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STOCHASTIC PROCESS
MEASURABILITY CONDITIONS

by J. L. DOOB

Dedie a Monsieur M. Brelot a V occasion
de son 70e anniversaire.

Introduction.

Separability, progressive measurability, well measurability,
accessibility, predictability, are properties of a stochastic
process introduced in order to make certain functions measu-
rable. It is the purpose of this paper on the one hand to show
the applicability and simplicity of separability in contexts
where the other more recent and deeper concepts are commonly
used, and on the other hand to show that the concept of separa-
bility can be extended to combine the old and new concepts.
In the extension the points of the separability set of a stochastic
process are replaced by optional times.

1.

Let {t2, ^r, P} be a complete probability space. The outer
measure P* is defined on each set as the infimum of the
measures of measurable supersets. Let {^(t) , 0 ^ t < 00}
be an increasing right continuous family of o- algebras of
measurable sets. It is supposed that e^'(O) contains the null
sets. Unless some other convention is stated explicitly a
« process X )> means a stochastic process X : {xU), t ^ 0}
with state space a compact metrizable Hausdorff space, adapted
to ^(•). The process is separable if there is a « separability
set » 5» = {s^y n ^ 1}, a countable dense subset of [0, oo)
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containing 0, with the property that the graph of each
process sample function is in the closure of the graph of the
restriction of the sample function to the separability set. A
process X can be made separable by changing each random
variable x(t) on a null set.

An optional time will be called « discrete » if its range is
countable. If T is a predictable optional time, a monotone
increasing sequence T, = {T^, n ^ 1} of optional times
« announces T » if T\ < T where T > 0 and lim T^ = T.

n->3o

If TI, . . . , T \ are optional times, let T^. be the kth value
of Ti(<x)), . ... T^(co) when arranged in increasing order.
Then T^ is optional, and T^, . . ., T, will be called the
arrangement of T\, . . ., T\ in increasing order. If T\, . . ., T\
are predictable, T{, . . ., T» are also predictable. The arran-
gement in increasing order is possible for a countable infinite
set of optional times if T^ is well defined. Arrangements in
decreasing order are defined in the obvious way.

2. Cluster values of sample functions.

2.1. — If the state space is the extended real line we use
the notation

x*{t) = lim sup x{s), *x(t) = lim sup x{s),
s^t s^t

x^{t) = lim inf x(s), ^x{t) = lim inf x{s)
s^t s^t

except that *rc(0) and ^(0) are defined as x(0).

LEMMA. — If X is an extended real valued separable process,
*X and ^X are predictable.

It is sufficient to treat *X. If 8 > 0 let I(^, 8) be the
interval [(( — S) V 0, () for ( > 0, the singleton {0} for
( == 0. Then if s» is a separability set for X,

*X(() == lim sup x{sj).
8->0 ^.eia, 8)

Let 5^, 5a,, . . ., be the successive members of s^ in I(^, 8)
and let 9^ be the indicator function on [0, oo) of the set
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where a^ = i. Then

sup x{sj) == lim x{s^) V . . . V x{s^)
^•eia,8) fc->3o

^oj = S ^)?/«.
t

For each pair i, k, x[s^^ defines an adapted left continuous
and therefore predictable process, so *X is predictable.

2.2. LEMMA. — If X is an extended real valued separable
process^ X* and X^ are progressively measurable.

It is sufficient to treat X*. Choose b > 0 and define

x,(t) = sup {x{s) : bj^ ^ s < b{j + 1)2-'}
if b{j — 1)2-" ^ t < &/2-71, / < 271

= x*(b) if &(1 — 2-") ^ t <^ b.

Then the function (t, co) ^^ x^t, co) on [0, b] X 0- is measu-
rable for the product of the c?-algebra of Borel subsets of
[0, b] by ^(V). Since lim sup x^(t) = ^*(^), X* is progressi-
vely measurable. n>ao

2.3. — In the following and later theorems involving a sepa-
rable process and discrete optional times, the discrete optional
times will be chosen to have their values in the given separa-
bility set. This choice is not essential but will clarify the
meaning of the corresponding theorems for optionally
separable processes.

THEOREM. — Let X be separable and let T be a predictable
time. There is then a sequence T» of discrete optional times
announcing T such that for almost every <x>

{<I\(co), co), n -> oo}, {^ ,co),( fT}

have the same set of cluster values.

We first assume that the state space is a compact real
interval and prove that there is a sequence T» of discrete
optional times announcing T for which

(2.3.1) lim sup x{Tn) = *x{T) a.e.



166 J. L. DOOB

Let U» announce T and let s^ be a separability set for X.
According to a theorem of Chung [2] U^ can be chosen to be
discrete with values in s^. Choose a^ large that

(2.3.2) P( sup x{t) - sup x{sj) > 1/m) ^ 2-"
^U^<«U^i V^<s^U^ [
( J^m 5

and define the optional time T^y as Sj if U^ < ,Sj ^ U^+i
and otherwise as U^i. Arrange the set {T^y: m ^ 1,
j ^ a^} in increasing order to obtain a sequence T» announ-
cing T and satisfying (2.3.1). Going back to a general compact
metrizable state space let f be a real continuous function on
the state space. Then /*(X) is a separable process so according
to what has just been proved there is a sequence T^ of
discrete optional times announcing T for which almost
surely

(2.3.3) lim sup fW^)] = lim sup f[x{t)].
n>x> t^T

Let /• be a sequence of real continuous functions on the state
space dense under the supremum norm in the class of all these
functions. Let T» be the arrangement of {T^ V U^;
n, k ^ 1 in increasing order. Then T» is a sequence of dis-
crete optional times announcing T, and there is a null set
independent of k for which

(2.3.4) lim sup /'[^(TJ] = lim sup f\x{t)] a.e.
n->x t^T

for f = fkf k ^ 1 and therefore simultaneously for every
real continuous /*. This fact implies the assertion of the
theorem.

2.4. THEOREM. — Let X be separable and let T be an
optional time. There is then a decreasing sequence T» of discrete
optional times for which T,, > T where T < oo, lim T,^ = T
and, for almost e^ery co with T((o) < oo, ">ao

{<I\(<o), co),n-> 0)}, {^,co),^T}

have the same set of cluster values.

The proof of the preceding theorem shows that it is sufficient
to show that if the state space is a compact real interval there
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is a decreasing sequence T» of discrete optional times for
which T, > T where T < oo, lim Tn = T and

n>3o

(2.4.1) lim sup a;(T;,) = ^(T) a.e.
n>=o

Let «• be a separability set for X and let U» be a decrea-
sing sequence of optional times with all finite values in the
separability set and T < U^ ^ T + l/^ when T < oo.
Choose a^ so large that

(2.4.2)
P ( T < oo, sup x{t) — sup x(sj) > 1/m) ^ 2-7"

^ T<t<U^ T<^.<U^ ^
^ J^m ^

and define T^y as Sj if T < Sj < U^ and otherwise as U,^.
Arrange {T^: m ^ 1, / ^ a^} in decreasing order to get
a sequence T» satisfying (2.4.1).

3. Local limit theorems.

3.1. — The following theorems will be stated for processes
with state space a compact interval, that is for real bounded
processes. The application to more general processes will
be discussed after the statement of Theorem 3.2.

LEMMA. — Let {x^ ^\, — o o < y z < o o } be an adapted
process^ with metrizable state space.

(a) If x^ is measurable and if for almost e^ery co^(co)
is a cluster ^alue of the sequence ^•(o) at oo then there is an
increasing sequence ?• of bounded optional times, with

lim p^ = oo and lim x^ = x^
n>ao n>oo

almost everywhere.
(V) If x_^ is measurable and if for almost every corc_^(<o)

is a cluster value of the sequence ^•(co) at — oo then there is a
decreasing sequence a» of bounded optional times, with

lim a^ = — oo and lim x^ •=== x_^
n->oo n->ao

almost everywhere.
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Part (a) was proved by Austin, Edgar and A. Tulcea in a
trivially more special form. To prove (fc) let d be a metric
for the state space, choose a^ = — i and for k > i choose
a^ < Ofc_i in such a way that

(3.1.1) P (co : min d[x^),x_ (co)] < 1/k? > 1 - 2-^.
( ^ -̂i $

Define oc^co) as the smallest / satisfying a/, ^ / < a^_^
for which ^[rc/co), ^_Jco)] < l//c, or a == a^-i if there is no
such /.

3.2. THEOREM. — Let X be a separable real bounded process
and let T be a predictable time. If lim E{a;(TJ} exists whene'

n>oo
ver T» is a sequence of discrete optional times announcing T
then X almost surely has a left limit at T.

Observation: This theorem can be applied as follows. Let X
be separable, with a compact metrizable state space, and let T
be a predictable time. Suppose that lim E{/{^(TJ]} exists

n>oo
whenever T» is a sequence of discrete optional times announ-
cing T and f is a real continuous function on the state space.
[Equivalently suppose that the distribution of ^(TJ has a
limit (n —> oo) whenever T» is a sequence of discrete
optional times announcing T.] Then according to Theorem 3.2
f(X) has almost surely a left limit at T and it follows that X
almost surely has a left limit a T. If X is extended real
valued the condition is satisfied if lim .r(TJ exists in measure

n>oo
for T» as described. Corresponding observations for later
theorems will be omitted.

We first prove that L = lim E{n;(TJ} does not depend
n>oo

on T». In fact if T» and T» are sequences of discrete
optional times announcing T, giving expectation limits L',
L", and if s > 0, define a sequence T» announcing T by

Ti = T,, T, = T^ V Ti, TS = T;, V T^, . . .

where a^ is so large that

P{T, == T;J > 1 - e, or P{T, == T:J > 1 - e
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according as n is odd or even. But then lim E{rr(TJ} is
n'>oo

arbitrarily near both L' and L" for e small. Hence L/== 17,
as asserted. Now choose T» as in Theorem 2.3 and apply
Lemma 3.1 to find a sequence of times (i^ -> oo such that
Tj^ is optional, discrete, Tp^ announces T, and

limo;(TpJ=^(T)
ra>oo

almost everywhere. Then L = }L{*x{t)}. Similarly

L=E{,<T)}
and the theorem follows.

3.3. THEOREM. — Let X be a separable real bounded process
and let T be an optional time. If lim E{rc(TJl-i^<^} exists

n>oo

whenever T» 15 a decreasing sequence of discrete optional times
with almost sure limit T then X has an almost sure right
limit at T.

The proof is parallel to that of Theorem 3.2 and is omitted.

4. Global limit theorems.

4.1. THEOREM. — Let X fee a separable real bounded process.
Suppose that whenever T» is an increasing bounded sequence
of discrete optional times limE{rc(TJ} exists. Then X almost
surely has left limits. n^30

(The language of the conclusion means as usual that almost
every sample function has a left limit at every strictly positive
parameter value.) It is sufficient to show that the predictable
processes *X, ^X are indistinguishable. Since they are almost
surely equal at any bounded predictable time by Theorem 3.2,
these processes must be indistinguishable, as shown by a.
section argument [3]. One of the purposes of this paper
however is to show that in many contexts the use of deep
section arguments is unnecessary. We therefore give a second
proof of the theorem using only elementary measure theory.
Let a, b be real numbers with a < b and define

T = inf {s : *x{s) > b > a > *x{s)}.
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To prove the theorem we prove that T = oo almost every-
where. If not, there is a pair (a, b) and a number k so that
P*{T ^ k} = 8 > 0. If S is a positive random variable
define

» n

[S, n] = LJ {^) > b, S ^ 5, < T ^ /c} n LJ {^-) < a,

S ^ Sj < T ^ /c}.

Choose Ci so large that P*{[0, q]} > 8/2 and define

TI == /c A min (^.: / ^ c^ x{sj) > b}.

Then T^ is optional, rc(Ti) > b when T^ < k and

P{Ti < /c} > 8/2.

Choose c^ so large that

P*{[0,ci] n [T,,c,]} > 8/2
and define

Tg :== A* A min {^ > Ti : / ^ Cg, x{sj) < a}.

Then Tg is optional, ^(Tg) < a when Tg < A- and

P{Ti < T^ < /c} > 8/2.

Continuing in this way we obtain an increasing sequence T»
of optional times, bounded by /c, for which lim ^(TJ does

n>3o

not exist almost everywhere, a, contradiction to the conclusion
of Theorem 3.2, so T = oo almost everywhere, as was to be
proved.

Note that our hypotheses are not strong enough to imply
the measurability of ^(T) for T bounded and optional.

4.2. THEOREM. — Let X be a separable real bounded process.
Suppose that whenever T» is a decreasing sequence of bounded
discrete optional times limE{rc(TJ} exists. Then X almost
surely has right limits. n^30

Let e be strictly positive and define the following optional
times by induction :

To - 0, T,+i = inf{t > 0 : [osc. x{.) in (T,, T, + t)] > c}
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for n a countable ordinal, and T\ = sup T^ if n is a limit
m<n

countable ordinal. According to a standard argument for
almost every o either T^ -> oo or there is a first countable
ordinal m with T^ = T^+i = • • • . If T^ -> oo almost
everywhere for every s X almost surely has right limits.
Otherwise choose s, m so that P{T^ === Tm+i < 00} > 0.
But then, contrary to Theorem 3.3, X does not almost surely
have a right limit at T^ A A- for large k and the proof is
complete.

5. Optional separability sets.

5.1. — If X is a process, a sequence S» of finite optional
times will be called an optional separability set for X if for
each co the set S»(o)) contains 0 and is dense in [0, oo)
and the graph of the sample function ^(•5 co) is in the closure
of the graph restricted to the parameter set S»(co). If each S^
is predictable S» will be called a predictable separability set.
A process X having an optional [predictable] separability
set will be called optionally [predictably] separable. In either
case the set {S/, A k: n, k ^ 1} is a separability set for X
of the same type whose times are bounded. Since the graph
of an accessible time is a subset of a countable union of graphs
of predictable times [3] there is no reason to consider sepa-
rately optional separability sets whose times are accessible.

If X is separable and if T is optional the process ^T

with x^^t) = x{T + () with associated a algebra family
J^.), ^(t) = ̂ (T + t), is not necessarily separable. If X
is optionally separable with optional separability set S.,
however, X1^ is also optionally separable, with optional
separability set S£ given by SJ == (S^ — T) V 0. Moreover
if S» is a predictable separability set for X, S2 is a predic-
table separability set for X1'.

It is an old result, recalled in the Introduction, that every
process whose state space is compact and metrizable has a
standard modification which is separable. That is, in the
present terminology, the modification has an optional sepa-
rability set each of whose times is identically constant. The
following theorem, whose proof unfortunately uses section
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theorems, shows that the situation is simpler in the context
of optional separability sets, at least if the processes are
somewhat restricted.

5.2. THEOREM. — A well measurable process is indistinguish-
able from some optionally separable process. An accessible or
predictable process is indistinguishable from some predictably
separable process.

Let X be well measurable and suppose first that X is
real and bounded. Let I be a left closed right open subinterval
of [0, oo) with right endpoint b < oo. The set

A,== {((, co) : t e I, x(t, <o) > r}

is well measurable so by a section theorem of Meyer there is an
optional time T^(I) whose values lie in I U {&}, whose
graph, except for points with T^(I)(co) === fc, is in Ay. and
for which

P{T,,(I) e 1} > P{A;} - 1/Tz,

where A.'r is the projection of A^ on n. If the set of all
optional times T^(I) : n > 1, r rational, I with rational
endpoints, is rewritten as {S^, n > 1} then

sup x(t) = sup {x{S'n): S^(cx)) e 1} a.e.
tel n

simultaneously for every such I. We now go to a compact
metrizable state space and apply the result just obtained to
the process /'(X), where f is continuous from the state
space to the reals. We obtain a countable family S^ of
optional times for which

(5.2.1) sup f[x{t)] = sup {f[x{Sy)]: S^(co) e 1} a.e.
(€1

If this is done for every f in a sequence /• dense (uniform
norm) in the space of real continuous functions on the state
space we obtain a sequence S», the collection of all S^\
for which (5.2.1) is true with S^ instead of S^ simultaneously
for all f and I. The sequence S» is an optional separability
set for X, neglecting a null set, that is an optional separability
set for a suitably chosen process indistinguishable from X.
If X is predictable, T^(I) can be taken predictable so S^
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becomes predictable. If X is accessible, T^(I) can be taken
accessible and in turn each TjnnW ^^ be replaced by counta-
biy many predictable times whose graphs have union the graph
of T^(I), so again S^ is predictable.

5.3. — With the help of Theorem 5.2 the results obtained
in preceding sections for separable processes have easily
proved analogues for well measurable and predictable
processes. The point is that the proofs for separable processes
need no formal change, only a change in the interpretation of
the symbols used. The principle involved is illustrated in the
following proof of a simple known result, the well measurable
version of Lemma 2.1 : If X is an extended real valued well
measurable process, *X and ^X are predictable. To prove this
we can assume that X is optionally separable and then
in the proof of Lemma 2.1 if the separability sequence s^ is
replaced by the optional separability sequence S» the
proof yields the present result. The well measurable version
of Lemma 2.2 is proved in the same way.

Since the well measurable versions of the results obtained
in the previous sections are proved by replacing separability
sets by optional separability sets we omit discussion of proofs
in the following remarks. Theorems 2.3 and 2.4 have obvious
well measurable analogues except for one change : in each
case we no longer can say that T^ is discrete, merely that T^
is optional. In fact the discrete nature of the optional time T^
becomes in the well measurable context the property that
T^(co) has its values in the set S»(<o), where S» is the given
optional separability set. This fact is not interesting in the
well measurable context, in which S^ is not identically cons-
tant. Similarly in the well measurable versions of Theorems 3.2,
3.3, 4.1, 4.2, we can no longer restrict T^ to be discrete.
Finally, there is also a predictable version of Theorem 4.1.
In fact if X is a predictable real bounded process and if

limE{<!\)}
n>oo

exists whenever T» is an increasing bounded sequence of pre-
dictable times, then X almost surely has left limits. To prove
this note that in the proof of Theorem 4.1 if a predictable



174 J. L. DOOB

separability set S» replaces the separability set s» the
optional times Ti, Tg, . . . found are predictable.

For a different approach to some of these theorems see [3],
[4], [5J.

6. Application.

6.1. — The results on separable processes will be applied
after proving a lemma having independent interest. In this
lemma {^n, — oo < yi < 00} is an increasing family of a
algebras of measurable sets of a probability space and

— f l ^ r r̂ _ I ]— I I ̂  nj ^ o o — v—^ ^r.

LEMMA. — Let x, x^ be integrable real random variables,
— oo ^ n ^ oo. Suppose that x^ is <^\ measurable and
that

lim x^= .r-oo, lim x^ = x^ a.e.
TI->—oo n->x>

Then
lim E{\x - x,\ \ ̂ -J = E{\x - x^\ \ ̂ _,} a.e.

(G.l.lF "lim E{|.r - ̂ | [ ̂ -J = E{x - xj[ \ ̂ ,} a.e.
n>ao

Observation: If {x^ ^^ n ^ 1} is an L1 bounded super-
martingale, for example, with lim x^ = x^ almost every-

n->oo
where, this theorem gives the apparently new result

l imE{i^-^| |^J =0
7T>aO

almost everywhere. This result is false as an L1 limit.
To prove the lemma note first that by Fatou's lemma for

conditional expectations

(6.1.2) lim inf E{\x - x,\ \ ̂ -J ^ E{\x - x_\ | ̂ -,} a.e.
n->—oo

lim inf E{\x — x^\ \ ̂ J ^ E{\x — xj[ \ ̂ } a.e.
n^-oo

In the other direction
(6.1.3) lim sup E{\x — x^\ \ ̂ -J

n->—w
^ lim sup [E{\x — x^\ [^} + \x^ — x^}

n->—<ao

== E{|a;-a;_,| |^-»}a.e.
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and

(6.1.4) lim sup E{\x — x,\ \ ̂ -J

^ ̂ ^ [E^ ~~ x^ I^J + E{K ~ xk[ ̂ n} + }xk ~ xn^
= E{\x — xj[ | ̂ } + 2\x^ — x^\ a.e.

for every /c. Hence (6.1.1) is true.
This lemma is easily generalized in various directions. For

example if almost everywhere convergence in the hypotheses
is replaced by convergence in measure the conclusion is true
with convergence in measure. If all random variable concerned
are pth power integrable for some p > 1 a trivial rewording
of the proof yields

lim E{\x - ̂ h^J = E{\x - x_^\^_} a.e.,
n->—ao

with a corresponding result when n —^ oo.

6.2. — Going back to the conventions of the early sections,
let X be a real right continuous process whose random
variables are integrable, let x be an integrable random
variable and define

(6.2.1) y,{t)=E{\x-x{t)\\^{t)},

choosing versions of the conditional expectations to make
the process Yo separable. If T is a finite discrete optional
time,

(6.2.2) yo(T) - E{\x - <T)| |^(T)} a.e.

because

(6.2.3) yo(T) == 2 E{|rc - x{a)\ |^(a)}l;,^,

= S E{|a;-<r)|[^(T)}l^a.e.
a

Now suppose in addition that ^(T) is integrable whenever T
is optional and bounded. If T» is a decreasing sequence
of bounded discrete optional times, > T, with limit T,
Lemma 6.1 yields

(6.2.4) limyo(TJ = E\{x - <T)| |^-(T)} a.e.
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According to Theorem 4.2 the process Yo must almost surely
have right limits. Hence if we define y(t) == 2/0(4) we obtain
an almost surely right continuous modification Y of Yo
satisfying

(6.2.5) y(T) = E{\x - <T)| | ̂ (T)} a.e.

for each bounded optional time T (or each finite optional
time if we had allowed T to be unbounded in the hypothesis
on X).

If X is also supposed to have left limits and if o;(T_)
is supposed integrable for every bounded predictable time T
an application of Lemma 6.1 shows that for T bounded and
predictable Y almost surely has a left limit at T, with

(6.2.6) 2/(T-) = E{\x - x{T-)\ [ ^-(T_)} a.s.

Hence according to Theorem 4.1 Yo almost surely has left
limits. The corresponding discussion for X supposed left
continuous is omitted.
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