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THE RAY SPACE OF A RIGHT PROCESS
by R. K. GETOOR and M. J. SHARPE (*)

Dedie a Monsieur M. Brelot a V occasion
de son 70e anniversaire.

1. Introduction.

In [6] Meyer and Walsh created a beautiful theory based
on earlier work of Knight [4], Ray [9], and Shih [10] to show
that if X is a process with state space E satisfying Meyer's
« hypotheses droites », then by changing the topology on E
and enlarging E one may regard X as a Ray process, that
is, roughly speaking, a Feller process except that branch
points are allowed. In [3] the hypotheses of Meyer and Walsh
were relaxed somewhat in that E was assumed only to be
a U-space rather than Lusinien (a topological space is a
U-space provided it is homeomorphic to a universally measu-
rable subspace of a compact metric space), and the requi-
rement that the excessive functions be nearly Borel was
dropped. From a practical point of view these results were
complete. However, there was one aesthetic gap : the new
topology on E (which we call the Ray topology) and the
enlargement of E seemed to depend upon a choice of an
arbitrary uniformity on E and not just on the topology of E.
The purpose of this paper is to close this gap.

In Section 2 we develop certain properties of U-spaces
that will be used in the later sections. Allowing E to be a

(*) This research was supported in part by the National Science Foundation
NSF Grant 41707 X.
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U-space is not only a generalization but also leads to a pleasing
symmetry because E in the Ray topology is again a U-space.
In Section 3 we summarize the properties of right processes
and the Ray-Knight compactification that are relevant to
our discussion. In Section 4 we first show that the Ray topo-
logy on E is independent of the choice of the uniformity used
in constructing the Ray-Knight compactification. We then
go further and introduce a U-space R which contains E
in the Ray topology as a dense universally measurable sub-
space and which has all of the properties of the Ray-Knight
compactification that are relevant to the study of X.
Although R is not compact it has the advantage of being
independent of the choice of the original uniformity on E.
We call R the Ray space associated with the process X.
If we equip E with the Ray topology, X is still a right pro-
cess, and hence we can apply the Ray-Knight procedure once
again. The first result in Section 5 states that we obtain
nothing new in this manner. Finally we characterize the
Ray space up to a useless set.

2. U-Spaces.

Let E be a topological space. The Borel subsets of E
are the elements of the smallest <y-algebra, ^, containing all
the open subsets of E. The universally measurable subsets
of E are the elements of the cr-algebra, <^*, of universally
measurable sets over (E, <^); that is, B e <^* if and only if
for each finite measure (JL on (E, ^) there exist B^, Ba e S
with BI <= B <= Bg and (Jt(Bi) = ̂ (Bg). Each finite measure
(JL on (E, <^) has a unique extension to (E, <^*) which is
denoted by [L again. Thus to give a finite measure ^ on
(E, S} is exactly the same as giving a finite measure on (E, <^*).

2.1. DEFINITION. — A topological space E is a U-space
provided it is homeomorphic to a universally measurable subspace
of a compact metric space.

Here a universally measurable subspace of a topological
space means a universally measurable subset with the usual
subspace topology. It is immediate that a U-space is metri-
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zable and second countable. Let E be a U-space and let F
be a compact metric space containing a homeomorphic image
of E. For ease of exposition we identify E with a universally
measurable subspace of F. Let d be a metric on F compa-
tible with the topology of F so that the topology of
the metric space (E, d) is precisely the topology of E.
Let C(,(E) denote the bounded (real valued) continuous
functions on E and let Cu(E, d) denote the bounded (real
valued) ^-uniformly continuous functions on E. Then
Cn(E, d) consists precisely of the restrictions to E of the
functions in (^(F). In particular Cu(E, d) is a separable
closed (in the uniform norm) sub-algebra and sublattice of
C&(E). Of course, C^(E) itself is not separable in general.
Let y (resp. ^*) denote the o-algebra of Borel (resp.
universally measurable) subsets of F. Recall that if (X, ^)
is a measurable space and Y <= X, then the trace of ^ on Y,
denoted by ^|y? is the cr-algebra on Y which consists of
those A <= Y such that there exists B e S with A == B n Y.
Of course, the representation A == B n Y is not unique,
but it is easy to check that ^|y is, indeed, a or-algebra on Y,
and that if Y e ^, then A e ^jy if and only if A e ^
and A ^ Y. Using these definitions the following proposition
collects some elementary properties of U-spaces. The routine
proof is omitted. See [3].

2.2. PROPOSITION.
(i) ^ is the trace of SF on E.
(ii) € is the a-algebra generated by Cu(E, d?).
(iii) <^* is the trace of ^* on E.
(iv) A finite measure on (E, <^) is determined by its values

on Cn(E, d).

An immediate consequence of (2.2-iii) is that a universally
measurable subspace of a U-space is itself a U-space.

We next recall some facts about metric spaces and their
completions. Let (E, d) be a metric spa.ce. Then there exists
a complete metric space (M, p) and an isometry i: E -> M
such that i(E) is dense in M. The complete metric space
(M, p) is unique up to isometry and is called the completion
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of (E,d). Theisometry i is called the injection of E into M.
We shall sometimes identity E with the subspace i(E) of
M. Let Ei and E^ be metric spaces with completions Mi
and Ma. If 9 : Ei-> Eg is uniformly continuous (resp. an
isometry), then there exists a unique uniformly continuous
map (resp. isometry) ^ : Mi -> Mg such that ig o 9 == ^ o ^
where 1*1 and i^ are the injections of Ei and Eg into Mi
and Mg respectively. It is well known that (M, p) is compact
if and only if (E, d) is totally bounded.

Let E be a non-void set and let d^ and d^ be metrics
on E. Let E^ and Eg denote the completions of (E, d-^)
and (E, d^) respectively. If d^ ^ dtg, then the identity map
e on E is uniformly continuous from (E, rfg) to (E, ^i)
and so there exists a unique uniformly continuous map
cp : Eg -> Ei such that 9 o ^ = ̂  o e = 1*1 where ^ and
i^ are the injections of (E, d^) and (E, d^) into Ei and Eg
respectively. The following lemma collects some facts that
will be used repeatedly in the sequel.

2.3. LEMMA. — Let di and d^ be metrics on E with
d^ ^ dg. Using the above notation:

(i) If Eg is compact, then 9 is a surjection of Eg on Ei
and Ei is compact.

(ii) Jf di and ^2 induce the same topology on E, then
i,(E) = ̂ ^(E)].

(iii) J/* Eg ^ compact and if ^(E) == ^^^(E)], ^M ^
and d^ induce the same topology on E.

proof. — If Eg is compact, then 9 (Eg) is compact, and
hence closed, in Ei. But ^(Eg) ^ ?[^(E)] = ^i(E) which
is dense in Ei. Therefore cp(Ea) == Ei, proving (i).

For (ii) we shall first prove the following statement:

2.4. Let di and d^ induce the same topology on E. If
z e Eg and x e E w^/i 9(2) = 9 o ^(^)? ^^ z = ^(^)-

To establish this choose (^) <= E with i^) -> z in Eg.
Since 9 is continuous,

il^n) = ? ° ^(^n) -^ 9(^) == 9 ° ^(^) == l̂N-
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Therefore x^ —> x in (E, c^), and since the topologies are
the same, x^ —> x in (E, d^), or equivalently i^(x^) -> i^{x)
in Eg. Consequently z === ^(^)? proving (2.4).

To establish (2.3-ii) we observe that 9 o ^(E) = ^i(E)
implies ^(E) ^ 9~l[ll(E)]. Conversely if z e ^"^[^(E)],
then there exists an x e E with 9(2) == i^[x) = 9 o ^(a?).
By (2.4), js == ^(^) and so ^ e ^(E), proving (2.3-ii).

Coming to (iii), we first note that by (i), Ei is compact
and 9 is a surjection. Since d^ ^ d^y if (x^) c E and
x^ -> x in (E, (^2)9 then x^ -> x in (E, c?i). Therefore it
suffices to show that if (x^) c E and x^ —> x in (E, c^),
then x^ -> x in (E, ^2). But this will follow if we show that
each subsequence (^) of (^) has a further subsequence
(^) with x'^ -> x in (E, d^), or equivalently, i2(^) -> ^(^)
in E2. Changing notation it suffices to show that if x^ -> x
in (E, d^)y then (^) has a subsequence (^) with

i2«) -> l'2(̂ )

in E2. Since E2 is compact (^) has a subsequence (x^)
with ^(^n) -^ ^ e £2. Now ^(^) -> ti(a;) by assumption
while ^i(^) = = 9 0 ^(a;^) -> 9(2). Therefore i\(.r) == 9(z), or
z e 9-l[ll(E)]. Thus by hypothesis there exists y e E with
z = i^{y). Consequently i^y) = 9 o i^y) = (p(^) == ̂ )
and so x = y. Hence i^n) -^ ^ === ^2(^)9 proving (iii).

We come now to the key fact that is needed for characte-
rizing U-spaces.

2.5. PROPOSITION. — Let d^ and d^ be metrics on a set E
and let Ei and E^ be the completions of (E, d^) and (E, d^),
If d^ and d^ induce the same second countable topology
on E, then ^i(E) is universally measurable in E^ if and
only if ^(E) is universally measurable in E^.

Proof. — Let d == d^ + ^2. It is immediate that if d^
and 6?2 induce the same topology T on E, then the topo-
logy induced by d on E is also T. Thus it suffices to prove
(2.5) when di ^ rfg. Hence in the remainder of this proof we
assume that d^ ^ d^, and as in the notation above (2.3),
9 is the uniformly continuous map from E2 to E^ such
that 9 o H = ̂ .
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We shall first show that if i\(E) is universally measurable
in EI, then ia(E) is universally measurable in Eg. This
part of the argument does not use the assumption that the metric
spaces (E, d^) and (E, d^) are second countable. Let [JL be
a finite measure on (Eg, <^g) and let v === 9(11) be its image
under 9 on (E^, ^). Of course, 9, being continuous, is
a measurable map from (Eg, ^2) to (Ei, <^i). Since ^(E) e <^,
there exists sets A, B e ̂  with A <= ^.(E) c= B and
v(B) = v(A). Using (2.3-ii) this yields

9-^) c: <p-i^(E)]==,,(E) 0=9-^)

and since (p'^A), ^^(B) e <^ and

^^(A)] = v(A) = .(B) = ^^^(B)],

it follows that ^(E) e ^^.
Next assume la(E) e ^ .̂ Then we must show that

^(E)=9[^(E)]e^ .

In light of (2.4) this is an immediate consequence of the follo-
wing lemma.

2.6. LEMMA. — Let E and F be complete separable metric
spaces and let 9 be a measurable map from (E, <^) to (F, ^").
Suppose that A e <^* has the property that if x e A and
z e E w^A 9(n;) == 9(2), (AeTz x = z. Then <p(A) e ^*.

Proof. — The hypothesis implies that 9 restricted
to A is injective. Let B = 9 (A) and let ^ === 9~1 :
B -> A. Thus ^ is a bisection of B on A. Let 0L be the
trace of € on A and ^* the trace of ^zr* on B. We
assert that ^ is a measurable map from (B, ^*) to (A, (9L),
This amounts to showing that if A^ e (9L, then

^(Ai) = 9(Ai) e ̂ .

Now A! = Ao n A with Ao e ^, and 9(A^) <= 9(Ao) n ?(A).
However, if y e 9(Ao) n 9 (A), then there exist z e Ao and
x e A with y = 9^) == 9(a?). Thus by hypothesis ^ = ^,
and so ?/ e 9(Ao n A). As a result

9(Ai) = 9(Ao) n 9(A) = 9(Ao) n B.
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But Ao e S and so by III-T13 of [5], <p(Ao) is ^-analytic
in F, and consequently y(Ao) e ^* (see III-24 of [5]).
Therefore <p(Ai) e ^* which proves that ^ is a measurable
map from (B, ^*) to (A, (9L).

Let [L be a finite measure on (F, ^*) and choose

Bo e {C e ^ : C ^ B}

of minimal [L measure. If B^ e ^*, then Bi = B^ n B
with B! e ^*. Define pl(Bi) = (i(B^ n Bo). It is easy to
check that pi is well defined (that is, does not depend on the
particular choice of B^, or Bo for that matter) and that p.
is a measure on ^s(t. See [3], for example. The measure pi
is called the trace of [L on ^* = ̂ *|B. Now v == ^((1) is
a finite measure on (A, (Sl). It is straightforward to verify
that (X* === <^*|A? and so v may be regarded as a measure
on (E, <^*) that is carried by A. (See [3].) Therefore there
exists AI <= A, AI e € with v(A^) == ^(A). Let

Bi = 9(Ai) = ̂ ^(Ai) <= B.

Moreover 9 is injective on A^ <= A, and so by Lusin's
theorem (Cor. 3.3, p. 22 of [8]), B^ e ^. Now

(X(Bi) = (X^-^Ai) - v(Ai) = v(A) = (X(B),

while (X(B) = (i(Bo) and (X(Bi) = ̂  n Bo) == ^(B^). Thus
BI.BQ e ̂  with Bi c= B <= Bo and pi(Bi) == pi(Bo). Therefore
B e ^-*, proving (2.6).

2.7. Remark. — Exercising a bit more care in the argument,
one can show that (2.6) is valid when F is assumed only to
be metrizable. It is natural to ask if (2.6) is valid when one
only assumes that 9 is injective on A. We would guess that
the answer to this question is « no ».

2.8. THEOREM. — Let E be a second countable metrizable
space. Then the following are equivalent :

(i) E is a V-space.
(ii) For each metric d on E compatible with the topology

of E, E is universally measurable in its d-completion.
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(iii) There exists a metric d on E compatible with the
topology of E such that E is universally measurable in its
d-completion.

Proof. — Since (ii) implies (iii), it suffices to show that (i)
implies (ii) and that (iii) implies (i). Suppose E is a U-space.
Then there exists a compact metric space (fi, d) which
contains (a homeomorphic image of) E as a universally
measurable subspace. Since the ^-completion of E is just
the closure of E in E, it follows that E is universally
measurable in its d-completion. Consequently (ii) is an imme-
diate consequence of (2.5). Let d be a metric on E compatible
with the topology of E and let F be the d-completion of E.
Assume that i(E) is universally measurable in F where i
is the injection of E in F. Now F is a Polish space since
(E, d) is separable, and consequently F is homeomorphic
to a Gg subset of a compact metric space K. (See Cor. 1,
p. 197 of [1].) Let h: F — K be the homeomorphism. Then
/i(F), being a G§, is Borel in K. Since i(E) e ^'*, it follows
that h o i(E) is universally measurable in A(F), and hence
in K. But h o i is clearly a homeomorphism of E on
h o ^(E), and so E is a U-space. This establishes (2.8).

Recall that if E is a metrizable space, then a finite measure
(JL on (E, <^) is tight if [i(E) == sup {pi-(K) : K compact}.
Moreover if [L is a tight measure on (E, <^), then for each
B e <^, (i(B) is the supremum of ^-(K) as K ranges over the
compact subsets of B. See [8]. Clearly the same statement
is valid for B e <^*.

2.9. THEOREM. — Let E be a second countable metrizable
space. Then E is a V-space if and only if every finite measure
on (E, <^) is tight.

Proof. — Let E be a U-space and let F be a compact
metric space containing E as a universally measurable
subspace. Let [L be a finite measure on (E, <^). Then we
may regard {JL as a measure on (F, ^"*) that is carried by E.
Since every measure on a compact metric space is tight, there
exists an increasing sequence (KJ of compact subsets of F
with each K^ <= E and pi(E) = sup pi(KJ. But from the
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definition of the subspace topology each K^ is compact
in E and so (JL is tight as a measure on (E, ^).

Conversely suppose each finite measure on (E, ^) is tight.
Let d be a metric on E compatible with the topology and
let F be the dl-completion of E. For simplicity we identify E
with a (dense) subset of the complete separable metric space F.
In order to show that E is a U-space if suffices to show that E
is universally measurable in F. Let [L be a finite measure on
(F, ^). It is immediate that € = ^\^ and so we let jl be
the trace of [L on E as in the proof of (2.6). Let Eo be a
Borel set in F containing E of minimal [L measure such
that (I(A) = pi(Ao n Eo) whenever A e € is of the form
A = Ao n E with Ao e ^. By hypothesis there exists an
increasing sequence (KJ of compact subsets of E such
that K = u K, c E and p(K) == jX(E). But each K,
is compact in F and so K e '̂. Thus K <= E <= Eo with K,
Eo e ̂  and (i(Eo) = jI(E) = jl(K) = (i(K n Eo) == pi(K).
Consequently E e ^* proving (2.9).

3. Right Processes.

In this section we summarize the basic properties of right
processes that we shall need in the sequel. Most of these facts
are contained in [6], and all of them are in [3]. We fix a U-
space E once and for all. Let (P^)^o he a semigroup of
Markov kernels on (E, ^*). Our first assumption is precisely
HD1 of Meyer and Walsh (except that E is assumed to be
Lusinien in [6]) :

HD1: For each probability [L on (E, <^*) there exists a
right continuous Markov process admitting (P() as transition
semigroup and (JL as initial measure.

One then constructs the canonical right continuous reali-
zation of the semigroup (P^) : Q, '̂°, ^°, X^, P^, etc. Here
our notation is exactly as in [6]. It follows from HD1 that
t -> Pt/'(^) is right continuous on [0, oo) for each fe Cft(E)
and one can define its resolvent U0^ by U01 = | e^P^ dt.
Our second assumption is the following:
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HD 2: Let f be ^.-excessive. Then for each probability (JL
on E, t -> f o X^ i5 P^ almost surely right continuous on
[0, a)).

In [6] it is also assumed that f is nearly Borel, but we do
not make that assumption here. One now introduces the
o-algebras ^^ y^ y^ and .̂ The hypothesis HD2
implies that the canonical realization X is strong Markov and
that for each \L the system (Q, ^^ ^, P^) satisfies the
usual hypotheses of the general theory of processes, in parti-
cular the family {^) is right continuous. See [2] for all
terminology regarding the general theory of processes. We
shall call a semigroup satisfying HD1 and HD2 a right semi-
group, and the corresponding process a right process.

We next choose a compact metric space E which contains
a homeomorphic image of E as a universally measurable
subspace, and, for simplicity, we identify E with this uni-
versally measurable subspace of fi. In light of (2.8) this
amounts to choosing a totally bounded metric d on E compa-
tible with the topology of E. Then without loss of generality
we may assume that E is the completion of (E, d). The Ray
cone R == R(d) is defined to be the smallest convex cone R
of positive bounded universally measurable functions on E
with the following properties :

(i) L^C^E, d) <= R for each a > 0;
(ii) L^R <= R for each a > 0; and
(iii) R is closed under pointwise minima.

[Recall from Section 2 that Cn(E, d) is the space of bounded
rf-uniformly continuous functions on E and C^"(E, d) is
the set of positive functions in Cn(E, d).] It turns out that R
is separable in the uniform norm of functions on E, and we
shall need the following explicit construction of R in the
next section. If ^ is any convex cone contained in b€\
(the positive bounded universally measurable functions on E),
define

(3.1) ^) = {U°^ + ... + U^/,; ^ > 0, f, e jf,
1 ^ / < M, n ^ 1}

A(^) == {/i A • • • A /n;//e^f, 1 ^ / ^ n, n ^ 1}.
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Define Ro == ̂ -(E, d), . . . , R,+i == A(R, + ^RJ, ... Then
each R^, n ^ 0 is a convex cone and R = U R^. Of course,
R depends on the particular metric d chosen (or, equiva-
lently the choice of the compact metric space fi) via Cu(E, d!).
When we want to emphasize this dependence we shall write
R(c?) for R. But for the moment d is fixed and we suppress
it in our notation. Let (gj be a sequence dense in R. Since
R, and hence (gj, separates the points of E,

^ '̂̂ iil̂ i
defines a metric on E. Let F be the completion of (E, p).
Then F is a compact metric space and we regard E as a
subset of F. Of course, F and the topology p induces on
E do not depend on the particular sequence (g^) chosen,
but only on the cone R(rf). We shall call the topology that p
induces on E the Ray topology. A priori it would appear
to depend on the choice of d, but we shall show in the next
section that it does not. This should cause no difficulty in
this section since we regard d as fixed in the present
discussion. In general the original topology on E, that is
the topology induced by d, and the Ray topology are not
comparable.

It is evident that each element fe R has a unique conti-
nuous extension J to F and we denote the set of these
extensions by R. It turns out that R — R is dense in C(F),
and using this one shows that there exists a unique Ray
resolvent (U^ax) on (F, ^r) such that for each feC(F) ,
(U^IE == U^lr), where g\E denotes the restriction of g
to E whenever g is a function defined on F. In particular,
(U01) maps C(F) into C(F) and there exists a unique right
continuous semigroup (P() on (F, ^) whose resolvent is
(U01). In general Po is not the identity.

So far this is all relatively elementary. We come now to
the key points. First of all one shows that E is universally
measurable in F. In other words E equipped with the Ray
topology is a U-space. Secondly if x e E, then

U^, .) = U^, .) and P^, .) = P,{x, .).
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In particular, U^a;, .) and P((^, .) are measures on ¥
that are carried by E whenever x is in E. Finally for each
probability [L on E, P^ almost surely the map ( — > X^
from [0, oo) to E is right continuous when E is given the
Ray topology and has left limits in F. We denote this left
limit by X^, if ( > 0 and set Xo- = Xo. We also write X~
for the process (X(_)^Q- We emphasize that X^_ denotes
the left limit of s -> X^ at t in the space F. If A is a subset
of F, then {X e A} = {{t, co) : X^co) e A} and

{X- e A} - {(<, co) : X,_(o>) G A}.

Although the Ray topology and the original topology are
not comparable, there is a close relationship between their
Borel and universal structures. Let < .̂ (resp. <^) denote
the Borel (resp. universally measurable) subsets of E equipped
with the Ray topology. It is shown in Sections 10 and 12 of
[3] that € <= <^ and ^* = <^. Also each excessive func-
tion is nearly Ray Borel. (See (12.3) of [3] for the obvious
definition.) Since U01: C(F) -> C(F) it follows that L^ sends
Cy(E, p) into Cu(E, p) — here Cn(E, p) is the space of
bounded p-uniformly continuous functions on E. It then
follows that each P( is a kernel on (E, <^r). See Section 12
of [3].

Recall that C(,(E) is the space of bounded continuous func-
tions on E with its original topology. Similarly let C&(E, r)
denote the set of bounded continuous functions on E with
the Ray topology. Also we shall denote the Ray topology
by r whenever convenient.

3.3. PROPOSITION. — For each a > 0, U^E) c: Cft(E, r)
and U^E, r) ^ C,(E, r).

Proof. — The proof of (3.3) depends on the following well
known fact. See [7], for example. Let (Z, 8) be a metric space
and let f be a lower bounded, lower semicontinuous, function
on Z. Then there exists an increasing sequence (/^) of finite
S-uniformly continuous functions on E with f^ ^ f. An imme-
diate consequence of this is that if fe C^(Z) then there exist
monotone sequences (/^) and (gj in Cy(Z, S) with fn\f
and g^\f. Now by construction L^C^E, d) ^ R <==• C&(E, r).
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Thus if /*eCf t (E) , choose sequences (fj and (gj in Cy(E, d)
with /^ f f and g^ ^ /*. Since (U^) and (U^) are contained
in C,(E, r) and U^, f U^ while U^ U^, it follows
that U^eC^E, r). Similarly starting with the fact that
U^E, p) c: C«(E, p), it follows that U^E, r) c: C,(E, r)
proving (3.3).

4. The Ray Topology and Ray Space.

We shall use the notation of Section 3 without special
mention. Our first result shows that the Ray topology on E
does not depend on the choice of the metric d.

4.1. PROPOSITION. — Let d^ and d^ be totally bounded
metrics on E compatible with the topology of E. Then the
corresponding Ray topologies r^ and r^ are the same.

Proof. — Let R(c?i) and R(c^) be the Ray cones cons-
tructed from d^ and d^ respectively. Since r^ (resp. r^)
is the weakest topology on E relative to which the elements
of R(^i) [resp. R(^2)] are continuous, the desired conclusion
will follow in view of the symmetry between d^ and d^
once we show R(c?i) c C^(E, r2). By (3.3) for each a > 0,
U^E, d^) <= U^E) c= C,(E, r,). Also C^(E, r^) is a
convex cone closed under « A )) and, by (3.3.) again

U-C^E, r,) <= QT(E, r,)

for each a > 0. Consequently by the very definition of
R(^i) one has R(d;i) <= Ct(E, ^-2). This establishes (4.1).

We shall denote the Ray topology on E by r. As we have
shown it depends only on the original topology of E and,
of course, the resolvent (U01). In particular E with the Ray
topology is a U-space.

4.2. COROLLARY.
(i) The Ray topology is the weakest topology T on E satis-

fying U^E) c: C,(E, T) and U-C^E, r) c C,(E, r) for
each a > 0.
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(ii) Using the notation (3.1) let %o = ^C?(E), . . . ,

Q ,̂ = A(Q, + ^Q,), ..., and Q=uQ,.

TAen tAe 7?ay topology is the weakest topology on E relative
to which the elements of Q, are continuous.

Proof. — By (3.3) the Ray topology has the two properties
in (i). Let T be a topology on E having these properties
and let d be a totally bounded metric on E compatible
with the original topology of E. Then just as in the proof
of (4.1) one finds R(d) c Cf(E, r). Consequently the Ray
topology is weaker than T. Coming to (ii) let d be as above.
Then R(d!) <= Q, and so if T is the topology generated by Q,,
it is clear that r is weaker than T. But by (3.3),

U^E) <= C,(E, r) and so Qo ^ C^-(E, r).

Suppose Q,c:C,-(E, r). Then using (3.3), Q.+^Qn^ C?(E, r)
and so Q^+i <= C^(E, r). As a result Q <= C?(E, r) and so T
is weaker than r, establishing (ii).

Remark. — In general Q, is not separable.
For the moment fix a totally bounded metric d on E

and let R(rf), p, F, (U01), and (P() be as in section 3. Recall
that a set A <== F is useless if tor each (JL on E the sets
{X e A} and {X- e A} are both P^- evanescent. It is
shown in [6] or [3] that

4.3. N = {x G F : Po(.r, F - E) > 0}

is useless. Since Po(^, .) = Po(^ .) if ^ is in E, one has
N c F — E. It is evident that N e ^ * .

4.4. LEMMA. - The set M == {x e F : U^, F - E) > 0}
is independent of a > 0 and! M e ^*. Moreover M <= N
and, hence, M 15 useless.

Proof. — For the moment let

Ma = {x e F : U^, F - E) > 0}.

Obviously Ma e ^*. Fix x e F — Ma. Then U^, .)
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is carried by E and so

UP(^ .) == U^, .) + (a - p) ̂  U^, dyWy, .).

But if i/ e E, U^y, .) == U?(y, .) is carried by E, and so
UP(a?, .) is carried by E. But a, (3 > 0 are arbitrary and so
Ma = Mp. A similar argument using U0^ == PoU*1 shows
that M <= N. See [6] or [3].

Remark. — Simple examples show that it is not true that
M = N in general.

4.5. DEFINITION. — The Ray space of the semigroup (P()
is the set R = F — M with the subspace topology it inherits
from F.

At first glance it appears that R depends on the metric d,
or more precisely the uniformity generated by d, via F.
However, the main purpose of this section is to show that R
is unique up to homeomorphism. Note that E <= R c: F,
that R is a U-space, that E is universally measurable and
dense in R, and that the topology R induces on E is
the Ray topology. The next proposition lists some important
properties of R.

4.6. PROPOSITION.
(i) For each (JL on E, ( -> X^ has left limits in R almost

surely P^.
(ii) If (p.()oo is a bounded entrance law for (P(), then

there exists a unique finite measure [L carried by R with
p^ = (ip^ for each t > 0.

(iii) If x E R, Po(^, .) is carried by R and Pt{x, .) is
carried by E for all t > 0.

Proof. — Since F — R == M is useless, (i) is clear. For (ii),
Meyer and Walsh (Theorem 9 of [6]) showed that there
exists a unique finite measure (JL carried by

D = { x e ¥ : P , { x , .)=e,},

the set of non-branch points, with [JL( = piP^. Taking Laplace
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transforms yields

Jo130 ^W)dt = f ^ W ua/^)
for each a > 0 and fe 6^*. But each [L^ is carried by E
and so j pi (A^U^, F — E) == 0. Therefore [A is carried
by R. If x e R, then

0 = U^, F - E) = PoU^, F - E)
= f?,{x, dy)V-{y, F - E)

and so Po{x, .) is carried by R. Since U^, F — E) = 0
there exists a sequence ((J, depending on x, of strictly
positive numbers decreasing to zero with P^(^, F — E) == 0
for each n. If ( > ^ for some M, then

P,{x, .)= f^P^x, dy)P,.^ .)

and since Ps(y, .) == Ps(y? •) tor y e E and s > 0 it follows
that Pt{x, .) is carried by E for all t > 0 if x (= R. This
completes the proof of (4.6).

In view of (4.6-i) and (4.6-ii) the space R has all of the
properties of F that are of interest in studying X. Of course,
we give up the compactness of F, but, as we shall see, we
gain the fact that R depends only on the topology of E
and not on the particular choice of the metric d.

To this end let d^ and d^ be two totally bounded metrics
on E compatible with the topology. With the obvious nota-
tion we want to show that there is a homeomorphism of R2
onto RI that leaves E fixed. Let d = d^ -)- dg. Then d
is a totally bounded metric on E inducing the same topology
as d^ and d^. Therefore, in light of (2.5), there is no loss
of generality in supposing that d^ ^ d^ in our discussion.
Then C,(E, d^) c: C«(E, ^) and so R(^) <= R(^). Therefore
one may choose the metrics pi and pg in (3.2) to satisfy
pi ^ pg. Let FI and Fg be the p^ and pg completions of
(E, pi) and (E, pg) respectively. Let i\ and ig be the
injections of E into F^ and Fa respectively. Since we are
going to deal with these two completions simultaneously we
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shall not identify E with ^i(E) and ^(E), at least tempo-
rarily. Thus we shall preserve the distinction among E,
i\(E), and ^(E). This causes certain obvious changes
in what we wrote before. For example, using the subscripts 1
and 2 in an obvious manner, if (U^) is the Ray resolvent
on FI, then for x e E,

U?(^), .) - U^, ^(.)) - Wx, .),

Mi = {x e Fi : U?(^, Pi - i\_(E)) > 0}, and R^ = F^ - i\(E)
with similar relations for (U^), Ma, and Rg.

Since pi ^ pg there exists by (2.3-i) a continuous surjection
9 of Fg onto FI such that 9 0 ^ = t\. Of course, both
pi and p2 induce the Ray topology on E and so by (2.3-ii),
^(E) = ̂ ^^(E). Since 9 is continuous (p-^.^) <= ^2
and 9~l(<^^) c: ^^ We come now to the key technical
lemma of this section.

4.7. LEMMA. — For each a > 0 and x e F^ one has
<pU^, . )=U?(9(aQ, .).

Proof. — Of course, <pU^, .) is the measure on F^ given
by A -> V^{x, p'^A)) for all A e '̂1 (or ^). Suppose
first that re e E. Then by definition U^ia^), • ) ^ ̂ U* ,̂ .)
and U?(i\(^), . )==l \U a (^ , .). Thus for x e E,

9U^(aO, .) = (9 o i,Wx, .)_= iiU01^, .)
=U?(^), . ) = U ? ( 9 o ^ ( ^ ) , .).

Thus (4.7) is true for x e ig(E). Since Uj sends C(Fy) into
itself, it is immediate that the map x -> V^(x, .) from Fj
to the bounded measures on Fj with the usual weak topology
for measures is continuous for / == 1, 2. Given x e Fg choose
{x^) cz E with ^(^n) ~^ x ' Then since <p is continuous one
has 9U?(^(^n), ^ — p U ^ , .), and

yU^^^), .) = U?(9 o ^(a;J, .) -> U?(9(^), .).

Therefore pU^^, .) == U^((p(^), .) proving (4.7).
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4.8. PROPOSITION. — 9(Mg) == Mi and 9(Rg) == Ri.

Proof. — For each x e F it follows from (4.7) and from
i'2(E) == ^^^(E) that

U?[9(^), F, - i,{E)]=V^[x, 9-^ - i\(E))]
== U?[^ F^ - ̂ (E)].

Consequently re e Rg (resp. Mg) if and only if 9 {x) e R^
(resp. Mi), proving (4.8).

4.9. PROPOSITION. — 9 is a homeomorphism of R^ onto
RI that is natural in the sense that 9 o i^x) == i-^{x) for all
x e E.

Proof. — We already know that 9 is a continuous surjection
of Ra on Ri. Thus we must show that 9 is injective on Rg
and that 9""1 is continuous. We first show that 9 is injective
on Rg. To this end fix x and y in Rg with 9(0;) = 9(y).
Let g be a bounded universally measurable function defined
on ^(E). Define f on i\(E) by f{iz{z)) = g{i^}) tor z e E.
Then g = f o 9 on ^(E), and since f ̂  g ° h ° ii1 on
ii(E), /* is universally measurable on ii(E). Let /* be defined
to be zero on Fi — i\(E). Since x and y are in Rg the
measures V^(x, .) and U^(y, .) are carried by ^(E), and so

X(E) ̂ (^ ̂ ) ^(^) _= X(E) ̂ (^ ^) /* ° ̂  = v^ f ° ?) - u?(9(^), n-Ux^^.n-^u^^)^).
Therefore U^(rr, .) = U^(y, .) for each a > 0. It is shown
in the proof of Lemma 1 of [6] (see also [3]), that this implies
that x = y. Consequently 9 is a bijection of R2 on R^.

In order to show 9~1 from R^ to Rg is continuous it
suffices to show 9 from Rg to R^ is closed. Accordingly we
shall show that if A is closed in Fg, then 9(A n Rg) is
closed in R^. Since 9 (A) is compact, and hence closed, in F^
this will follow if 9 (A n Rg) == 9 (A) n R^. But

9(A n Rg) c: cp(A) n 9(Ra) = 9(A) n R^.
Conversely if y e 9 (A) n Ri, then there exists x e A with
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y == <p(rc). Now ^{x) == y e R^ and so by (4.8), re e Rg.
Thus y e 9 (A n R^) and therefore 9 (A n Rg) = 9 (A) n R^,
completing the proof of (4.9).

Remark. — Simple examples show that 9 is not injective
on all of Fg in general. In the course of our discussion we have
assumed that d^ < d^ but as mentioned earlier this is not
a restriction. Thus in the general case there exists a natural
homeomorphism 9 of Rg on R^ such that

9U^, .)=U?(9(^), .)
for all x e Rg. However, this last identity no longer makes
sense for arbitrary x e Fg since 9 is only defined on Rg.

We close this section with a few more results about the
homeomorphism 9 and the Ray space R.

4.10. LEMMA. — If d^ < ^2 let 9 be the surjection of Fg
on FI constructed above. Then <pP^{x, .) == P^(9(rc), .) for
all t ^ 0 and x e ¥^. In the general case let 9 be the natural
homeomorphism of Rg on Ri constructed above. Then

^{x, . ) = = P K < p ( a Q , .)
for all t ^ 0 and x e Rg.

Proof. — Suppose d^ < rfg. It follows from (4.7) that

Jo" ̂ P?^, f o <p) dt = f; e-^P^x), f} dt

for all f e C(F^) and x e Fg. Using the right continuity of
( —> P{{x, fj) for fj e C{¥j) and the uniqueness theorem for
Laplace transforms gives the first assertion in (4.10).
The second is an immediate consequence of the first.

The next proposition says that the natural homeomorphism
we have constructed preserves the branch points. In its
statement 9 is the natural homeomorphism of Rg on Ri.

4.11. PROPOSITION. — Let BI and Bg be the set of branch
points in F^ and ¥^ respectively. Then

9(B2 n R^) == BI n Ri and ^(B^ n R^) == B{ n Ri.

Proof. — Recall that x e By provided Pi{x, .) + s^
and according to (4.6-iii), P($(^, .) is carried by Ry if x e Ry,
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/ = 1, 2, . Let x e Rg. If x e B^, then by (4.10),

PS(?(^ • ) ^ ?P^ .) = <PS.. == s^)

and so 9(0;) e B^. Conversely if 9(0;) e B[ and g is a bounded
Borel function on Rg, then f = g o <p-1 is a bounded Borel
function on Ri and

P^, g) = P^, f ° y) = P;(y(^), /•) = /• o ?(^) = g(^).
Since P^(x, .) is carried by Rg this implies that x e B^.
Combining these facts yields (4.11).

4.12. REMARK. — Recall the definition of N^ and N3.
Then an argument similar to the proof of (4.11) shows that
9(Na n R^) == NI n Pi and y(N^ n Rg) = N^ n R^.

It follows from (4.7) and (4.10) that for each x e R, V^{x, .)
and P((.T, .) are uniquely defined independently of the parti-
cular metric d used in the construction. Moreover it is clear
that (U01), resp. (P^), is a resolvent, resp. a semigroup, of
kernels on (R, ^*). For each x in R the very definition
of R implies that U^n;, .) is carried by E, while according
to (4.6-iii), Pt(x, .) is carried by E if t > 0 and by R if
t == 0. Since ^, the or-algebra of Borel subsets of R, is
just the trace of ^ on R it is easy to see that U01 and P(
send b^ into b^ for each a > 0 and t ^ 0. See the proof
of (12.1) in [3]. In other words V^ and P^ are kernels on
(R, ^).

4.13. PROPOSITION.
(i) For each a > 0, U^ maps C^(E) and Cf,(E, r) into

C,(R).
(ii) For each f e C^(R) and x e R, t —> Ptf{x) is right

continuous on [0, oo).

Proof, — For .r e R, L^rc, .) is carried by E and so
f -> U^-f may be regarded as a map from bounded functions
on E to bounded functions on R. Statement (i) now follows
by the same argument as that used to prove (3.3). Fix a metric
d and the corresponding p and F. If /*eCu(R, p), then
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there exists a unique g e C(F) with f = g\^ and so for each
t ^ 0, P/ = Ptg on R. Thus ( -^ ~PtfW is right continuous
on [0, oo) for each x e R and / ' eC, (R,p) . But if f e C^(R)
there exists sequences (/"J and (gj in Cy(R, p) 'such that
f^\f and g,,f/*. Consequently ^ -> P^f^) is right continuous
on [0, oo) for x e R, proving (4.13-ii).

The next proposition shows exactly how the topology of
the metrizable space R is determined by the resolvent (U^)
on R. Recall that a sequence of bounded measures (vj
on a metrizable space Z converges to a bounded measure v
provided v,(/1) -> v(/1) for all /^C,(Z).

4.14. PROPOSITION. — Let {x,,) c: R and x e R. Then
x,^ -> x if and only if for each a > 0, U^a^, .) -> U^, .)
as measures on E wit/i ^e J?ay topology.

Proof. - By (4.13-i), U0^ map^ C,(E, r) into C,(R) and
so if ^->o; in R, then U^, ^-^U^, .). For
the converse fix a metric d and the corresponding p and F.
In order to show that x^ -> x it suffices to show that every
subsequence of (^) contains a further subsequence which
converges to x. Changing notation it suffices to show that
(x^) contains a subsequence converging to x whenever
U^, .) -> V^x, .) for all a > 0. But F is compact and
so (a;J has a subsequence (^) that converges to some
^e F. Since_ U0^ maps C(F) into C(F) it follows that
U^n? Q-^U^y, .) as measures on F. But for each n,
U^o^, .) is carried by E as is U^rr, .) and since the res-
triction to E of any function in C(F) is in Cu(E, p) <= C^(E, r)
it follows that U^, .)->U%r, .) as measures on F.
Consequently \]^{x, .) == L^Q/, .) as measures on F for all
a > 0, and this implies that x = y completing the proof
of (4.14).

5. Further Properties of the Ray Space.

We know that E equipped with the Ray topology is a
U-space and that X as an (E, r) valued process is a right
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process with resolvent (U01). The first thing that we shall
show in this section is that if we apply the Ray-Knight proce-
dure to (E, r) we get nothing new as far as the Ray space is
concerned. After that we shall characterize the Ray space up
to a useless set. Simple examples show that this is as much as
one can expect.

Let d be a fixed totally bounded metric on E compatible
with the original topology of E. Starting from d we cons-
truct p, F, R, and the Ray topology r as before. Let 8
be a totally bounded metric on E compatible with the Ray
topology of E. As in Section 3 we construct the Ray cone
R(8) with respect to (E, 8). To be explicit using the notation
of (3.1), we have

Ro(8) - W(E, 8), . . . , R^(8) == A(R,(8) + ^R,(8)),

and R(8) = u R^(8). From R(8) we construct a metric p'
as in (3.2) and we let F7 be the (compact) completion of
(E, p'). We let (U^ax) he the corresponding Ray resolvent
on F' and R7 the corresponding Ray space. Finally r7

will denote the topology induced by p' on E, or equiva-
lently, the subspace topology E inherits from F'.

5.1. PROPOSITION. — The r and rf topologies on E are
the same.

Proof. — In the present context (3.3) states that

U^E, r) <= C,(E, r')

and L^C^E, r7) <= Cfe(E, r ' ) for each a > 0. Moreover from
(3.3) itself U^E, r) c= C,(E, r). Since C^(E, 8) c C,(E, r),
it follows that R(8) c: C&-(E, r). This in turn implies that
(^(E, r') <= Cfr(E, r), or, in other words, that r ' is weaker
than r. Since both r and r ' are metrizable in order to
complete the proof of (5.1) it suffices to show that if x^ -> x
in r', then x^ -> x in r whenever (rcj ^ E and x e E.
Let / 'eCft(E, r). Then U^C^E, r') and so if x, -> x
in r\ UY^) -> UY^). This says that U^,, .) -> V^x, .)
as measures on (E, r), and hence by (4.14), x^ -> x in r
establishing (5.1).

The next result shows that R and R7 are the same. The



THE BAY SPACE OF A BIGHT PBOCESS 229

notation is that given above (5.1). For simplicity of notation
we identify E with a subspace of R and of R/ simulta-
neously. Also, recall that U^, .) and tJ^o/, .) are carried
by E for x e R and x' e R'.

5.2. PROPOSITION. — There exists a homeomorphism ^
from R onto R' preserving E such that

U^, .^U^), .)

for each x e R and a > 0.

Proof. — Since E is dense in R, given re e R there
exists a sequence (^) <= E with x^ -> x in R. Hence by
(4.14), U^, .^U^, .) as measures on (E, r). But
(^) <= E <= R' <= F' and so (^) has a subsequence, call it
(^) again for notational simplicity, converging to some point
x' e P. Let f e €(?). Then

U^IEXO = OT(^) -> t>W-
But f'\^ is r', and hence r, continuous and so

U^I^^J^U^IE)^).

That is, for all f e C(P), C^', f) == U^, fJE). Since for
fixed a > 0 both expressions are measures on F', it follows
that U^a/, .) is carried by E, that is, x' e R', and that
O^', .)=V<x•[x, .). Also x' depends only on x and not
on the particular construction, because if a second construction
leads to x" e R', then U^', .) = C^", .) for all a > 0
and so x' == x " . We now define ^{x) == x'\ Using (4.14)
and the fact that (U") and (U01) separate the points of R
and R' respectively, it is easy to check that ^ is a, homeo-
morphism of R onto R7. Of course, by construction,

u^, .)=u°w^ .)
for all x in R. In particular ^(x) == x for all x in E,
completing the proof of (5.2).
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Remark. — Since ^ is the identity on E and Ll^rc, . }
is carried by E for x in R, it is immediate that

Wx, .)=V-{x, .).

Thus the relationship between the resolvents in (5.2) may
be written ^U^, .) = U^^), .) for x e R more in keeping
with Section 4. The added simplicity in (5.2) is due to the fact
that we are now identifying E with a subspace of R and R7

simultaneously.
Proposition (5.1) and (5.2) give a precise meaning to the

statement that if one applies the Ray-Knight procedure to
(E, r), then one obtains nothing new.

We turn next to a characterization of R. Let H be a
U-space that contains a homeomorphic image of E with
the Ray topology as a universally measurable subspace. We
identify E with its image in H so that the subspace topology
E inherits from H is the Ray topology. In what follows
all topological statements about E refer to the Ray topology
on E. However, we shall repeat this occasionally for emphasis.
We now make the following assumptions on H :

5.3. E is dense in H.

5.4. There exists a Markov resolvent (Y^X) on (H, ^*)
satisfying for each a > 0 :

(i) For each x e H, V^rr, .) is carried by E.
(ii) If xeE,V^ .)=^{x, .).
(iii) V^E, r) c= C,(H).
(iv) If for each a > 0, V^rc^ .) -> V^, .) as measures on

(E, r), then x^ —> x in H.

Remark. — It is immediate from (5.4-iv) that if

V^, . ) = V » ( y , .)
for all a > 0, then x = y .

5.5. PROPOSITION. — Let H satisfy (5.3) and (5.4). Then
there exists a homeomorphism ^ of H into R which preserves
E and satisfies ^^{x, .) = U^^rr), .) for each a > 0 and
x e H.
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Proof. — In order to prove (5.5) we shall first construct a
convenient realization of R starting from the Ray topology
on E. To this end let (H, 8) be a compact metric space that
contains H as a dense universally measurable subspace.
Of course, the topology induced by 8 on E is just the Ray
topology and E is a dense [because of (5.3)] universally
measurable subspace of H. If / 'GC^E. r ) , then U^eC^E,^
and by (5.4), V^ is a (unique) bounded continuous extension
of UY to H. Let C(E, H) denote the restrictions to E of
the elements in C^(H). Then C(E, H) consists precisely of
those bounded continuous functions on E that have a
(unique) bounded continuous extension to H. By the above
remark for each a > 0, U^E, r) c: C(E, H). Since

C^(E, 8) <= C?(E, r) and C+(E, H) c= QT(E, r)

we see that

U^E, 8) c: C+(E, H) and U^E, H) c= C+(E, H)

for each a > 0. Moreover C^E, H) is a convex cone closed
under « A » and so by the definition of the Ray cone R(8)
one has R(8) c: C^E, H). In view of (5.1) if (gj is a dense
sequence in R(8), then p defined by (3.2) induces the Ray
topology on E. But each g^ has a unique bounded continuous
extension to H which we again denote by g^ since

R(8) <= C+(E, H).

Observe that R(8) separates the points of H because
if ^f(x) == ̂ f(y) for all fe C,(E, 8), then this holds for
all / ' eCf r (E , r) and consequently x = y. Therefore (gj
also separates H and so p is a metric on H as well as on E.
Since each g^ is 8-continuous on H, the fact that E is
dense in H in the topology induced by 8 implies that E is
dense in H in the topology induced by p. Of course, the
topology that p induces on E is the Ray topology.

Next let F be the (compact) completion of (H, p). Since E
is p-dense in H we may identify the p-completion of E
with F also, and in view of (5.2), we may construct the exten-
ded resolvent V and the Ray space R from p and F.
Thus E <= R c F and E c= H c= F. Since each ^ is 8
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continuous it is immediate that if (^) <= H and x e H
with 8(^5 x) -> 0, then p(^, re) -> 0.

Next we shall show that H <= R and that p and 8
induce the same topology on H (as well as on E). To this
end let f e C(F) and f=J\^ Then

/•eC,(E,r) and U^ = V^f

on R by the very definition of R. If x e H and (^) <= E
with 8(^, x) -> 0, then from (5.4), UY^) -> V^). But
8 (re,,, re) -> 0 implies p(o^, re) ->• 0 and so

UY(^) = U^,) ̂  U^).

Hence for each f e C(F), re e H, and a > 0,

U^) = V^IE)^),
and since both sides are measures this relationship holds for
all fe b^*. As a result H c: R and U^re, .) = V^, .)
tor all x in H and a > 0. Finally if x^ -> x in (H, p),
then by (4.14), U01^, .) -> U^re, .) as measures on (E, r)
and combining this with (5.4-iv) and the equality of V" and
U* on H we see that x^ -> x in the original topology of H.
Therefore p and 8 induce the same topology on H. It is
now obvious that the identity map ^ of H into R
is a homeomorphism with the desired properties. This esta-
blishes (5.5).

The next result is an immediate corollary of (5.5) and is
our promised characterization of R up to a useless set.

5.6. PROPOSITION. — Let H satisfy (5.3) and (5.4) and
suppose, in addition, that for each probability [L on E, t -> X(
has left limits in H almost surely P^. Then R — ^(H) is
useless where ^ is the homeomorphism in (5.5).
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