^ also
hold.

Now for any ^4, ^ e C* the map

s -> sup ((ii(() — ^(t))
t e C, P-aCO < oo

(^

is an H-integral \L satisfying the properties

[JL! ~~~ ^2 ^ (Jl ^ x tor any ^ G C*, X > (Ji,i — (JLg.

From this, one can easily see that axiom Hg holds.
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Axiom He may be obtained by adaptation to this case of
a proof of Mokobodzki (see [13]).

For any balayage B on C and any ^ e C* we denote
by B*(A the map from C into R+ defined by

B^K.) = (X(B(.))

One can easily see that the map

(1 -> B*pL

is a balayage on C*. The map B* will be called the adjoint
of B.

Obviously if B^, Bg are two balayages on C such that
Bi < B^ then B^ ^ Bf

PROPOSITION 1.6. — For any s e C the map s : C* -> R+
defined by

5((i) == ^{s)

is an Vi-integral on C*.

Proof. — Only the property 14 is somewhat difficult to be
proved. Let (JL e C* and Cp. == {t e C[[i(() < oo}. Further
for any ( e C^, let [L^ = (B(_^,)*([JL). It is immediate that
(p4)( is a net increasing to [L and 5((A() ^ (JL(() < oo.

PROPOSITION 1.7. — For any s, t e C and any (JL e C*
such that [L{s + t) < oo, </^re exist ^ ̂  e C* «uc/i </ia(
|A = (AI + (Ag anc; (x(s A t) == |Xi(5) + (JL^).

Take p.i and (Jia defined by

^iW == sup \L{u A ̂  — < A ^)),
new

pLg(u) === (A(u) — (Ai(^) for any u e C for which (Ji(u) < oo.
One can show that (AI, (ig e C* and satisfy the required
condition.

THEOREM 1.7. — We have

a) 5, ( e C, a e R+ ==^ s 4- < == 5 + ^5 a$ == a5
6) 5, ( e C, s ^ < ====^ S ^ t
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c) for any dominated family {s,},^ from C we have

V s! = V s^ A ^ = A r̂
t€l iei iei iei

d) for any s, t e C we Aa^e R(^ -— () == R(§ — ?).
The map 5 -> S of C into C** is called the evaluation

map. If C separates C* this map is an injection. In the
sequel, we shall identify the cone C with its image through
the evaluation map.



SECTION II.

Standard H-cones.

In order to get an integral representation theorem for an
H-cone or a representation of an H-cone as a cone of functions
on a topological space we have to impose some supplementary
conditions.

An element u of an H-cone C is called strictly positive
if for any s e C we have s = V (s A nu}.

n6N

Let u be a strictly positive element of C. An element
c e C is called u-continuous if for any increasing net (,^)
in C such that V ^ == c and any e e R, c > 0 there

i"
exists ig for which we have c ^ ^ 4" £u tor ^y i ^ h'

An element c e C is called universally continuous if it is
u-continuous for any strictly positive element u of C.

PROPOSITION 2.1. — Let u be a strictly positive element of C.
Then the set Cy of all u-continuous elements is a specifically
solid subcone of C. For any s e Cn there exists a > 0 such
that s < au.

In order to prove that Ca is a convex cone, use
proposition 1.1.

COROLLARY. — The set Co of all universally continuous
elements is a specifically solid subcone of C.

Remark 1. — With the above notation, if 5\ s" belong to C^
(respective to Co) then s ' V slf belongs to Cy (respective
to Co).

Indeed s ' V s" = R{s' + s ' — s ' A s " } ^ s ' + s " .

Remark 2. — Let u be a strictly positive element. The
map B : C -> C defined by

Bs = V{s' e C,|̂  ^ s}
is a balayage.
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PROPOSITION 2.2. — Let 9 be a map from Co into R^
such that

a) s , t e Co -̂  6(5 + <) == 9(61) + 9(Q
^) 5, ( e Co, s ^ t^> Q(s) ^ Q{t)

c) there exists u strictly positive in C such that QCs) ^ 1
for any s ^ u, s e Co. TAen 6 is the restriction to Co of an
element of C*.

Proof. — We denote for any s e C
X(^) == sup {O^))^ e Co, s ' ^ s}

From the definition follows that \ is increasing, additive;
X(u) ^ 1; its restriction to Co coincides with 6. It is also
continuous from below. Indeed let (^ be an increasing net
and s = y s,, and let ^ e Co be such that s ' ^ s. Then

i
for any s > 0 there exists ig such that

i ^ ig ==^ ^/ ^ Si + s^.
Let 5(, ^/ e C be such that

s' === ^ + ^L s'i ^ s^ s'i < su.
Then we have

Q{s{) = Q(s',) + Q(s^) < X(5,) + s ^ sup X(^) + s.
t

Hence
^(^) ^ sup X(^).

i

An H-cone C is called a standard H'cone if
a) there exists a strictly positive element in C;
6) there exists a countable subset D of universally conti-

nuous elements which is dense in order from below
(i.e. s e C — ^ 5 = ^{s^s' e D, s ' ^ s})

The H-cone in the example 1 is standard provided that the
underlying space X has a countable base.

PROPOSITION 2.3. — With the notations from example 3
{section 1) the H-cone <^ is standard, provided that there exists
a proper kernel V such that V = sup Va.
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A key to the proof is a result of Mokobodzki [11] after
which we may suppose that the set

{V^)! f measurable, 0 < f^ 1}

is compact with respect to the topology of uniform conver-
gence on X.

First we show that the function u = V(l) is a strictly
positive element in <^. Indeed if s e ̂  then there exists
a sequence /^ of positive measurable functions such that
(V(jfJ)^ increases to s. We have

s ^ \/{nu A s) ^ V (V (int (^ fm)) = s.
n n, m

Further, let a be a positive number and denote

A == [x e X\u{x) ^ a}.

We show that for any strictly positive element v e SQQ we
have inf {v(x)\x e A} > 0. Indeed if we denote

X,= {xeX\u{x) < w(x)}
00

then L J X^ = X, hence V(^xJ converges uniformely to
n==l

V(l) = u and therefore for a sufficiently large M, we have

V(^xJ > ~o~ on A. Since V satisfies the complete maxi"
2t

mum principle we have w ^ V(Xx ), ^ ^ — on A.n JTZ
Let /* be a positive, bounded, measurable function which

vanishes outside A. We show that V(f) is universally
continuous. Let (^)^i be a net in <^ increasing to V(f).

Since the inequality s ^ (, (i-almost everywhere for two
elements of <^ implies the inequality s ^ t everywhere on X
we may, by standard arguments, extract a sequence (^
such that (^)^ increases to V(/'). Let e be a positive num-
ber and denote

A, = {x e A|^) + -J- ̂ ) < V(y)^)}.

Obviously n A^ === 0. Hence the sequence V(/*.^A^
converges uniformly to 0 and therefore for a sufficiently
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arge n, we have V(/*.^) < -cf ^ on A. Using again the2t
complete maximum principle we have

v(n = vy.xj + v(p^j ^ -j- p + ̂ , + -^ p.
Let QQ be a countable uniformly dense subset of the set

{¥(/*)[ f measurable, 0 < f ̂  1}. From the above consi-
derations we may assume that the elements of QQ are
universally continuous. Let Q be the set

{y'R^ — ru)\s e QQ, r7, r positive rational numbers}.

The set Q is countable and dense in order from below.

PROPOSITION 2.4. — Let V and T)* be two resolvent
families satisfying the conditions of proposition 2.3 and assume
that for any two positive, measurable functions /*, g and any
a > 0 we have

ff^{g)d^=fg^(f)d^

Then the H'cones (^)* and S^ are isomorphic.
For the proof see ([5]).

PROPOSITION 2.5. — Let T) be a resolvent family as in
proposition 2.3. Then there exist two resolvent families U", W*
satisfying the conditions of proposition 2-4, such that the H-
cones <^c^ and S^ are isomorphic.

PROPOSITION 2.6. — Assume that C is a standard H-cone
and let [L be an element of C*. Then there exists a strictly
positive element u e C such that

a) (i(u) < oo;
6) u is the summ of a sequence of universally continuous

elements;
c) for any s e C we have s = ̂ {s^s' ^ 5, s ' ^ au, for

some a > 0}.
From the definition of a standard H-cone there exists a

countable set (^)^, dense in order from below, of univer-
sally continuous elements such that (Ji(^) < oo for any n.
If UQ is a strictly positive element of C we may find a^ > 0
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such that s^ < o^u (see proposition 2.1). The element
00 ^

u = Jl 2-(a, + ̂ )) sn

satisfies the required conditions of the proposition.

COROLLARY. — If C is standard and p. e C* then for any
s e Co we have pi(s) < + 00-

PROPOSITION 2.1.7. — Assume C standard. For any decrea-
sing net (p-i)tgi from C* and any s e Co we have

( A ^)0?) = inf^).

For the proof, apply proposition 2.2 to the map on Co

s —^ inf pi.i(s).
lei

The coarsest topology on C* — C* which makes continuous
the real linear functionals

(A -> [L{s)

for every s e Co (where pi(s) == [L^S) — [L^S) if ^ = ̂  — ^
p.i, (Jig e C*) is called the natural topology on C* — C*.

THEOREM 2.8. — Assume C standard. Let u be a strictly
positive element of C and denote

K,= {pLeC*|(A(u) < 1} .

Then Kn is a compact metrisable (with respect to the natural
topology) cap of the cone C*.

Proof. — Since the map u is additive and positively homo-
geneous on C* we deduce that the sets K^ and C*\K^
are convex. We show now that Ky is compact in the natural
topology. Let °U be an ultrafilter on K^ and 9 be the
map on Co into R+ defined by

Q[s] =lim(Ji(5).
^

By proposition 2.2 there exists [LQ e C* such that (Xojc, = 9.
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Obviously (AO ^ Kg and [LQ == lim (A. Hence Kg is compact.
<U

Since there exists in Co a countable subset which is dense
in order from below we deduce that Kg is metrisable.

Remark. — Since C* is a lattice with respect to the specific
order we deduce that Kg is a simplex and C* is a cone
« bien coiffe » (well-capped) in the natural topology.

PROPOSITION 2.9. — Using the notations from the proceeding
theorem, consider X the closure of the set of non zero extreme
points of Kg and denote C the cone of functions on X of
the form s ̂  s e C. Then there exists a bounded kernel V and
a finite measure [L on the measurable space (X, ^(X)) such
that

a) V satisfies the complete maximum principle'^
b) for any positive, bounded^ borel measurable function /,

V(/') is continuous and belongs to C;
c) V is absolutely continuous with respect to (A ;

d) C is a solid (in the natural order) subcone of So^ where V
is the unique submarkovian resolvent family on (X, ^(X))
such that V == sup Va;

e) C is an }~i-cone and is isomorphic with C.
For the proof, apply Mokobodzki's procedure [2] and [12]

to the cone of potentials on X obtained by uniform closure
of the cone Co + R+-

THEOREM 2.10. — If C is a standard H-cone then we have:
a) the dual C* of C is also a standard of Tri-cone'y
b) C* separates C (i.e. the evaluation map is an injection) ;
c) the image trough the evaluation map is a solid (with respect

to the natural order) subcone of C** and it is dense in order
from below.

For the proof, use the above proposition 2.9, 2.5, 2.4 and
2.3.

PROPOSITION 2.11. — Assume that in the H-cone C there
exists a strictly positive element u and a countable set of u-
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continuous elements which is dense in order from below. Then C
is a standard H-cone.

Let Kn be as in the theorem 2.8. By a slight modification
of the proof of theorem 2.8, we may show that K is compact
and metrisable in the week topology ^(KB, CJ. Now C may
be represented as in the proposition 2.9 and thus using propo
sition 2.3 we deduce that it is standard.



SECTION III.

Standard H-cones of functions,

A set SF of positive, numerical functions on a set X is
called an H-cone of functions if:

^i, ^F endowed with the pointwise algebraic operations
and order relation is an H-cone (with the convention
Ooo=0) .

^2 For any net (s^ in SF increasing to an element s
of ^ we have s[x) = sup s^x) for any x e X.

^3 For any two elements 5, t e ^ and any x e X we
have {s A <)(^) == int {s{x)y t{x)).

y'4 The set ^r separates X and contains the positive
constant functions.

Remark. — We see that for any x e X the map s -> s{x)
is an H-integral on ^ and using especially axiom ^3,
one can deduce that it generates an extreme ray in ^*.

The coarsest topology on X for which the elements of SF
are continuous maps from X into R+ will be called the
fine topology (with respect to ^). Thus X becomes a completely
regular topologica.1 space.

PROPOSITION 3.1. — Let SF be an H-cone of functions on
a set X. Then

a) for any family (^)^j^ in ^r, the element /\s^ coincides
i

with the lower semicontinuous regularisation with respect to
the fine topology, of the function

x -> inf {s^x)\i e 1}

fc) any s e SF is finite on a finely-dense open subset of X.
Let ^ be an H-cone of functions on a set X and assume

it is also a standard H-cone. Obviously the universally conti-
nuous elements of ^ are bounded functions.
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The coarsest topology on X for which the universally
continuous elements are continuous functions is called the
natural topology on X (with respect to 3F\

It is immediate that X endowed with this topology is a
metrisable and separable space and the fine topology is finer
than the natural one. Also, any element of y is naturally
lower sem-continuous.

An H-integral p. on y is called representable if there exists
a positive measure m on the natural-Borel field of X (i.e. the
o-field generated by the naturally open sets) such that

s e 3F ^^ \i(s) == | s dm.

Such a measure m is c-finite since for any universally
continuous element s e y we have

j s dm == (Ji(^) < oo.

From the definition and from the above remark it follows
that the representing measure m is unique. Obviously the
representable H-integrals on ^ form a convex subcone
of y * .

An H-cone of functions ^ on X is called a standard
H-cone of functions if ^ is a standard H-cone and the
convex cone of all representable H-integrals on y is a
solid subcone of ^* with respect to the natural order.

One can easily see that the above condition may be replaced
with the following simpler one: Any H-integral on 3F
dominated by a finite measure is representable.

In the sequel we shall identify any representable H-inte-
gral with the corresponding unique representing measure.

Let C be a standard H-cone, u be a strictly positive
element of C and denote

K^-^eC*!^) ^ 1}.

Further denote X the set of all non zero extreme points
of Kg and ^ the set of functions on X of the form 5|x?
s e C. It is immediate that 3F is a standard H-cone of
functions on X which is isomorphic with C. Moreover X
is a G§ set of a compact metrisable space.
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PROPOSITION 3.2. — Let y be a standard H-cone of func-
tions on a set X. Then any universally continuous H-integral
is representable.

Let (.rj,gi, be a naturally-dense subset of X and denote
oo A

m = ̂  -^ Sn. It is easy to see that m e y * . Since for any

s e y , s ^ 0 we have w(s) ^ 0 we deduce, using the next
lemma, that TO is a strictly positive element of y * and the
assertion follows by application of proposition 2.1.

LEMMA. — Let y. be an H-integral on C such that for any
se C, s ^ 0, y.{s) > 0. Then p. is a strictly positive element
of C*.

Let v e C* and let seC be such that v{s) + y.(s) < oo.
From proposition 1.7 and theorem 2.10.c), for any n e N
there exists «„, („ e C such that s = «„ + („ and

(v A ntx)0?) == v(,?J + ,I(A(^).

We may choose «„ increasing. Since y. ( A ( \ ^ v^) we
, , \ n / m
deduce A <„ = 0, 1- V (v A n^)] («) = v(^).

Throughout this paper, y will be a standard H-cone of
functions on a set X. We shall denote

Ki== {(X6^*|(A(1) < 1};

by Xt the set of non zero extreme points of Ki and by y^
the standard H-cone of functions on X^ consisting of all
functions of the form Sjx,, s e y. Further we shall identify,
in a natural way, X with the subspace of Xi.

It is not difficult to see that X is finely dense in Xi.

THEOREM 3.3. - a) s, t e y**, s ^ t on X ̂ ^ s ^ t.
V} If we identify the elements of V** with their restrictions

to X then V** is a standard H-cone of functions on X
for which the fine (resp. natural topology coincides with the
fine resp. natural) topology given by y.

c) Any function f on X which is finite on a naturally dense
subset of X and which is the supremum of an increasing net
(Si)i, s, e y** belongs also to V**.
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For the proof of c) use a measure on X of the form
00

m == S a,e^
n=l

where {x^)^ is a naturally-dense sequence in X and a^ is a
sequence of strictly positive numbers such that

5 ^nfW < oo, S a, < oo.
n n

For any subset A of X and any s e y we denote by
B^s (resp. B^s) the numerical function on X defined by:

R^x) = inf {s^x)^ e y , s ' ^ s on A}

(resp. B^s = A {s' e y\s' ^ s on A}).
We remark that B^s is the lower semicontinuous regula-

risation of B.As with respect to both natural or fine topology.
A subset A of X is called polar if BH = 0. For any

s e y the set {x e X|s(;r) == + 00} is polar.

THEOREM 3.4. — We have
a) if Ai\Ag is polar and s^ ^ s^ on Ai n Ag then

B^s^ ^ B^Sz ^ Sg-
fc) B^s = /\ BGs where G runs through the set of all finely

G
open sets such that A\G is polar.

c) B î + s^) = B î + B^a and BA(as) = aB^.
d) B^^s + B^^s ^ B^s + B^s.
e) If A, f A and ^ f s on A, tAen B^ f B^s.
f) If A. is a finely-open set then B^B^) = B^s.
The proof uses standard techniques of balayage theory on

harmonic spaces (see [8]).
We remark that the above operator B^ becomes a balayage

on the H-cone y iff it is idempotent (this is true, for ins-
tance, when A is finely open).

An element s e y is called a generator if for any s' e y
there exists a sequence (s^ increasing naturally to s '
such that for any n, s^ is specifically dominated by oc^s
where o^ > 0. From proposition 2.6 we deduce that there
exists a generator which is bounded and continuous in the
natural topology.
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For any balayage B we call base of B and denote it by
« 6(B) » the set

6(B) == [x e X\Bs{x) = s{x), (V)5 e ̂ }.

PROPOSITION 3.5. — Let B be a balayage on y. Then
we have :

a) for any generator s of y

b{B) = {xeX\Bs(x) = s(x)}

b) the set b(B) is finely-closed and of type Gg for the natural
topology.

c) For any re e X the measure B^ charges only fe(B).
d) B == BW.
For any balayage B on y denote by d{B) the comple-

ment of the base of B. Obviously d(B) is a finely open subset
of X of type F(T. Also for any finite s from y we denote
by s^ the function on d(B) defined by

s^[x} = s(^x) — Bs{x).

Since the convex cone ^/ of all finite elements of y is a
standard H-cone of functions on X we deduce that the
ordered cone of functions on d(B) of the form SQ with
s e y^ forms an H-cone isomorphic with the H-cone «$ î.
The axioms ^'2, .̂ 3 are also verified for this cone of functions
(use theorem 1.3 and proposition 1.4).

We denote by ^a the convex cone of all functions s
on d(B) which are finite on a finely-dense subset and such
that there exists a net (^gi, Si e ̂ f for which the net
{{Si)^)iei increases to 5.

THEOREM 3.6. — The convex cone ^B is a standard H-cone
of functions on the set d(B) and it is isomorphic with the U-cone
(^a)**. Also for any s e y** the restriction of s to d(B)
belongs to ^B- The elements of ^^ are finely-continuous
and natural-borel measurable functions on c?(B).

Let p be a bounded generator of y and s e <97**. Since
the function s^ === (s -4- nBp) A np e yf and

(^)B = (s A n(p — B,))|^
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we deduce
5|d(B) = sup (^)a e^B.

Since the ordered convex cone SF of functions of the form
SB) s e yf satisfies axioms ^"i, ^3, .̂ 3 and it is dense in
order from below in <$^B we deduce that ^a is an H-cone
of functions. Since ^ is solid in <^a the functions of ^B
are finely-continuous and natural-borel measurable.

We show now that <^a is a standard H-cone. Let ^
be a resolvant family on X such that <^ = .9'**, and Vo
is bounded and absolutely continuous. Denote V the kernel
on d(B) defined by

V/^Vo/o-BVo^B)

where f is a bounded measurable function on d(B) and f^
is the function on X equal to f on d{B) and equal to 0
elsewhere. Let s e <$^B be such that V/* < s on the set

A = {x e X\f{x) > 0}.

If we denote SQ the function on X equal to s on d{B)
and equal to o elsewhere we have

Wo) ^ s, A Wo - BVo(/o)) + BVo(A)) on A.

Since the cone ^ from above is solid in ^a we deduce,
using proposition 1.4 that the function from the lefthandside
belongs to y and therefore, applying domination principle
for Vo, we see that the above inequalities hold on X and on
rf(B) respectively. From this fact we deduce that V satisfies
the complete maximum principle and that there exists a
resolvent family W == ("C^a^o on d(B) such that V = Vo
and aVa(5) ^ s for any a > 0 and any s e ̂ a (see [I], [3]).
Since Vo charges any finely open set of X we get that Vo
also charges any fine open set of rf(B) and therefore <^y» == ^B.
Finaly Vo being absolutely continuous we get ^a standard.

In order to show that y^ is a standard H-cone of func-
tions on ^(B) it remains only to prove that for any finite
measure [L on c?(B) and any H-integral [L on y^ domi-
nated by (JL, there exists a measure \' on rf(B) which equals
X on ^B.
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Since d{B) is a F<j- set in X and the natural Borel-
field on d{B) generated by ^3 is the restriction to d{B)
of the natural Borel-field from X, we may consider p. as
a measure on the whole of X.

If we denote by X the map on y defined by

\{s) = X^B))

we have X(^) ^ [L^s) from which we deduce that X is an
H-integral on V. Let X' be the measure on X which
represents X. We have for any, bounded function p e V ^

\f{p-Bp)=^p^
and therefore
X'(l) = X(I|^B)) = sup X(pa) == sup X'(p - B^) == X'(X,(B).

PB ̂  ! ̂ (a) P ^OMnded
p bounded PB ̂  Hd(»)

Hence X' is a measure on ^(B) which represents X.

COROLLARY. — For any, s, t e y** such that s ^ t there
exists uniquely s' e ^^ such that

^IrfCB) == sl + B^|d(B)

Particularly there exists s^ e ^^ such that

^(/(B) = SB + B^B)

If Bt is finite we have
Sn == : {s — B() A n{p — Bp)[rf(B) e ^a

and ^ld(B) = sup ̂  + B^(B).
n

THEOREM 3.7. — Let A. be a subset of X and x be such
that x f A. Then for any s e y we have

B^x) = R^s(x).
Using Theorem 3.4. (e) and the metrisability of X it is
sufficient to prove the theorem for the case where s is boun-
ded and x ^ A (natural closure). Let G be an open set
such that A <= G, x i G and denote B = B°. Then x e d(B)
and we have BAs == A B{sf).

s'^-s on A
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From the preceding corollary the set of functions

{B^I^B) : 5' G y, s ' ^ s on A}

is specifically decreasing in ^ and therefore its infimum
in «9^B coincides with the pointwise infimum (use propo-
sition 3.1.). Hence B^s{x) = inf Bs'{x) = R^x).

s'^-s on A
A subset A of X is called thin at a point x e X if there

exists s 6 y such that

B^{x) < s{x).

PROPOSITION 3.8. — We have
a) A subset A 1*5 thin at a point x e X iff there exists a

natural neighbourhood V of x such that

BA^{x) < 1

b) If x ^ A then A is thin at x iff X\A is a fine neigh-
bourhood of x or iff there exists a natural open set G, G ^ A,
x f G such that G is thin at x.

c) If AI, Ag are two sets each of which is thin at a point
x, then AI U Aa is also thin at x.

For the proof see [8].

Remark. — If X is complete metrisable (for the natural
topology) then the Baire property holds for the fine topology.

For any subset A of X we denote

&(A) = {x e X[A is not thin at x}

The set fc(A) is called the base of A. A subset A of X
is called basic if A == &(A).

THEOREM 3.9. — Let A. be a subset of X. Then we have
a) if s is a finite generator of y then

fc(A) = {x e XIB^nQ == s{x)}

b) the set &(A) is finely-closed and naturally of type G§;
c) if A ^ fc(A) then BA is a balayage on y\
d) for any balayage B on y the set b(B) is the unique

basic set A for which B == B\



SECTION IV.

Negligible sets and axiom D.

A set A <= X is called totally thin if it is thin at any
point of X (i.e. &(A) =0). A countable union of totally
thin sets is called semipolar.

THEOREM 4.1. — a) {Doob-Bauer). For any set (^)^ in y,
the set

^eXjinf^r) ^ f A ̂  (^
< »ei \iei / )

is semipolar.
b) For any A c: X the set A\6(A) is semipolar.
c) For any finely closed set A <= X there exists a greatest basic

set Ao, Ao <= A; moreover A\Ao is semipolar.

THEOREM 4.2. — Any semipolar subset A. of X is negli-
gible with respect to any universally continuous H'integralon y.

We may restrict ourselves to the case where A is totally
thin and Borel-measurable. If we denote by (A' the restriction
of (A to A and by p a generator element of y we have,
using proposition 2.7, and theorem 2.10,

(A'(p) < inf {(JL'(5)|5 ^ p on A}
= ^ (A{5 |5 > p on A}) = ̂ (B^p)).

Since B^p < p we deduce that pi' == 0.

PROPOSITION 4.3. — Let B be a balayage on y and let
A. be a subset of rf(B). If we denote by B^ the balayage on A
with respect to the cone ^ then we have:

BWUA(,) _ B(^ ^_ gA^ ^ ^

for any s e y .
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We may assume s finite. For any ( e ̂ , ( ^ s on
fc(B) U A we have t ^ Bs and therefore

(t-Bs)\^ey^

(corollary of theorem 3.6). Since

(( —— BS)\^ > 5a,

t ^ Bs + fi^a) on d(B).

Let now u e ^ be such that MB > ^a on A and such
that UB < OB. It follows that

u — Bu + Bs ^ s on X
u — Bu + B^ > s on b(B) u A.

Since u — Bu + B« e y (proposition 1.4) we have
u—Bu+Bs^ BW^)

and therefore

BA(5B) +Bs= B^^^s) on rf(B).

COROLLARY. — With the notations from the proposition we
have:

a) for any x e d(B), A is thin at x with respect to y
iff it is thin at x with respect to ^Q.

b) A is semipolar with respect to y iff it is semipolar with
respect to ^^.

For any balayage B on a standard H-cone we denote
by B' the smallest balayage B^ for which

B V BI == I

Since any standard H-cone is isomorphic with a standard
H-cone of functions it is sufficient to show the existence of B7

for the cone y. We have

and
BI ^ B^ -^ 6(Bi) <= b(B^)

b{B, V B,) = b{B,) u &(B,)

for any two balayages Bi, Ba. Now it is easy to see that the
balayage B^ satisfies the required conditions of B\
Using the relations

BI ^ Ba ^=> B^ Bt
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and
BF = BI on y

for any two balayages Bi, Bg it follows that

(B*)' = (Br
for any balayage B.

We shall say that a standard H-cone C satisfies axiom D
if for any balayage B on C we have

BB' = B'B.

From the above considerations we obtain the following.

THEOREM 4.4. — A standard H-cone C satisfies axiom D
if and only if its dual C* satisfies it.

The following theorem shows that the above axiom D
coincides, in the case of harmonic spaces, with the axiom
of domination introduced by Brelot ([7], [8]).

THEOREM 4.5. — The following assertions are equivalent:
a) y satisfies axiom D.
fc) For any balayage B and any x e d(B) the measure

B*(2a,) charges only the fine boundary of d(B).
c) For any balayage B, any s e ^^ and any t e y

such that
fine lim inf s{y) ^ t{x)

d{V)By^x

for any point x from the fine boundary of <I(B), the function s'
on X equal to t on X\rf(B) and equal to inf (s, t) on d(B)
belongs to y,

d) For any balayage B and s e y^ and any t e y such
that

fine lim inf s(y) ^ t(x)
d(B)sy^x

for any point x from the fine boundary of c?(S), we have

Bt ^ s on rf(B).

Proof. — a=^&). From d(B) <= ^(B') we have

^ e d(B) =^ Bp{x) = B'(Bp)(^)
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for any finite continuous generator p of y. Since

BB' = B'B
it follows

x e d{B) =^ B(p - Bp)(x) == 0,
x e d(B) =^ B*(sJ(p - Bp) = 0

and therefore B*(s^) does not charges d(B) which is equal
to the fine interior of b(B).

b) =:=^ c). We may assume t finite. For any real number
a > 0 denote

A^= : {x 6 d(B)\s{x) + a > ^)}

and by Ba the balayage B^W. Obviously Aa and
Aa u fe(B) are finely open sets. From proposition 4.3 it follows
that

x e d{B) =^ B*,(eJl^) = (B^^s,).

Hence from the assertion 2) we have

^e^B^B^^B^)^).

Further we denote by s^ the function on X equal to (
on X\d(B) and equal to inf (s + a, t) on d(B) and by /a
the function on d{By} equal to 5a — By^t. Since, from the
above considerations,

B^t=B^{t\^) on rf(B)

we deduce, using the corollary to the theorem [3.6], that
/a e <^B». Hence there exists a family (p^ei in y such that
pi is finite and (p; — B^pi^gi is an increasing net to /a-
Since

i e I =^ p, — Bap; ^ t —By,t
we have

^ e I =^ pi — Bapi + Ba^ e ̂  (proposition 1.4)
Hence

s^ •= sup (p, — Bap, + B^t) e y

The assertion c) follows from the immediate relation

S1 = inf 5a.
a

d) => a) If B is a balayage and 5, ( are two elements of y
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such that s = t on the fine boundary of 6(B) then Bs = B(
on d{B). Now the assertion a) is an immediate consequence
of this remark.

COROLLARY 1. — Suppose that y satisfies axiom D and
let B be a balayage. Then for any s e V^ and for any t e y
such that s ^ Bt on d{B) we have

s^Bt\^

We may assume that ( is finite. Let p be a finite continu-
ous generator of ^. It is sufficient to show that for any
2 > 0 the element

inf (sp + s — Bt, p — Bp)

belongs to ^. We have

inf (ep + s — Bt, p — Bp) = u, — Bp ^ 0
where

u, = (ep + s + Bp) A (p + B()
v = p + t.

If we denote

A, = [x e rf(B)l(sp + s + Bp)(^) > (p + B()^)}

we remark that the sets Ag, A, U 6(B) are finely open.
We have

u,{x) = (p + B<)(a;) on Ag
u,(^) = (ep + s + Bp)(.r) ^ (p + B()(rc) on d(B)\A,.

Let us denote by Ug the function on X equal to p + B(
on ^(B^W) and equal to ep + s + Bp on ^(B^W).
We have fine lim inf (sp + s + Bp)(y) ^ (p + Bt)(x) at

^(BA6U6(B)^y^^.

any point x of the fine boundary of d{B^ub^). From
this fact we deduce, using assertion a ^=^ c from the pro-
ceeding theorem, that Ug e y. We have

Mg — Bp = ̂  — B^ = ug — B(ug)

and therefore Ug — Bp e ^5.
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COROLLARY 2. — Assume that y satisfies axiom D.
Then for any balayage B, ^3 satisfies also axiom D.

The assertion follows from theorem 4.5 (a) -^=> (&)) using
proposition 4.3.

PROPOSITION 4.6. — If y satisfies axiom D, then for
any subset A, B4 is a balayage on V.

Let B be a balayage on y and x e d{B). We show first
that for any decreasing net {s^^ of finite elements of y
we have

inf (Bs,){x) = B{s){x)
iei

where s == A ^.
- ie!
Denote

^ - A (B^)|,(B).
i€l

Since (B^)|d(B))iei ls a specifically decreasing net in V^
we have

h == inf Bsi on d(B)
iei

and there exists a sequence (in)nei m I such that the sequence
(B^)^ is decreasing to h on d(B) (use the metrisability
of X and Choquet lemma).

For any s > 0 take

G, = {y\Bs(y) + ^p{y) > h{y)} u &(B).

Since Bs ^ h ^ s on c?(B) it follows that Gg is a fine
neighbourhood of 6(B). We have

n G N ==^ B°<(B5j = B .̂
Hence
^ i G, ==^ (BGc)ilE(s,)(/^) = inf (B^^B^)

"= inf B^(a;) = /i(^) < (B^ + £p)(^).
n

Letting s tend to zero we get
Bs(x) =infBs^).

ie!

Let now A be a subset of X and G be a fine neigh-
bourhood of A. Using the above result we get

x ^ G ==^ B^B^) = B^p
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for any finite element p e y. The set G being arbitrary
we get

B^p) = B^p

for p of y\ Hence B is a balayage.
We say that a standard H-cone C satisfies the axiom

of polarity is for any decreasing net (B^g^ of balayages on C
and for any universally continuous element p we have

/ c6 l^B , (A(Bip ) )=A(Bip ) .
\i6I / i € I

THEOREM 4 . 7 . — The following assertions are equivalent;
a) y satis fies axiom of polarity ;
a7) for any decreasing net of balayages (B^gj on C such

that /\ Bi = 0 we have B; / /\ B^p\ == A B/cp for any i e I
i6l Uei 7 k€l

and any p e «9^o;
6) any semipolar subset of X is polar;
c) for any two finite measures [L,^ on X such that (A ^ v and

for any semipolar set A such that v(A) = 0 we have (i(A) == 0;
c') /or any pozn^ ^ e X and any measure (JL on X ^uc/i

(/ia( (A ^ s^ we Aa^ [A (A) == 0 for any semipolar set A for
which x ^ A;

d) /or any subset A of X, B^^ 15 a balayage on y.

Proof. — a) ==^ d) Let A be a subset of X and denote
^A the set of balayages B on y such that

Obviously

Hence

A <= &(B).

s e y => /\ {Bs) == B^.
Be^

Be^^=> B(BAp) = B^,
BA(BAp) = B^p

for any universally continuous element p of ^.
d) ==^ &) follows immediately.
b) ===^ c) Let A be a semiplan subset of X such that

v(A) = 0. Since A is polar there exists an element s e y * *
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such that s = + °o on A and

v(^) < oo.
Obviously

^(ZA) ^ inf ^ ( — s} ^ inf v (— s) = 0n \ n / n \ n /

c')===^a) Let (B,)^g^ be a decreasing net of balayages on
y ^ p a universally continuous element of y and denote

s = A B,p, A = (t/|inf (B,p)(y) > s{y)l.
id ( i61 )

Using Choquet's lemma we may assume that I is countable.
Further let i e I and x e d(B^ Since

Br(e,) ^ ^
we have

Br(e,)(A) = Br(sJ(A n &(B.)) = 0,
Hence

Br(e,)(s) = Br(eJ (infB,p) == inf Br(e,)(B,p)
Vfce l / fc>i

= infB^(p)(^) = /\ Bkp(x) = s(a?).
fcel fcel

a) -===^ a') is obvious.
a!) => b) as in the proof a) => d) we may show that BA

is a balayage
B^p) = B^

for any totally thin subset of X and therefore :

RA(p - B^) = 0, B^ = 0

COROLLARY. — If axiom D AoMs for C, (/ien axiom of
polarity holds on C.

THEOREM 4.8. — Let C be a standard H-cone. Then the
following assertions are equivalent.

a) For any decreasing net (B^gj of balayages on C such
that ^ B. = 0 we have

A B.(p) == 0
i € E l

for any universally continuous element p e C.
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V) For any decreasing net (Bi) î of balayages on C we
have

(AB. \ (p )=A(B. (p) )
\iei / iei

for any universally continuous element p e C.
c) C and C* satisfy the axiom of polarity.
We show first that the assertion a) holds simultaneously

for C and C*.
We may assume C = C** and let (B^gi be a decreasing

net of balayages on C* such that /\ B; == 0 and assume a)
iei

true for C. It follows that the family (B^g^ is a decreasing
net of balayages on C such that /\ B; == 0. Let now p

iei
(resp. pi) be a universally continuous element from C (resp.
C*). We have

ABr(p)=0,
0=(x/ABr(p))=infpL(Br(p))

\ iei / iei
==inf[B^)](p)-rAB^)1(p)

iei Liel J

and therefore, p being arbitrary,

A (Bid-Q) == °iei
Now a) =^ c) follows immediately.
c) ==^ b) Let (B^g^ be a decreasing net of balayages on C

and let p be a universally continuous element of C.
Denote

B=^B,

. == A^p).
iei

Since C satisfies the axiom of polarity we have

i e I ===^ B^s == 5.

Hence if we assume C* represented as a standard H-cone
of functions on a set Y we may consider s as a measure
on Y carried by b{B^) for any i e I, and therefore by
[ | 6(B^) (passing eventually to a countable subset of I).
iei
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Since C* satisfies also the axiom of polarity, and

n w) - &(B*)
iei

is semipolar it follows that s is carried by fc(B*), using
the fact that s <$ p and theorem 4.7.

Hence
Bs == s

and therefore
B(^) < Bp < 5 == B(5),

Bp = s.
V) ==^ a) is immediate.
Let C be a finely open subset of X and denote by B the

greatest balayage on y dominated by B<X^G). It is known
that the set fc(X\G) c: X\G and

(X\G)\5(X — G) is a semipolar set.

(see theorem 4.1.(c)). Hence d(B)\G is a semipolar set.
We shall denote by ^(G) the set of restrictions to G of
elements of ,9 .̂ It is easy to see that ^(G) is an H-cone
of functions on G. Although it is a standard H-cone, being
isomorphic with ^B, we do not know in general whether it
is a standard cone of functions.

This is true if axiom D is fulfiled (use theorem 4.7 and
corollary 2 of Theorem 4.5).

THEOREM 4.9. — The map

G -^ y[G)

is a sheaf on X endowed with the fine topology if and only
if axiom D holds.

For the only « if » part of the theorem let B be a balayage
on y and denote G the fine interior of &(B) and A the
complement of G. Obviously A is the fine closure of d(B)
thus it is a basic set. Further let p be a finite generator of y
and denote p ' = B^Bp. We want to show that Bp' = pf.

Indeed for any e > 0 denote

G,= {xeX^^+z > p{x)}
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Since p7 = p on A\rf(B), Gg is a neighbourhood of this
set. From the sheaf property the function s on X defined by

^_w xeG
s[x) ~~ (inf (Bp{x), Bp'{x) + s) x e G, u d(B)

belongs to y, and 5 ^ Bp ^ p7, Bp' + £ ^ P ' 9

Since e is arbitrary we get Bp' ^ p ' .
Now for any re e rf(B), B^(p — p7) ==0 and since

G == {^|p(^) > p7^')} we have B^(^) = 0 i.e.

the measure B^ charges only the fine boundary of &(B).
Assume now that axiom D holds. We show only that if

(^1)1 ei ls a family of fine open sets and s is a function on
I^JG, such that SJG. e ^(Gi) then 5e^(^_JG^. We may
i€I - l \ i€I /

assume X == I J G; and also that for any G; there exists a
iei

balayage B^ for which Gi == d{Bi). Using Doob's procedure
[8] we may assume I is countable.

Let p be a universally continuous element of y. We
shall show that the function inf {s, p) belongs to y. Assume
first that ( e y is such that inf {s + t, p) e y. Then using
theorem 4.5 (a) ===^ c)) we deduce that for any i e I,

inf {s + B,f, p) e ̂ .

Hence by a simple induction for any finite sequence (^)i^k^n
we have inf {s + B^, ..., B^ p, p) e ̂ . Denote by ^
the set of elements of y of the form B^, B^, . . ., B^(p)
where (ik)i^k^n 1s ^y finite sequence in I. The proof is
complete if we show that u == A ^ == 0.

If we represent V* as a standard cone of functions on a
set Y then the element u of y may be represented as a
measure on Y, being dominated by the universally conti-
nuous element p.

As in the proof of proposition 4.6 we see that for any i e I,
we have B(U == u, hence the measure u on Y is carried
by fc(B^) for any i e I. Since I J G^ == X we deduce that

f | b(Bt) is a finaly closed subset of Y which contains no
<ei
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basic set. Hence it is semipolar and therefore polar (see propo-
sition 4.6 and theorem 4.7). Using again theorem 4.7 we
deduce u = 0.

Remark. — If in the example 1 the positive constant func-
tions are superharmonic we get a standard H-cone of func-
tions for which the natural topology is locally compact.
Moreover if Brelot's convergence axiom and axiom D holds,
then the cone ^(G) (where G is a fine open set) introduced
above, coincides with the set of positive finely superharmo-
nic functions defined by B. Fuglede in [9].

Also in the example 1 with countable base, Brelot's axiom
and axiom of domination, under the supplementary conditions
of « proportionality » and existence of a base of completely
determining sets (see R. M. Herve [10]) one can see that the
dual H-cone y * may be represented as a standard H-cone
of functions on the same space X (Herve [10]). In these
conditions one may deduce that the axiom of proportionality
holds for the dual. Indeed if x e X is the carrier of [L e <97*,
then for any neighbourhood Vrr, (B^*^) == [JL. Hence [L
is representable, x is its support and [L == asrr. We see
that a relatively compact open set D is completely deter-
mining (resp. regular) iff the balayage B^0 is a continuous
map from y into y endowed with the natural topology
(r(^, y^o) (resp. maps the set ^o °f universally continuous
elements of y into itself).

For the further development of the theory it seems intere-
sting to find out formulations and solutions in terms of an
abstract H-cone C, of the following questions :

1. C may be represented as a standard H-cone of functions
for which the natural topology is locally compact. Moreover
the dual has the same property.

2. If C is represented as a standard H-cone of functions y
on X then G -> <^(G) is a sheaf for the natural topology.

3. There exists a set (B^ of balayages such that the set
d(B^) forms a base for the natural topology and such that
any B^ is continuous in cr(C, C^) (completely determining)
resp. B,(Co) <=- Co (regular).

4. If (^, X) and (^, Y) are two H-cones of functions,
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what does mean tensor product y ® ^ on X X Y (cer-
tainly {y ® ^)* = ^* ® ^-* is also understood)?

5. If we are given on C a bilinear form (u, ?) such that
(u, u) + (^, ^) ^ 2(u, ^) and u -> (u, ^) belongs to C for
any v e C, try to develop a Dirichlet space theory for C,
where (u, ^) is the energy.

6. If C and C* are represented as standard H-cones of
functions on X and X* respectively, then the map

A -> b{{B^)

is a one-to-one correspondence between the basic set of X
and X* respectively. Find out conditions under which this
correspondence is produced by a pointwise bisection 9 bet-
ween X and X*. Moreover find out conditions under which
the map 9 is continuous (naturally or finely) or preserves
thinness, polarity, semi-polarity.
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