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ADDITIVE FUNCTIONALS
OF MARKOV PROCESSES

AND STOCHASTIC SYSTEMS
by E. B. DYNKIN

Dedie a Monsieur M. Brelot a V occasion
de son 70Q anniversaire.

A voluminous literature is devoted to the problem of descri-
bing additive functionals of Markov processes (see, for example,
E1]? I4]. I9]. E13]. I14]? I16])- O^y continuous and natural
functionals have been investigated before a general solution
was outlined in [6]. In the present paper we propose a new
method based on a general duality theory developed in [7],
[8], and on the technique of central projection.

We consider inhomogeneous functionals. The homogeneous
case will be treated in another place.

1. Introduction.

1.1. Let (Xt, P) be a Markov process with a sample space
Q, defined on a time interval T = (a, (B). For an open set
G c T, denote by ^(G) a (7-algebra on Q. generated by
Xt{~t e G). For any B e ̂  (1) define ^(B) as an intersection
of ^(G) over all G 2 B. We shall use abbreviations

y<t. ̂ , ̂ , ̂ >t, ^^t

for jF(a, <), ^-(a, (], ^{(a, t) U {t, P)}, ^{t, j3), ^[t, P).

(1) We denote by ^ the o-algebra of Borel subsets of T.
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A function A((O, B)((») e Q, Be^r) is called an additive
functional of (x^ P) if :

1.1.a. For almost all (o, A((O, .) is a <r-finite measure
on ^T-

1.1.P. For any open interval I c T, the function A(., I)
is measurable with respect to ^'(1) (2).

Functionals coinciding for almost all co will be considered
as indistinguishable.

We say that a function S on T X ^ is well-measurable
relative to ~^ ̂  (to ^x) if it is measurable with respect
to the <y-algebra generated by functions /*((, co) with the
following properties : for any (, /*((, .) is measurable relative
to W^t (respectively, to ^^ and, for almost all co, /*(., o>)
is right (left) continuous in ( (cf. [II], Chapter 8 and [3],
Chapter 4).

A functional A will be called normal if the function

A{(} = A(co, {(})

satisfies the following conditions :
1.1.Y. For any t, A{(} is measurable with respect to
.̂
1.1.8. A{(} is well-measurable relative to ^^ and

relative to ^x.
A functional A is continuous if, for almost all co, A{(} == 0

for all ( e T. All continuous functionajs are normal.
Condition 1.1.y is fulfilled for all functionals if ^(T) == ̂ ^

for any t e T (such are the cases of right and left continuous
processes and regular processes in the sence of [5]).

Condition 1.1.8 is satisfied if A(B) < oo a.s. for any closed
interval B c T: in this case the well-measurability of
A{(} follows immediately from the relations

A{(} = A(s, (] - A(5, () = A[(, u) — A((, u)

for all s < t < u e T (a.s.). (Some finiteness conditions

[2) For any a-algebra SF on 0, ̂  means the minimal o-algebra which contains
^ and all the sets of measure 0.
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were used in all the papers devoted to the additive func-
tionals. The above-mentioned one is perhaps the mildest of
them.)

We describe all the normal additive functionals of a Markov
process {x^ P) under the following assumptions :

1.1.A. The state space E( at each time t is a Borel measu-
rable space (i.e. is isomorphic to a Borel subset of a Polish
space).

1.1.B. The sample space 0. coincides with the set of all
the paths <x)(^) e E(.

1.1.C. The two-dimensional probability distributions

m ^ r ) = p { ( ^ , ^ ) e r }
of {Xt, P) are absolutely continuous with respect to the
product of the corresponding one-dimensional distributions
m, (B)=P(^eB) (3).

1.2. The process Xf is involved in the definition of an addi-
tive functional only through the o-algebras ^'(1).

Let (^Q, ^r, P) be a probability space and let a cr-algebra
^(1) c ^ be associated with any open interval I c T
in such a way that:

1.2.A. ^-(Ii) c JF(LO if I, c I,.
1.2.B. If \ \ I, then ^(I) is generated by o-algebras

^(IJ.
1.2.C. Let \ \ I. Let P^ be a probability measure on

^(IJ and P,(C) = P,-i(C) for C e ^"(I,-i). Then there
exists a measure P^ on ^(1) which coincides with P^
on ^(IJ, n=i, 2, ...

According to [7], [8] we say that (^'(I), P) is a stochastic
system in the space (Q, ^r).

Define ^(G) for any open set G c T as the minimal
a-algebra which contains ^(1) for all the intervals I c G.
According to n° 1.1, for an arbitrary B e BT, denote by
^(B) the intersection of ^'(G) for all open G 3 B. In

(3) This result was announced in [6] however condition 1.1 S was omitted
(Counterexamples show that, without 1.1, o, Theorem 1.1 is not true.) /



180 E. B. DYNKIN

this paper we consider only stochastic systems satisfying the
following additional condition :

1.2.D. ^(1) is equal to the minimal cr-algebra which
contains ^{t} for all ( e I.

We suppose that the c-algebra ^ is complete for the
measure P.

Under conditions 1.1.A and 1.1.B, cr-algebras ^(1) satisfy
the requirements 1.2.A-1.2.D. Hence the problem of n° 1.1
is a special case of the general problem : to describe all the
normal additive functionals of a stochastic system (^(1), P).

To extend condition 1.1.C, we need the following definitions.
A random process x^ taking values in Borel spaces E( is
called a Markov representation of the stochastic system
(^'(1), P) if Xt is measurable relative to J^(I) for ( e l
and, for any ( e T, ^ e j^, T] e ^>, (4),

(1.1) P(N^) = P(i;k)P(v]N (a.s.).

The representation x^ is called absolutely continuous if its
two-dimensional distributions are absolutely continuous with
respect to the products of the corresponding one-dimensional
distributions.

All the normal additive functionals of the stochastic system
[Xt, P) will be described under the only condition that it has
an absolutely continuous Markov representation.

1.3. The advantages of the new statement of the problem
are the following: beeng not bound with a specific Mar-
kov representation we have the freedom to choose it in the
best possible way.

It is proved in [7], [8] that, if a stochastic system has an
absolutely continuous Markov representation, then there
exist a Markov representation x^ and probability measures
P( a. on ^'x and P2"0 on ^' ̂  with the following pro-
perties :

1.3.A. For S e .̂ , T) e ^x,

PN ̂ ) = P,.^, P(S| ̂ ) = P^ (a.s.).

(4) For a function ^, the symbol ^ e 3^ means that $ is non-negative and
^-measurable. By PS we mean the mathematical expectation of ^ i.e. the inte-
gral of S with respect to P.
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1.3.B. For s < t, ^ e ^<s, -y] e ^>(,

P^N^t])=P,^ (a.s.P^),
P^| ̂ \s, ()) == P^S (a.s. P^).

1.3.C. If P,.,==P^ and P^ == P^, then ^ = y.
1.3.D. Let S e ̂ a, ^ e ^>a,

z, „ ^ _ (p^7] for ( < u,
/ l1^^- lO for 0 u;
/ , / , ^ -- ^P^S tor t > u,
Wx)- ^ for ^ u.

Then for almost all o the function Ai((, ^) is right conti-
nuous in ( and has left-hand limits; the function h^{t, x^)
is left continuous and has right-hand limits.

We call P^ transition and P^ cotransition probabilities.
Additive functionals of (^'(I),P) will be described by means

of x, (5).

1.4. Functions ^(co) and -^(co) are called indistinguis-
hable \i P(^= -^It for all ^) = 1. We call evanescent the
functions which are indistinguishable from 0 and the sets
which have the evanescent indicators. Set

^TxQ=^T X ^(T)

and denote by ^TxQ the minimal o-algebra which contains
<^TxQ and all the evanescent sets.

Let € be the union of E( for all t e T and let ^g be
cr-algebra on T X 0. generated by all the functions (1.2).
If F e ^g, then {{t, co) : ^(<o) e F} e ^XQ and the expres-
sion

(1.3) ^(F) =Pf^ lr(^)A (dt)
has meaning (6). It evaluates the mathematical expectation
of time when ^ belongs to F if the time is measured by A.

(5) We rely only on properties 1.3.A-1.3.D of the representation x.. Of course
Markov representations with these properties can exist for stochastic systems
which have no absolutely continuous Markov representation. All results of the paper
remain valid in such cases. Condition 1.3.B is used rather weakly and, probably a
similar theory can be developed without 1.3.B.

(6) We denote by 1^ the indicator function of C that is the function with the
value 1 on C and 0 outside C.
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The measure [L defined by (1.3) will be called the spectral
measure of the additive functional A.

A set r of ^g is inaccessible if P(rC( e r for all t e T) = 1.
It is scanty if a.s. the set {t: x^ e F} is at most countable.

The main result of the paper is summarized in the following
theorem :

THEOREM 1.1. — The spectral measure of any normal additive
functional is a-finite and vanishes on all the inaccessible sets.
Each measure on ^g with these properties is a spectral measure
of one and only one normal additive functional. The functional
is continuous if and only if its spectral measure vanishes on
all the scanty sets.

1.5. The following fundamental identity plays the central
role for the demonstration of Theorem 1.1 :

(1.4) P f^^{dt)=f^^d^

Here ^((o) is a ^rxQ-measurable function such that, for
any t, ̂  is measurable relative to ^' ̂  (the functions with
these properties will be called solid); and n is an operator
which associates a class of equivalent measurable functions
on ^ with every solid function S. (Two functions /i, f^
on ^ are called equivalent if /i = /g outside an inaccessible
set.)

Solid functions are investigated in section 2. In particular,
all the values A(B) of a normal additive functional A are
proved to be solid functions. The projection n is defined in
section 3. In section 4 we prove that all the spectral measures
are c-finite (7). Relying on this fact, we prove the fundamental
identity (1.4) in section 5.

Let 9 be a solid function independent of ( and let B e ̂ r-
Formula (1.4) implies that

(1.5) P9A(B)-J^<p^

(7) For the first time, the cr-fmiteness of [JL was proved (in a different way)
by Sur [15] under the additional condition : A(s, t) < oo a.s. for any

s < t e T.
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Here <^(B) is the union of <^ over all (eB. It is easily
seen from (1.5) that every normal additive functional is uni-
quely determined by its spectral measure. Further we see
that A(B) is the Radon-Nikodym derivative d<S>^fdP where
<3>B(?) is the expression on the right side of (1.5). This obser-
vation suggests a way to construct A starting from (JL :
first, calculate the measure Op and then consider its deri-
vative with respect to P. This is done in section 6 (8).

With the help of (1.4), it is easy to prove that the functional
A is continuous if pi vanishes on all the scanty sets. It is
sufficient to remark that, for ^ = A{(}, the left side of
(1.4) is equal to P ^ A{(}2 and the integrand on the right

side vanishes outside of a scanty set (see Theorem 5.3).
To prove that the spectral measures are d-finite, we use

in section 4 the following assertion: every scanty set is a
countable union of subsets such that, for each of them, the
number of hits by ^ has the finite mathematical expectation.
This assertion is rather close to a theorem of Dellacherie ([2],
Theorem 5) but direct reference is not valid because our
situation is different. We prove the above-mentioned fact
in the Appendix at the end of the paper.

1.6. To simplify notations, we shall assume that
T=(a, ?)==(- a), + oo).

Let (tl, j^, P) be a probability space. A family jy^ e T)
of sub-G-algebras of ^ will be called a right filtration of
(f2, ^, P) if M^ c Mt for s < t. A function T(o) taking
values in (— co, + °°] is called a Markov (or stopping)
time relative to ^ if { r < t} e ̂  for every finite (.
Set C e M^ if C n {r ^ (} e ̂  for every finite t. A
o-algebra of well-measurable sets is associated with any
right filtration M^ This is the o-algebra on T X Q gene-
rated by all the evanescent functions and by all the right
continuous functions S(((o) with the property : for every t
S( is measurable with respect to M\,

The family ^ == ^^ is an example of right filtration.

(8) A similar idea was used by Metivier [12] to construct a natural increasing
process from a stochastic measure with the bounded variation. A discussion with
Professor Metivier was very fruitful and stimulating for the author.
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The definition of well-measurability given in n° 1.1 for this
case is equivalent to present one.

The definitions of a left filtration M^ and associated Markov
times and well-measurable functions are similar.

Right and left filtration, transition and cotransition proba-
bilities are examples of dual notions which can be obtained
from each other by time reversing. To each statement there
corresponds an obvious dual version. We formulate one of
them and use asterisks for references to the dual statement.

2. Solid functions.

2.1. According to n° 1.5, a function S((to) is called solid
if it is ^TxQ-measurable and if, for any (, ^ ls ^^r^asu-
rable. Obviously the finite sum and product and the limit of
a sequence of solid functions are also solid. Every Borel func-
tion on T is solid. Now we want to establish the solidity of
some other important functions.

2.1.A. The function ^(co) is solid. All the values a^(<»>)
are also solid functions (independent of t).

Indeed, functions h^ defined by (1.2) generate the measu-
rable structure on S and their restrictions to E,. generate
the measurable structure on E^ (the last assertion follows
from l.l.A and 1.3.C; cf. [5], n° 2.1). Therefore all we need is
to prove the solidity of /i,((, ^) and h^r^ x^). It can be
easily deduced from 1.3.D.

2.1.B. Let A be a normal additive functional. Then the
function A{t} and all the functions A(B)((B e ^-r) are solid.

By 1.1.P and 1.1.8 all the functions are ^r x Q measurable.
By l.l.y A{Q e ̂ ^, and by l.l.jB A(B) e ̂  for ( e B.

2.2. Consider the family of functions

(2.1) W = 9Ws<i<M^
where s < u and 9 e ^'<„ ^ e ^>^ are bounded. Evidently
functions (2.1) are solid. We prove that together with the
evanescent functions they generate the class of all the solid
functions.
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LEMMA 2.1. — Denote by y the a-algebra on T X 0.
generated by the functions (2.1). For any ^^ ̂ -measurable
function ^, there exist an y-measurable function 73 and
a countable set A such that

^(co) = 7]((o)) for all t e A, (x> e Q..

Proof. — The set of the functions ^ for which the state-
ment is true is closed under addition, multiplication and
passage to the limit. It contains the indicator functions of all
the open intervals. Taking into account 1.2.D, it is sufficient
to prove the statement of Lemma for the functions

^(o) = 9(00)

where 9 e ^"{r}. But

Mm (Cpl<>r+£ + l«r-e) = ?l^r-
£^0

The left side is ^-measurable and the right side is equal
to S( tor t ^ r.

2.3. THEOREM 2.1. — Let ^ be a class of non-negative
functions on T with the properties : a) If fi, /g e e^, then
fi -4- /2 e ̂ - b) If f e ^f a^d c is a positive number, then
cfe ^f. c) J/' /i, /a e ^f an^ A - /2 ^ 0, t^n fi — ^ e ^f.
rf) If f^e ̂  and f^ f /*, (/len /* e ^f.

J/' a!? (/ie functions (2.1) and aM (Ae evanescent functions
belong to J^, then all the non-negative solid functions belong
to ^f.

Proof. — The family (2.1) is closed under multiplication.
Therefore ^f contains all the ^-measurable functions.
(It is easily seen, for example, from [II], Chapter 1, T 20
or from [4], Appendix, Lemma 0.2).

First, we prove that ^it=r belongs to Jf for every (pe^^.
According to 1.2.D, the cr-algebra ^^r ls generated by
functions 9 = 9i9g where r^ < r < r^ and 9^ e ^'<r<?
?2 e ^<r, are bounded. But

yi92l(=r = lim 9il^<«^92
r^r
r^r

and the right side is, evidently, ^-measurable.
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Now let ^ be an arbitrary non-negative solid function.
There exists an ^rxQ-measurable function S which is indis-
tinguishable from ^. Consider an ^-measurable function T]
and a countable set A described in Lemma 2.1. We have

S< = ̂ IT + S U^r.
re\

The first term is ^-measura.ble and hence belongs to J^.
The second term belongs to ^f because Sr e ^^r- Thus
S e ̂  and ^ e ^f.

2.4. Let us prove now that, for any solid function S ^ 0,
the function ^ = P(Sd^'^r) ls solid too.

By virtue of Theorem 2.1, it is sufficient to verify the asser-
tion only for the functions (2.1). In the case r ^ u, ^>u
is generated by functions ^ == 4'i4'2 where ^i e ^(u, r],
4'a ^ ^>r? are bounded. The corresponding

^ = ?l,<«a+lPr.^2

belong to the family (2.1) and hence are solid. In the case
s ^ r < u, we have ^ = (9l-s<«u)Pr ,^- The function in
parenthesis belongs to the family (2.1). The second factor is
solid by 2.1.A. The case r < s can be treated in a similar
way.

3. Central projection.

3.1. We introduce two dual classes of functions on T X 0 :
right functions are well-measurable functions associated with
the right filtration ^ = SP'^; left functions are well-mesu-
rable functions associated with the left filtration M^ === ^x.

Let B e ̂ r. We say that T) and T)' are indistinguishable
on B and write T] == Y]' on B if P(Y]( == T^ for all t) == 1.
The following proposition is an immediate consequence of [3]
(Chapter 4, T14) :

3.1.A. Let 73 and r\' be right functions. Then 73 == T]'
on B if and only if, for any Markov time T (9),

P^W-P^W.
i.----*. - — - _ .e. - - _ . r*-«.(9) By Markov times without any reference to filtration, we mean Markov times

relative to */̂  = SF^.
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3.2. Let i; e ^TXQ- We say that T) is the right projection
of ^ and write Y] == II"^ if T] is a right function and

(3.1) P(S.|^) = ^ (a.s. T < o>)

for every Markov time T (10).
For bounded i; existence of the right projection is proved

in [3] (Chapter 5, T14). The projection of unbounded ^ can
be expressed by formula (11)

(3.2) n+i; = lim n+(S A n)

(It is clear from 3.1. A that, outside an evanescent set,

n+(^ A n) ^ n+(S A m)

for n > m, hence the limit on the right side of (3.2) does
exist.) The concept of right projection can be extended to
functions taking positive and negative values by formula

(3.3) n+E; = n+^+ - n+^-,
where ^+ = S V 0, ^- = (— ^) V 0 (formula (3.1) remains
valid if Sr ls integrable).

The left projection can be defined analogously.
Note some properties of the right projection.

3.2.A. If ^ = ̂  on B, then n+^ = n+^ on B.
This is an obvious consequence of 3.1.A.
It follows from 3.2.A that any two right projections of ^

are indistinguishable.
3.2.B. The operator II4" preserves inequalities and linear

operations. Let 0 ^ ^ ^ E, and let ^ be a right function.
Then^ outside an evanescent set, II+^ ^ A4"^ and

n+(^) = ̂ n+s.
This follows easily from the definition of n^

3.2.C. If S —is independent of t and ^! =V(^\^^},
then II+^ = n+^ on (— oo, r].

(10) Writting (a.s. T < oo) means « for almost all (0 satisfying the condition
T((i)) < 00 ».

j11) We denote by a /\ b the smaller and by a V b tne greater of the two
numbers a, b.
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Proof. — By virtue of 1.2. D, it is enough to consider ^ == 9^
where 9 e ^'^? ^ e «^>r* According to 1.3.A, ^ = yP^ ̂ .
Let 73 = II+E;, 73' == n4-^. For any Markov time T, we
have

P^l^r-P^l^r.

Since (pl^r e *^r? the right side is equal to

P9l^P..^ = P^l^. - P^l^r,

and 3.1.A implies 3.2.C.

3.3. Central functions are the functions which are simulta-
neously solid, right and left. By 1.1.8 and 2.1.B, the function
A{(} corresponding to any normal additive functional A
is central.

LEMMA 3.1. — For any measurable f on (^, the function
f(t, Xt) is central.

Proof. — It is sufficient to prove this for the functions /^
defined by (1.2). The solidity of /i,(^ x^) follows from 2.1.A.
By symmetry, it is enough to check that /^((, x^) are right.
For h^ it is clear from 1.3.D. Put ^ == lim h^(r, x^). Obvi-

r^t
ously, the function St-£ is right for every e > 0. It remains
to note that

h^(t, Xt) = lim ^-s.
8^0

THEOREM 3.1. — If ^ is solidy then

(3.4) n+n-^ = n-n+^ == f(t, ̂ )
where f is a measurable function on ^'. In particular^ if

(3.5) ^(co) = 9(^)l,<«u^(^)(5 < u', 9 e ^-<,, ^ e ̂
are bounded),

then f can be expressed by formula

(3.6) f^x)=Pt^l^^P^

Proof. — By 3.2.B and Theorem 2.1, we have only to prove
the assertion concerning the functions (3.5). According to the
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strong Markov property (see [5], formula (3.2)), for any
Markov time T,

P(^|^) = cpl,<.<»P(^) = ?l.<.<uPT,^ - ̂  (a.s.)

where
"̂  == P^^uPf.^-

Clearly, ^ is a right function. Therefore II+^ == T)-1-. Simi-
larly II~^ == T]~, where

TjF = (P^9)l.<«^.

Using the strong Markov property once more, we note that for
any Markov time T

P(^l^) = (P^i^^P^.

Therefore (P^cp)!^^?^^ is the right projection of T)-.
It is also the left projection of T]+.

3.4. Theorem 3.1 implies that, for any solid ^,

n+n-^ = n-n+s
is a central function. Denote it by 11̂  and call the central
projection of ^. The corresponding function f will be called
the projection of ^ on ^ and denoted by ^S;. (It is unique
up to equivalence.)

If ^ is central, then ^ =. TT^. Hence

(3.7) S = f(t, x,)

where f = TT^.

3.5. LEMMA 3.2. — Let ^ &6 5o^d and independant of t
and let ^ = P(^| ̂ (B)) where B = [5, i&] is a closed internal.
Then 11^ = II ̂ / OTZ B. Outside an inaccessible sety ^ and
TT^' coincide on <^(B).

Proof. — Using 1.2.D and 1.3.A, it is easy to prove that

^ = P(^| ̂ ) where ^ = P(^| ̂ ).

By 3.2.C n+^ = n+$ (on (- oo, u]. By (3.4) and 3.2.A*,
it follows from here that Tl^' == II-n+^ s n-n4-^ = n^
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on (— oo, u]. On the other hand, by 3.2.C* II-S = II-S
on [s, + oo), and by 3.2.A ni = n+n-i = n+n-s s n$
on [5, + oo).

4. (r-finiteness of spectral measures.

4.1. The aim of this section is to prove the following.

THEOREM 4.1. — The spectral measure of any normal additive
functional is a-finite.

To that end, we use the decomposition A = A.Q + Ai
of the measure A(B) into a continuous part Ao(B) and a
discret part

Ai(B) = S A{Q.
tf=B

According to n° 3.3 and formula (3.7),

(4.1) A{t} = f(t, x,)
where f is the projection of A{(} on <^. By 1.1.a, the set
{t: A.{t} ^ 0} is a.s. at most countable. Therefore the set
[f ^ 0} is scanty.

Put
T(C) == P s Wt

It is clear that y is a measure and the spectral measure ^4
of the functional A^ can be expressed by formula

^(C)=P s (V)(^)-jj^
Thus the cr-finiteness of [L^ follows immediately from

THEOREM 4.2. — Every scanty set F can be decomposed
into a countable number of subsets 1^ such that v(r\.) < oo .

This theorem will be proved in the Appendix.
Theorem 4.1 is a trivial consequence of Theorem 4.2 and

the following.

THEOREM 4.3. — The spectral measure of a continuous
additive functional is a-finite.
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Remaining part of section 4 is devoted to the demonstration
of Theorem 4.3.

4.2. LEMMA 4.1. — If A. is a continuous additive functional
and T] e ^'>a? then

(4.2) . PA(^h ^ Pj^P^A^).

Proof. — Let ^(t) == P^T]. Consider a finite subset
A = {ti < . . . < tm} and put ^o = 5? ^+i ^ ^ and

SA^) == ^ for ( e [^-i, ^).
We have

(4.3) PA(^, u)7] = 2PA(^, ̂  = SPA(^-i, ^)!:(^)
^P^^SA^^W.

Let now A^ be an increasing sequence of finite sets with the
union dence in (^, u). Then SA^) ^ l B11^, by 1.3.D,

^^(<)] -̂  ^W a.s.

By Fatou's lemma (4.3) implies (4.2).

4.3. Now we prove Theorem 4.3. Since the measure A (du)
is continuous, 1.1.a implies that A((, u) < oo a.s. for any
t < u e T. Fix an integer m and consider an expression

J = f^ exp [— A(m, u)]A {du).

Since the function F(u) == A(m, u) is continuous, we have

(4.4) J = f: exp [- F(u)j dF(u)
= 1 — exp [— A(m, oo)] ^ 1.

Put A^ == [(k - 1)/2", /c/2-); 8,(u) = /c/271 for u e A£. We
have

J ^ f^ exp [- F(8,(u))]A (rfu) ^ S exp [- F(/c/2^)]A(Ai;)

with the sum extended over all k ^ m.2" + 1. From here,
by (4.2) and (4.4),

1 ^PXO O P^.exp[-F(8,(u))]A(^).
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Since S^(u) —> u as n -> oo, we have, by Fatou's lemma

i ^ P fUu, x^)A{du)
with

f (,, ^\ _ Pu,̂  ̂ P [— M^ u)] for u ^ m,
M ,̂ x) - ^ ^ for u < m.

The sum /*(u, a;) == ^^(u, ^) extended over all negative
integers m is strictly positive and P j f(u, x^)A. {du^ ^. 1.
Let (JL be the spectral measure of A. Then j f d[L ^ 1.
Hence (JL is (i-finite.

5. The fundamental identity.

5.1. THEOREM 5.1. — Let [L be the spectral measure of a
normal additive functional A. For any solid function ^

(5.1) P ̂  ^A {dt) = P f^ m A (^) = ̂  TTS ̂ .

Jn more precise terms, if one of three integrals has meaning,
then two other have too, and equalities (5.1) are fulfilled.

Proof. — By Theorem 4.1, there exists a strictly positive f
such that j f d\L < oo. Formula A {dt) = f{t, r^)A (dt)
defines a normal additive functional with a finite spectral
measure. The identity (5.1) is valid for A if it is valid for A.
Therefore we have the right to assume that

PA(T) = [L^) < oo.

The second equality (5.1) is obvious. By Theorem 2.1, the
first one has to be proved only for the functions (2.1). Let
A == {^ < • • • < t^} be a finite subset of interval {s, u)
such that PA(A) == 0. Put t^ = s, t^^ == u\

y(<) = ̂ -i, S(t) = ^ for t e [^, (,);
9, = P^9, ^ - P,^.

We have

P f S,A {dt) = P(pA(5, uH = SPyA^^, t,)^
= SP9,,_^A(^-i, ^)^, = P f^ 9y(0^80)A (^).
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Consider a sequence A^ <= Ag <= • • • <= A^ c ... with the
union dence in {s, u). Evidently, Yn(^) f ^ ^/i(^) ^ (- Using
1.3.D, we obtain by the passage to the limit

P J^A(^)-P f^^^(dt).

It remains to denote that, according to Theorem 3.1,

ns = y4.<«a^.
5.2. THEOREM 5.2. — A normal additive functional is uni-

quely determined by its spectral measure.

Proof. — Theorem 4.1 allows easily to reduce the general
case to the case of the finite measure pi. Let 9 be an inde-
pendent of t solid function and let B e ^r- Applying (5.1)
to ^ = cpZg, we obtain

(5.2) P<pA(B)=J^9^.
Let A and A' be two normal additive functionals with the
spectral measure [L. By 2.1.B, the function 9 = A(B) — A'(B)
is solid, and (5.2) implies that Pep2 = PcpA(B) - P9A /(B) = 0.
Thus A(B) === A^B) a.s. But two finite measures coincide if
they have equal values on all the intervals with the rational
ends. Therefore A and A' are indistinguishable.

5.3. THEOREM 5.3. — A normal additive functional is conti-
nuous if and only if its spectral measure vanishes on all scanty
sets.

Proof. — The necessity is obvious. We have seen in n° 4.1
that A{(} == f(t, Xt) with a scanty set {f ^ 0}. By (5.1)

P J*A{QA {dt) = f^ fd^.

The right side is equal to 0 if pi charges no scanty set. The
left side is equal to P ^ A{^}2 . Hence A { ^ } = = 0 for all ( a.s.

6. Construction of an additive functional from a measure.

6.1. We show that any <r-finite measure (A charging no
inaccessible set is a spectral measure of a normal additive
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functional. Clearly, it is sufficient to consider only the case
when [L is finite.

For any B e ^r? denote by ^(B) the set of all the solid
elements of ^(B). If f and f are equivalent, then

f f d ^ = f f ' d ^

Therefore for any^ ^ e (B) the value

(6.1) OB(S)= f^d^

is uniquely determined. By 3.2.B and 3.2^''', OB is a finite
measure on ^(B), and, by 3.2.A and 3.2.A* it is absolutely
continuous with respect to P. By the Radon-Nikodym theo-
rem, there exists a ^(B)-measurable function a(B) such that
OB (dw) = a(B)P (rfo) and hence

(6.2) Pa(B)^ - f^ T^ d^ for $ e ^(B).

Let us prove that

(6.3) Pa[s, t]^ = f^^ 7^ ̂  for all ^ e ^(T).

In fact, let B == [s, t]. If ^ e ^(T), then, according to
n° 2.4, the function ^ = P{S| ̂ (B)} belongs to ^(B) and
(6.2) is applicable to ^ / . But Pa(B)^ = Pa(B)^ and, by
Lemma 3.2, TC^ == TC^' on <^(B) outside an inaccessible set.

6.2. Let R be the set of all rational numbers. It follows
from (6.3) that, for almost all <o,

^[^ ^J ^ ^^^i? ^2] ^or a^ FI < ri < rg < r^ G R

and hence there exists limits

(6.4) Ft(s) = lim a[r, (].
»^, r e R

for all t e R. Clearly F((^) is a non-increasing right conti-
nuous function on the half-line (— oo, (). A measure A^ (du)
on this line can be constructed such that F^8) = ̂ (s? ^]*
It follows from (6.3) that

f6.5) P^(., t]=f^^d^
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It is clear from here that, for any s < t < u,

At{s, t] + A^, u] == A^5, u] a.s.

which implies that A^5, (] == A^, (] a.s. Therefore for
all (o, except for a set of measure 0, A^5, t] = A((^, (] for
all s < t < u e R, hence A( = A^ on ( — 0 0 , ^ ) . Evidently
there exists a measure A on the real line such that A == A(
on (— oo, ^) for any t e R. It follows from (6.5) that

(6.6) P^A(^ t] = f^^ ̂  for all s < t, ^ e ^(T)

6.3. Let us show that A is a normal additive functional.
Condition 1.1.a is obvious; conditions 1.1.? and 1.1.y are valid
since A(^, t) e ^(s, t) c: ^{s, t) and A{(} e ^(T). Condition
1.1.8 is satisfied because A(^, () < oo a.s.

It remains only to check that the spectral measure of A
is equal to p.. We prove that

(6.7) P f^A.{du)= f^d^,̂ , ̂ ^ — ̂

for any solid S ^ 0. By Theorem 2.1, it is sufficient to check
(6.7) for functions (2.1). For them, the left side of (6.7) is equal
to P<pA(5, t)^>. On the other hand, n^ = is<t<u^:{(?^) hence
the right side of (6.7) is equal to L ^ 71(9^) rfpi, and (6.7)
follows from (6.6). Applying (6.7) to ^ == lr(^u), we
obtain (1.3).

Appendix. Structure of scanty sets.

1. Our aim is to represent every scanty set as a. countable
union of subsets with the property : the expected number of
times when x^ belongs to the subset is finite.

The sets which admit such a representation will be called
admissible. After necessary preliminaries, the formulated
statement will be proved in n° 5.

2. Let F e ^"g. Put a^(t) = inf {u: u > t, x^ £ F}. A
well-known theorem on debuts ([II], Chapter 4, TI8 or [3],
Chapter 3, T23) implies that crr(T) is a Markov time for
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any Markov time T. The function or(() is right continuous
in ( and measurable with respect to ^x for every fixed t.
By strong Markov property ([8], n° 3.5),

(1) P{exp [- (rr(T)]|^} = gr(^ x,) a.s.

where q^{t, x) == P^ exp [— ^r^)]- I1 ls ^sy to prove that
gr is a measurable function on € and

t^r^ ^) = Ps,x exp [— o-r(()]
for s < t, It follows from here that qy is an excessive func-
tion and that qy{t^ Xf) is right continuous a.s. (see [5], Theo-
rem 5.1).

A point x e E( is called regular for F if

Pt,A^rW=t}=l.

This is equivalent to the condition <?r(^ x) = ex? (— t),
Therefore the set of all regular points is measurable. We
shall denote by P the set of all the points x e F which are
not regular for F.

LEMMA 1 (12). — The set P is admissible for any F e ^g.

Proof. — Since a countable union of admissible sets is
admissible too, it is sufficient to prove that the set

C = {((, x) : x e r, s ^ t < s + 1, gr(^ x) ^ Q exp (— ()}

is admissible for any s e T and 0 < 6 < 1. Form a sequence
of Markov times T() = s, r^+i === o-c(T^) for n ^ 0. Accor-
ding to (1),

(2) P{exp (-- T,+i)|^J = gc(r,, ^J a.s.

It is clear that qc ^ qr- Therefore qc{t^ x^) ^ 6 exp (— ()
for Xf e C. Since qc{t, x^) is right continuous a.s., then

9c(^, x^) ^ 6 exp (— rj a.s.

Hence (2) implies that P exp (— 1̂-1) ^ cP exp (— rj and
P exp (— -rj ^ 6^-\ Denote by N the number of times

(12) Cf. [10], Chapter 15, T 30.
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when Xt belongs to C. Then

P{N > n} = P{r, < s + 1} == P {exp (- rj
> exp ( — 5 — 1 ) } ^ exp (s + 1)P exp (— rj ^ exp s Q\

Thus PN < oo.

3. LEMMA 2. — If r is a scanty set, then there exists at
most countable family of Markov times T^ such that

Ir(^) = S 1̂ .
n

By virtue of Lemma 3.1, this proposition follows from [3]
(Chapter 6, T33).

LEMMA 3 (13). — Let T be a scanty set and let the closure
of A(co) === { ( : ^(co) e F} be at most countable with a positive
probability. If P is inaccessible, then F is inaccessible too.

Proof. — Let T^ be Markov times described in Lemma 2.
If P is inaccessible, then gr^n? ^rj = exp (— rj a.s. From
here and (1), it follows that

P{exp (— o(Tj)|^J = exp (- rj a.s.

Hence cr(Tj == T^ a.s. and all the elements of A(co) are right-
hand limit points of A((o). Thus the closure of A(co) is perfect.
But a. perfect set can not be countable.

4. LEMMA 4. — The space S can be imbedded into a compact
metric space °K in a such a way that:

3.A. ^g coincides with the class of all Borel sets of 3C
which are contained in S'.

3.B. There exists a set Do suc^ that P(0.o) == 1 ^d, for all
co e Q.Q, t e T there exist right-hand limit x^ and left-hand
limit x^ and moreover either x^ + x^~ or x^ = x^- = Xf.

3.C. The functions x^ and x^- are central.

3-D. For any s > 0 and finite internal I the expected

(13) Cf. [10], Chapter 15, T 68.
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number of times t e I, for which p(^+, x^-) > s? is finite
(here p is a metric on 3C\

Proof. — By 1.1.A, it is possible to choose, for each u,
a countable family ^u of measurable subsets of Ey with
the property : if ^i, ^2 are finite measures on Ey and

^i(C) = ̂ (C)
for all C e ̂ , then ^ == vg. Consider for every rational u
and every C e ̂  a pair of functions h^ h^ defined by
(1.2) with ^ = T] == lc(^u)- Denote the set of all these func-
tions by ^f. Associate with every x e € the collection h(x)
of values of all functions belonging to ^f at the point x.
We can interpret h as measurable mapping of € into the
Cartesian product 3C of a countable number of closed unit
intervals. It is easily seen from 1.3.B and 1.3.C that

h{x) + h{y) for x ^ y .

Therefore h determines an isomorphic imbedding of € into
3C (cf. [5], section 2).

Assertion 3.B follows from 1.3.D and 3.C can be proved
exactly as Lemma 3.1. To demonstrate 3.D, we note that if
hi are defined by (1.2) and if ^ = h^t^ x^ then (Sh e^, P)
is a right continuous martingale on (— oo, u) and

(s2., ^-(, P)
is a right continuous martingale on (— oo, — u). By a well-
known theorem (see, for example, [II], Chapter 6, Tl) for any
bounded right continuous martingale, the expected number
of jumps which are greater than a fixed constant is finite.

COROLLARY. — There exists an admissible set Q such that

(3) {t: Xt+ ^ Xt-} = {t: Xt e Q} a.s.

In fact, according to 3.C and (3.7), for any integer m,
there exists a function f^ e ^g such that

I] (|<m, ?(./•(+, ̂ .-)>l/m = /m^? xt)'

Let Q, - {^ ^ 0}. Then

{t:\t\ < m, p(^+, x^) > llm} = {t: Xt e Q,,} a.s.
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By 3-D, the sets Q^ are admissible. So is their union Q.
Clearly, Q satisfies (3).

5. We are able now to prove the statement formulated
at the beginning of the Appendix.

Let r be a scanty set and let T^ be the Markov times
defined in Lemma 2. Put

v(C) = P S ll^lc(^).
n

It is easily seen that v(C) attains its maximum over a.ll the
admissible sets C on a set FQ c r. Put I\ = r\Fo.
It is obvious that, for every admissible C, v ( C n I \ ) = = 0 ,
hence C n I\ is inaccessible. Applying this remark to the
set Q of n° 4, we see that ((: ^ e I\, x^ ^ ^-) is a.s.
empty. From here (t: x^ e I\) = {t: x^ = x^ = x^- e I\) a.s.
To achieve our end, it is sufficient to demonstrate that the last
set is empty a.s. This will be proved if we show that, for any
closed K c FI,

A(co) = [t: Xf == Xt+ = Xt- e K) = ̂  a.s.

First, we show that the closure of A(co) is a.s. at most coun-
table. If (e A(co) is a limit point of A(co), then there exists
a sequence ^ e A(co) such that either t^\ t or („ \ t. Hence
Xt+ e K or x^- e K and, by 3.B, x^ + x^- if co e £io.
Therefore, except on an co-set of measure 0, all limit points
of A(<o) belong either to A(<o) or to the countable set

((: x^ ^ Xt-}.

But the set A((o) is at most countable a.s. because K c r
and r is scanty.

By (3.7), Lemma 3.1 and 3.B, there exists a set C e ^g
such that

(4) A(co) = {t : ^(co) eC) a.s.

This relation remains valid for C n K. Thus we can assume
that C c K. According to Lemma 1, the set C is admissible.
Since C c C c I\, the set C is inaccessible. By Lemma 3, C
is inaccessible too, and (4) implies that A((o) is empty a.s.
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