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ON DENY’S CHARACTERIZATION
OF THE POTENTIAL KERNEL
FOR A CONVOLUTION
FELLER SEMI-GROUP (%)

by J. C. TAYLOR

Dédié a Monsieur M. Brelot & I'occasion
de son 70€ anniversaire.

Introduction.

Let G be an abelian locally compact group and let 3
be a positive Radon measure with the property that the
kernel V. defined by Vf(z) = (f*x)(@) = [ flay)(dw)
satisfies the domination principle. In [1] Deny characterized
those measures x for which Vzﬁx P, dt where (P)
1s a convolution semigroup such that (z, t) > Pz, @) 1s
continuous for all ® € C,(G). In particular, if V satisfies
the complete maximum principle, his result characterizes the
convolution Feller semi-groups.

The purpose of this article 1s to extend Deny’s result, when
V is assumed to satisfy the complete maximum principle,
to the case where G 1s replaced by a homogeneous space
E = G/K with G an arbitrary locally compact group and K
a compact subgroup of G. Specifically, the following is proved
(see theorem 3.10):

TaeoreM. — Assume that G s o-compact. Let (P,) be
a Feller semigroup on E that commutes with the action of G

(1) This work was materially supported by NRC Grant No. A-3108.
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on E. Assume that for any compact set A < E,
Vi, = [;7 P, de

is finite. Let x be the K-invariant measure on E defined by
x, @ = Vo(0).

Then x satisfies the following condition :

D) There is a base # for the neighbourhood filter of 0
such that for each B € # there exists o € M*(E) with

(1) o xx < x;

(2) C*¥X #F R, C*kX =% 0N [:B; and

(3) lm o * x" = 0.

Conversely, if x satisfies D) and the kernel Vf=fx*x

satisfies the complete maximum principle then there is a unique
convolution Feller semi-group (P,) with

V= ﬁ“ P, dt.

The condition of ¢-compactness is not essential but for the
sake of simplicity the detailed proofs are given under this
assumption. The measure-theoretic complements needed to
permit arguments to carry over in the general case are outlined
in the appendix.

Let X be a locally compact space. Then Z denotes the
s-ring generated by the compact subsets of X and fe Z+
if {f>0}=AeZ and f|A is measurable and non-negative
relative to #|A. The set of non-negative Radon measures
1s denoted by M+(X) and CH(X) (resp. C5(X)) denotes
the set of non-negative continuous functions with compact
support (resp. vanishing at infinity).

A kernel is viewed as an operator on functions as in [2]
rather than as an operator on measures as in [1].

1. The resolvent defined by a convolution kernel.
Let G be a locally compact group whose topology is o-

compact and denote by K a compact subgoup. Let E denote
the locally compact quotient space G/K of right cosets and
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denote by = the projection of G onto E (let =(f) be also

denoted by [t]). Let 0 = [e], e the identity of G. ‘
Denote by x a positive Radon measure on E and let m

be the left-invariant probability measure on K. Define the

measure % on G by setting
& = [ [ [ fe)m ()]« (d[2]),

for fe ¥+ (note that t — f#(t) = f f(tz~1)m (dx) 1s constant

on each right coset since a compact group is unimodular).
Define the translation kernels T, and S, by the formulas

(Tf)(z) = f(a) and (Sf)(@) = f(at), feG*. A Radon

measure « on G 1is said to be K-right-invariant if
<a: Stf> = <“, f>

forall te K and fe ¢*. The measure % is then the unique
K-right invariant measure « on G whose image =n(a) = x

and the map x — % identifies M+*(E) with the set of K-
right-invariant measures on G (note that <%, f> = <{x, [,
where f*=7Fon and (Sf) =T if teK).

If fee+r let f=fon. Then ge %+ is of the form
g=1/[ fe&+, if and only if S,g=g for all te K. Conse-
quently, if ge 9+ and x € M*(E) the function h defined
by h(z) = (g*%)(x) = [ glat)x (dt) is of the form h =1,
le &+. As a result, if fe &+ there is a unique function

geé+t with §=fx% Define g to be fxx. Clearly
f—>f*x defines a kernel N such that NT,= TN for
all te G and fed&* (note that T[f([z]) = f([t"'«])). Such
a kernel will be called a convolution kernel.

A measure p on E issaid to be K-invariant if

{wy O =<, Tf

for all te K and fe &*. This is equivalent to requiring
that <@, g> =<@, Sg =<@, Tg) for all te K and

ge 9+, ie. f i1s K-bi-invariant.

Lemma 1.1. — Let N be a convolution kernel on E. Then
there exists a unique K-ingariant measure o on E such
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that Nf=fxa for all fe&*. In case Nf={fxx the

measure o« = n((B)"), where B = n((%)").
 Proof. — Define (B, f> = Nf(0). Then, if te K,
B, > = Nf(0) = (T.Nf)(0) = N(T,f)(0) = <8, T.f>.

Hence, B 1is K-invarlant

Clearly, N([z], ff (xs)B) ds) if xeG and feé&+.
Further, § is K- bunvanant and so a=mn(p)") is K-inva-
riant. Hence, @ = (f)” and so

N([z], f) = (f+ %)(2) = (f + o) [].

The uniqueness of « is clear as is the fact that N = xx
implies B = w((%)").

Let x € M*(E) be such that the kernel V defined by
Vf = f*x satisfies the complete maximum principle (note
that x 1s not assumed to be K-invariant). Since x is Radon,
V is proper and so, as remarked in [3], it is reasonable to
define we &+ as excessive if u = sup Vf, with (f,) < &+

and (Vf,) increasing. Also, u € &+ 1s said to be supermedian
if, forall f and ge&*, u+ Vf > Vg on {g > 0} implies
u+ Vf=2V

If «,8eM+G) and B 1s K-right invariant then an easy
calculation shows that o« %8 1s also K-right-invariant.
Hence, if ¢, v e M+(E) the Radon measure { *9 (when defi-
ned) equals % where =n({ *9) = n € M*(E). The measure v
is defined to be w *v.

Remark. — If N 1s a convolution kernel on E and
v € M*(E)
then uN =y B where B ==((&)") if Nf=/fxa. In the

case of a group the convolution kernels are associated with B
rather than « so that the formula <{uN, > = (g, Nf)
holds.

Assume that the following condition is satisfied by x:

(D,) there i1s a compact neighbourhood B of 0 and
o € M¥(E) such that

(1) 6 xx < x;
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(2) oxx =x on CB; and

(3) 6" xx tends to zero weakly (where ¢ 1s the n-fold
convolution of ¢ with itself).

Prorosition 1.2. — Let ® € CH(E), r,e E and ¢ > 0.
Then there exists an excessive function s and a compact set

K < E with

(1) s(xg) < €5 and

2) s> Vo on [K.

In other words, V® yanishes at the natural boundary of E in
the sence of [3].

Proof. — If ¢ € C7(G) then there exists @ € CF(E) with
¢ < ®. Hence, in view of D;) (3) it suffices to prove that, for
each n >0, for all ® e CHE) and for all ¢ > 0, there

exists an excessive function ¢ = ¢(n, ®, €) and a compact
set L,=LJ(e, @, &) with (a) @Px(c"*x) 4+ ¢ > ®sxx

on [:L,, and (b) ¢(x,) < . Let P(n) denote this statement.
First, let n = 1. From D,) (2) it follows that if ® e C}(E)

then @ x (6 xx) = ® xx on [:D, D = n(AB), where
A = =1 (supp @)

and B = =~1(B). Since D is compact, P(1) is established
with ¢ = 0.

Assume P(n). Let o =6 4 t where ¢ has compact
support and (@ x (7 x x))(x,) < €/2. Then,

D x (" xx) = (Pxo')* (" *x)
and ®x¢' € CHE). If w =9¢(n, ® %o, £/2) then

D% (6™ xx)+w > (Dxo')*x

on (:L,,(v, ®xd', c/2) = [:Ln. Hence, if
p=w 4 O x (v%x)

it follows that ¢ + ® x (6™ xx) > ®x(c*xx) on [:Ln
and ¢(z,) < e.
In view of P(1) this establishes P(n + 1).
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Lemma 1.3. — Let V and T be proper kernels on a measu-
rable space (E, &) such that VT =TV. If V=I1lmYV,,

Wo
where (V,) is a sub- Markovian resolvent of kernels V,, then
TVy = V,T for all » > 0, providing Tl < oo.

Proof. — Let fe &+ be such that f, Vf, Tf and VTf
are all finite. Now V;f is the unique function h such that
(I +AV)h = Vf. Hence,

VTf = TVf = T(I + aV)k = (I + AV)Th

implies that V;(Tf)=T(V;f). Since each fe &+ 1is of the
form f= Y f,, where each [, satisfies the above hypotheses,

the result follows.

Tueorem 1.4. — Let V be the kernel defined by Vf = f % x,
x € M*(E). Assume that V satisfies the complete maximum
principle. If x satisfies D,) then there is a unique family
(x2) of K-invariant measures »; such that the kernels

V)\f == f* X
form a sub-Markovian resolvent (V,) of kernels V, on E
with V =1lm V,.
W .
Further, if V s the kernel defined by Vg = g+ % (where »
also denotes the K-invariant measure for which Vf = fxx),
the kernels V) defined by V,g= gx%, form the unique

sub-Markovian resolvent (V,) on G with V =1mV.
o

Proof. — From Proposition 1.1 and Theorem 2 in [3]
it follows that there is a unique sub-Markovian resolvent (V)
with V=1m V,. From Lemma 1.3 it follows that each V;

vo

is a convoelution kernel. For all A > 0, let x; be the unique

K-invariant measure on E such that V,f=fxx, feé+.
The resolvent equation, 0 > X\ > p,

= wy (e — A)wy ko = (0 — Ny * %y
holds when each measure = 1is replaced by 7. Define

Vig=gx%, ge9t
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Then (V;) is a sub-Markovian resolvent and fe &+ implies

Vif =Vif)". Also, Vg=gx2>Vig=gx5 forall geo+

and since V =1limV;, V =1lim V;, (note that if ¢ e C}(G)
AVO AVO

there exists @ € C+(E) with @ > ¢).

Remark. — Since x 1is K-invariant it can be directly
verified that V satisfies the complete maximum principle

(note that Vf = Vf# for all fe 9*).

2. The existence of a Feller semigroup.

The measure x on E will be assumed to satisfy the follo-
wing condition :

D,) there is a base # of compact neighbourhoods of 0
such that for each B e # there exists o e Mt(E) with

(1) o xx < x;

(2) 6 *x # x; and

(3) 6#x ==x% on (:B.

Remark. — If, in addition, one requires in D,) that each
6" * » converge weakly to zero as n — o and that each o
1s carried by [:E then there 1s a family associated with x
in the sense of Deny [1].

Since the resolvent (V;) maps Co(E) into itself the Hille-
Yosida theorem can be applied if D = V,(Cy(E)) = C,(E).

This fact is established by the following sequence of lemmas
and propositions.

Lemma 2.1. — Assume o« < B. Then o« =8 if

(@ *a)(0) = (@ = 8)(0)
for all @ € CH(E).

Proof. — (® % a)(0) = (® % p)(0) for all ® e CH(E) implies
that &A-1) = B(A)1) for every compact set A < E.

If B < G is compact then B~ = A where A = n(B-1)
is compact. Hence, B = A-1. Since & < § if follows that



526 J. C. TAYLOR

(B) =B(B) for all compact sets B = G. Consequently,

R R

™

Lemma 2.2, — If oxx < x then V(® xo) = @ x (o % x)
is continuous and excessive whenever @ € CH(E).

Proof. — Let ¢ >0, r,e E and ® e CHE). Let O be
a compact neighbourhood of e such that t€O implies
IT® — @ <. If =n(t) =a then =n(0t) is a neigh-
bourhood U of z,.

Let ¢ € CF(G) be such that

w=13>UJrs « 8)

teo

Then, if x € U, where z = [t{,] with ¢ €O,

V(@ # 6)(2) — V(® 0)(z)] < [|B((ttys™)
— Btos )I(c*x) (ds) < < [ $(tes1)(3 * %) (ds).

Since there exists 6 e CF(E) with 8(s) > ¢(ts7), for all .
s € G, thelastintegralis finite.

ProrositioN 2.3. — Let U be a neighbourhood of 0. Then
there exists ¢ € CH(E) such that:

(1) Y =u — ¢, u and ¢ both continuous excessive functions;
(2) 0 # 4(0) = |¢]; and
(3) supp¢ = U.

Proof. — There exists a compact neighbourhood D of 0
such that DD < U. Further, there exist compact neigh-
bourhoods A and B of 0 with A = suppy, ¢ € CHE),
Be# and AB < D.

Let o be a measure satisfying the conditions in D,) relative
to B. Then, if

X = supp (x — o * x), D xx — @ x (o6 xx) e CHE)
(its support lies in =(AB)) and attains its maximum at a

point 3
zo € n({® > 0}X) = =(AB) = D.
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Choose s, € {® > 0}X with 7(sy) = x, and let 6 = T_,®.
Then ¢ = 0 xx — 0 % (¢ * x) 1s a function that satisfies (1), (2)
and (3) above.

Cororrary 2.4. — The functions V,@,1 > 0 and ® € CH(E)
separate the points of E.

Proof. — If u 1is lower semicontinuous and excessive then
u=sup {AV,®/x > 0 and ® € CJ(E) with ® < u}. Hence,
the functions V,® separate 0 from any other point z e E.
Since V,T, =T.,V,, for all se G, the result follows.

. Remark. — As pointed out by Faraut and Harzallah, given
Corollary 2.4. the theory of Ray semigroups can be applied
(in the metrisable case) to give a proof of the fact that (V;)
1s the resolvent of a Feller semigroup. For example, Corollary
2.4 implies that the hypotheses of Theorem 1.7 in [4] are
verified. Hence, (V;) is the resolvent of a semigroup (P,
of kernels P, The set D of non-branching points is non-
void (corollary 2.6 in [4]) and since one can show that, for all
seG and t > 0, T,P, = P,T,, D= E. From this it follows,
since Co(E) 1s invariant under (P,), that (P, 1s a Feller
semigroup.

A direct proof of this fact (which does not use metrizability
or o-compactness) continues with the following result.

Cororrary 2.5. — If U s an open Baire neighbourhood
of 0 then LimaV,(0, U) = 1.
>0

Proof. — Let ¢ € CF(E) satisfy conditions (1), (2) and (3)
of Proposition 2.3. Then, since lim AV;(0, ¢) = ¢(0) the
A>o

result follows as aV;(0, ¢) < aAVy(0, U)Y(0).

CoroLLArY 2.6. — Let u and ¢ be two lower semicontinuous
excessive functions. Then w = u A\ ¢ is also excessive.

Proof. — If 2y e E and ¢ > 0 let U= {w > w(z,) — ¢}.
Then, U 1s open and lim AV,(z,, U) = 1. Hence,

A>0

$(z0) > () — €.
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Prorosition 2.7. — Let A < E be compact. Then there is
a compact neighbourhood O of A and A, >0 such that, for
e > 0,

AVi(z, A) < ¢ if z¢ 0 and A= A,

Proof. — Let ¢ > 0 and let U be a compact neighbour-
hood of 0. Let 2, > 0 be such that

1 —e<aVy(0,U) =2a(lg*%)(0) for A

Let O = =(AU).
Denote by B any one of the measures Mg, A > 2. Then,
if z=mn()

\'%

2o

(fa»B)(2) = [ Lx(ts™)B (ds)
= [ a(ts)1o(s)B (ds) + [ La(ts=)(a(s)B (ds)
< [ 1(e(s)B (ds) < ¢, if ¢ AD
CoroLLarY 2.8. — Let u, ¢, be two continuous excessive

functions on E with u — ¢ € C}(E). Then,
lim [AV3(u — ¢) — (& — #)] = 0.

Proof. — Let A = supp (v —¢) and let ¢ > 0. Denote
by O a compact neighbourhood of A such that

AVi(z, A) < ¢ if z¢ O and A > A,
Then |AVy(z, u—9¢) <celu—y¢] if x¢O. Since AVyu

AV,¢ are lower semicontinuous, AV;(u — ¢) converges uni-
formly to u — ¢ on O. The result follows.
The above results imply that V,(Co(E)) = Co(E) and

hence the following result.

Taeorem 2.9. — Let G be a locally compact group (that
is o-compact) and let K = G be a compact subgroup. Let
V = xx be a convolution kernel on the homogeneous space
E = G/K, x e M*(E). Assume that V satisfies the complete
mazimum principle.

If » satisfies D;) and D,) then there is a unique Feller semi-

group (P) on E with V= [*"P,dr.



ON DENY'S CHARACTERISATION OF THE POTENTIAL KERNEL 529

Proof. — Let w;, v; for 1 =1, 2 be continuous excessive
functions such that ¢, = u, — ¢, € C7(E). Then

Y1 A $o = (ug + 02) A (U2 + ¢1) — (91 + ¢2)

is of the same form. Hence, the vector space generated by
functions ¢ € C7(E), which are differences of continuous
excessive functions, is dense in Cy(E).
Corollary 2.8 implies that D = V;(Cy(E)) = Co(E). The
result then follows from the Hille-Yosida theorem (c.f. [2]).
As an immediate corollary one has the following restricted
version of a result of Deny [1].

Cororrary 2.10. — Let G be a locally compact abelian
group (that is o-compact) and let V = xx be a convolution
kernel on G that satisfies the complete maximum principle.

Then, V 1is the potential kernel of a Feller semigroup if the
following condition s verified :

D) for a base # of compact neighbourhoods of the identity
e of G there s, for each B e B, a measure ¢ € M+(E) with

(1) s xx < x and o *x # %;

(2) cxx =x on tB; and

(3) lim (¢") ¥ x = 0 (weakly).

Remarks. — Deny’s result is more general. He not only did
not require G to be oc-compact (a hypothesis that can be
removed from all the above results as indicated in the appen-
dix) but also did not assume that the kernel x satisfied
the complete maximum principle. Further, while in the commu-
tative case it is immaterial whether one writes o *x, or % x o
it seems to be necessary in general to have o xx < x if the
kernel V commutes with the left action of G on E.

3. The characterization
of convolution Feller semi-groups.

Let (P,) be a Feller semigroup on E that commutes with
the action of G on E, ie.,if seG and ¢t > 0 then

TP, = PT..
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Further, assume that if A < E is compact,

Vi, = [ PA,dt
1s finite.

Denote by % the unique K-invariant measure on E defi-
ned by (%, ®> = V®(0). Then Vf={fxx and pV =p=*x
(note that (%)” 1s K-bunvariant and so ((%)7)", being
K-right invariant, is of the form # for a unique » € M+(E)).
It will be shown first that % satisfies conditions D;) and D,).

Note that p — pP,, pe M (E), defines a continuous
Hunt semigroup in the terminology of Deny [1]. Hence, all
the results of paragraphs 3 and 4 in [1] hold.

To begin with it is proved that 1 is an excessive function.

Lemma 3.1. — Iim P,1 = 1.

t>0

Proof. — Obviously, it suffices to show that lim P,(0, 1) = 1.
>0

Choose @ eCr(E) with ®(0)—1 and ® < 1. Then
1 = lim P,(0, ®) < lim sup P,0, 1) < 1.
t>0 t>0

CororLrLARY 3.2. — Let o € M*(E) be such that o+ % < .
Then {(c,1> < 1.

Proof. — Since by Lemma 3.1 1 1is excessive there exists
(f,) = E with (f, *x) increasing to 1. Hence,
(6,1> =lim {o,f, *x) = lm' (o x%, f,>
< lim (%, f,> = him f, * x(0) = 1.

Lemma 3.3. — Let (o) and (B;) < M+*(E) be two nets
that converge weakly to « and B respectively. Assume

oy 1) < 1 and Bp 1> <1

for all 1 and j. In addition assume thateach B; s K-inva-
riant. Then,

«* B =lim lim «; % B; = lim lim «; * 8;.
i J J i

Proof. — Let ® € CA(E). Then (o 8, ®> = {a;, ® * >
implies  lim «; % B; = « # B;. Further, since (&) *x® = J,
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with ¢ € Cy(E), it follows from (o %8, ®> = (B, >
that lim «; % B; = «; * . Applying both these arguments to

J

«;*Pf and «*B; respectively gives the result.

COROLLARY 3.4. — If B s K-invariant and (B, 1>
then hmoc *B=axB. If<B, 1> <1 and each «; s K~

mvanant then lim B *a; =B * a.
Proof. — Let B; =8 forall ;.

CoroLrarY 3.5. — Let p be a weak accumulation point of
{c"'n e N}, where c+% < %X and o s K-invariant. Then
L*0=0%U.

Proof. — Let o™ = «; be a net converging to wu. Then

pxo=lmo;xoc =lmo*a, =0 x .
A Radon measure £ is said to be excessive if itis > 0 and
Exaxy < & for all A > 0. It is said to be a potential if
£ =y xx for some ye M+(E).

Prorosition 3.6. — Let (§,) be a net of potentials

L=vyi*xx

each dominated by a potential B x % with (B, 1) < . Assume
that & us the weak limit of (£)).

Then & s a potential v *% and y = hm i if <y, 1> <
for all n.

Proof (cf. the proofs of Theorem 6.1 and Lemma 7.1 in [1]).
— The measure £ is excessive and since & < B % % 1its inva-
riant part is zero (see [1]). Let py = A€ * (8 — Aiy).

Then,

oy 1D < AB x % * (8 - )‘7\*), 1>
={B*ry, 1> < B, 1D < .

Hence, by Lemma 3.3, if y is a weak accumulation point
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of {u,n > 0} and equals limy,, where j— u, is a net,
then Lim p, * 3 =y * %. d
J

Deny’s argument in [1] is now used to show & =y *x
(see proof of his Theorem 6.1). Specifically, since for any
A > Olimp; %, =0 (the net j—n; is unbounded) it

J
follows that

pa x e = lim gy * ( — %)) = Hm g, * (& — %) =& — v * 3,
J J
since lim A( x %) =& follows from the fact that for all
N>
® e C(E) im A(® % %) = .
A>0
Following Deny, let A — 0 in this identity. Since
wy * % = & x Ay
implies lim pj) * % =0 (the invamant part of £ 1is zero)
2>0
it follows that & = y = .
It remains to show that y = lim v,. Since
L Mg =& — v, %3,

by lemma 3.3, lim v; * %, exists and equals

E—E %0 = v+
Let j— v, be a net converging to «. Then
w* % = lim v, * % = v * 3.
j

Hence, as V;(C,(E)) = G4(E), « =y and so (y;) converges
weakly to .

Cororrary 3.7. — If U < E s open and B e Mj(E)
there exists a measure B’ e MT(E) with (1) B’ *% < B * ¥;

(2) 8" carried by U and (3) B’ «%x =B % on U.

Proof. — The argument used by Deny to prove Lemma
7.2 in [1] applies without change once it 1s noted that

wxx < PBxk and B,1>=5b
implies <{p, 1> < b (see the proof of Corollary 3.2).
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CororLrLary 3.8. — Assume ox%x < % The excessive
measure £ = lim ¢" * % 1is a potential p *% and p = lim o".
n>oo . n
Proof. — Let &, = o" % %.
From these results one can quickly deduce the following
key fact.

Prorosition 3.9. — Let o € M+(E) be such that o %% < %
and ox% # % Then, Ims"x % = 0.

n>x

Proof (cf. the proof of Theorem 7.1 in [1]). — Let

£ =limo" % %.
Then o+ =% and & =p*%x where p =Ilimo" (see
Proposition 3.6). Hence, "

pxE =lmp*c"sXx=lime"xp*x%x =lmoc"*x& =§
(note that the first equality holds by monotonicity).
Since o6 x % # % the positive measure % — & 1s not zero.
Hence, p* (x —&) =0 implies w =0 and so £ = 0.
Deny’s Proposition 3.3 in [1] states that if p, ve M+(E)
are such that px3%, vx%xe M*(E) and p*%=vx*% then
# = v. Hence, Corollary 3.7 (applied to g = §) and Propo-
sition 3.9 imply that % = ¥ satisfies the following condition :

D) for a base # of compact neighbourhoods B of 0
there 1s, for each B € #, a measure o € M*(E) with

(1) sxm < m and oc*7 # n;

(2) 6 =19 on [:B;

(3) hm (6" x m = 0 (weakly).

One can now state and prove the following characterization

of Feller semigroups on E whose potential kernel is proper
and which commute with the action of G on E.

Tueorem 3.10. — Let G be a locally compact group (that
is o-compact) and let E be the homogeneous space GJ/K
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of right cosets of K, a compact subgroup of G. Denote by x»
a positive K-invariant Radon measure on E.
The following conditions are equivalent :

(1) there is a family («)t > 0 of K-invariant Radon

measures «, on E such that x=j;moc,dt and  (x o),
s a Feller semigroup;

(2) the kernel «x satisfies the complete maximum principle
and » satisfies D);

(27) the kernel =3 satisfies the complete maximum principle
and % satisfies D).

Further, if D') denotes the condition obtained from D)
by reversing all the conyolutions then (1) implies :

(3) the kernel xx satisfies the complete maximum principle
and » satisfies D'); and

(37) the analogue of (27) with D) replaced by D’).
Proof. — Theorem 2.9 states that (2) = (1).

(1) == (2). As noted above the measure X satisfies D).

Further, if x;\:j;w e Mo, dt, the family (x%) of convo-
lution kernels i1s a sub-Markovian resolvent family. Lemma

3.11 shows that *% =Ilim=x3% and so X satisfies the
AV0
complete maximum principle. Hence, from Theorem 2.9

and the above remark » = (%)” satisfies D).
The statement (1) is equivalent to the statement obtained
by replacing each measure n by 7. Hence, (1)< (27).

Lemma 3.11. — Assume ( * %)) is a sub-Markovian resolvent
family of convolution kernels V, = xx; with each x, «
K-invariant measure on E and lim V; = xx. Then,

A>0

* % = lim * %, <> x = lim x;.
Ao Ao

Proof. — Since <B, g> = <¢B, g>, it suffices to show that
xx = lhm %%, 1if for all ge @t him (%, g> = <{%, g>.
o )
One implication is obvious. Now assume that, for all fe &+,

hmf*x, =f*x. Let g €%t be bounded and wvanish
W0
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outside a compact set. Then there exists ® € C+(E) with

(®)” > g,. Since @ %x%,(0) = (%, (®)"> and % < % for
all A > 0 if follows that lim (Fo, 81 = <% &) Since #%
a0

1s a Radon measure this implies that hm (B g8 = <%, &
for all ge %+.
Lemma 3.12. — Let o € M*(E) and set

<, = [ <o, Tfom (ds).
Then v e M*(E) s a K-invariant measure. Further, if
o« € M+(E)

and axoceM*(E) so too ts axv and axv=axc. If,
in addition, o« s K-invariant then v*a =oc%a when

o * « € M*(E).

Proof. — Clearly v 1s K-invariant. Let fe &*. Then
oy Hh=3G, = ff f(s722)& (dz)m (ds). Hence,

<a*v,f>=<a*v,f>

::f ff:vy\? dy) f[fffxs‘lz (dz)m ds)]&(dw)

(because the functlon y — flay) = 3ly), g€ &+)

= [[ [ fas2)a (da)]5 (dz)m (ds
—ff J a2z (d2) |5 (dz)m (ds)

(because s € K and & 1s K-right invariant)

=<&*6,f>=(a*c,f>.

The calculation that proves v+a =oc %o when o is K-
invariant is entirely similar.

CororrAry 3.13. — Let nx0 < x and lmx*xs¢" =0
n>o0

where x, 6 e M*(E) and x s K-invariant. Then the K-
invariant measure v of Lemma 3.12 is such that x xv < x
and lim x % v" = 0. Further,if x xc =x on A thenx xv =x

n>ow

on A.
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The corresponding results hold if the convolutions are done
in the reverse order.

Proof. — For the first statement if suffices to note that
x*6" = (x*6" 1) xo=(x%xc""1)xv
and so x x¢" = x xv". For the second one note that if
Vil gy = o™ lsxx = a
then « 1s K-invariant and so v'sx = o % a = ¢" % x.

The proof of the theorem is now completed by the above
lemmas and corollary.

Remarks. — The conditions (3) and (3”) do not appear to
imply condition (1). By considering the situation on the
space F of left cosets one could show (3)= (1) providing
that the kernel x* on F satisfies the complete maximum
principle. However one only knows that i« has this property.

To prove the last statement it suffices to show that x
satisfies D’) whenever x satisfies D).

First of allif # is a neighbourhood base for 0 satisfying D)
the measures o can, by corollary 3.13 below, be assumed to
be K-invariant. Now (¢ *x)” = %x & and so since the sets

of the form =((A)"), B € 4, also from a base for the neigh-
bourhoods of 0 it follows that % satisfies D’).

Appendix.

In the non o-compact case the complications arise because
theorem 2 of [4] no longer applies and has to be replaced
by theorem 3 of [5]. In the terminology of [5] if V =1x=x
then every Baire set is o¢-bounded. This condition replaces
the hypothesis that V 1is a proper kernel in the o-compact
case.

In proposition 1.2 « excessive » should be replaced by
« supermedian » as defined in [5]. Now, as V is sub-Markovian,
1 is supermedian and so, in view of theorem 3 in [5], theorem
1.4 holds. Note that in lemma 1.3 « proper » should be replaced
by « every Baire set i1s ¢-bounded ».
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