CORNELIU CONSTANTINESCU On vector measures

Annales de l'institut Fourier, tome 25, nº 3-4 (1975), p. 139-161 <http://www.numdam.org/item?id=AIF_1975__25_3-4_139_0>

© Annales de l'institut Fourier, 1975, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **25**, 3 et 4 (1975), 139-161.

ON VECTOR MEASURES by Corneliu CONSTANTINESCU

Dédié à Monsieur M. Brelot à l'occasion de son 70^e anniversaire.

The aim of this paper is to prove some properties concerning the measures which take their values in Hausdorff locally convex spaces. δ -rings of sets rather than σ -rings of sets will be used and a certain regularity of the measures will be assumed in order to include the Radon measures on Hausdorff topological spaces in these considerations.

A ring of sets is a set \Re such that for any A, $B \in \Re$ we have $A \triangle B$, $A \cap B \in \Re$. A ring of sets is called a σ -ring of sets (resp δ -ring of sets) if the union (resp. the intersection) of any countable family in \Re belongs to \Re . Any σ -ring of sets is a δ -ring of sets. Let G be Hausdorff topological additive group and let \Re be a ring of sets. A G-valued measure on \Re is a map μ of \Re into G such that for any countable family $(A_t)_{t\in I}$ of pairwise disjoint sets of \Re whose union belongs to \Re , the family $(\mu(A_t))_{t\in I}$ is summable and its sum is $\mu\left(\bigcup_{t\in I} A_t\right)$. Let \Re be a set and let \Re^n be the set of finite unions of sets of \Re (then $\emptyset \in \Re^n$). For any $A \in \Re$ we denote by $\mathfrak{F}(A, \mathfrak{K})$ the filter on \mathfrak{R} generated by the filter base

$$\{\{B \in \Re | K \subset B \subset A\} | K \in \Re^{u}, K \subset A\}.$$

A G-valued measure μ on \Re will be called \Re -regular if for any $A \in \Re$, μ converges along $\mathfrak{F}(A, \mathfrak{K})$ to $\mu(A)$. Any G-valued measure on \Re is \Re -regular. A set $A \in \Re$ is called a *null set for* μ if $\mu(B) = 0$ for any $B \in \Re$ with $B \subset A$. Let \Re be a ring of sets, let G, G' be Hausdorff topological additive groups, and let μ (resp μ') be a G-valued (resp. G'valued) measure on \Re . We say that μ *is absolutely continuous with respect to* μ' (in symbols $\mu \ll \mu'$) if any null set for μ' is a null set for μ . For any real valued measure μ on a σ -ring of sets \Re we denote by $|\mu|$ the supremum of μ and $-\mu$ in the vector lattice of real valued measures on \Re . If \Re is a set such that μ is \Re -regular then $|\mu|$ is \Re -regular.

PROPOSITION 1. — Let G be a topological additive group whose one point sets are G_{δ} -sets (G is therefore Hausdorff) and let $(x_{\iota})_{\iota \in I}$ be a family in G such that any countable subfamily of it is summable. Then there exists a countable subset J of I such that $x_{\iota} = 0$ for any $\iota \in I \setminus J$.

Let $(U_n)_{n \in \mathbb{N}}$ be a sequence of 0-neighbourhoods in G whose intersection is equal to $\{0\}$. The sets

$$\mathbf{J}_n := \{ \iota \in \mathbf{I} | x_\iota \notin \mathbf{U}_n \}$$

being finite for any $n \in \mathbb{N}$ the set $J := \bigcup_{n \in \mathbb{N}} J_n$ is countable. For any $\iota \in I \setminus J$ we get $x_\iota \in \bigcap_{n \in \mathbb{N}} U_n$ and therefore $x_\iota = 0$.

PROPOSITION 2. — Let G be a topological additive group whose one point sets are G_{δ} -sets, let \Re be a σ -ring of sets, and let μ be a G-valued measure on \Re . Then there exists $A \in \Re$ such that $\mu(B) = 0$ for any $B \in \Re$ with $B \cap A = \emptyset$.

Let us denote by Σ the set of sets \mathfrak{S} of pairwise disjoint sets of \mathfrak{R} such that $\mu(S) \neq 0$ for any $S \in \mathfrak{S}$. It is obvious that Σ is inductively ordered by the inclusion relation. By Zorn's theorem there exists a maximal element $\mathfrak{S}_0 \in \Sigma$. Then any countable subfamily of the family $(\mu(S))_{S \in \mathfrak{S}_0}$ is summable. By the preceding proposition \mathfrak{S}_0 is countable. We set

$$\mathbf{A} := \bigcup_{\mathbf{S} \in \mathfrak{S}_0} \mathbf{S}.$$

Then $A \in \Re$. Let $B \in \Re$ with $B \cap A = \emptyset$. If $\mu(B) \neq 0$

then $\mathfrak{S}_0 \cup \{B\} \in \Sigma$ and this contradicts the maximality of \mathfrak{S}_0 .

THEOREM 3. — Let T be a Hausdorff topological space possessing a dense σ -compact set, let E be a locally convex space whose one point sets are G_{δ} -sets, and let $\mathscr{C}(T, E)$ be the vector space of continuous maps of T into E endowed with the topology of pointwise convergence. Let further \Re be a σ -ring of sets, let \Re be a set, and let μ be a \Re -regular $\mathscr{C}(T, E)$ -valued measure on \Re . Then there exists a positive \Re regular real valued measure \vee on \Re such that μ is absolutely continuous with respect to \vee .

Assume first $E = \mathbf{R}$ and let us denote by $\mathscr{C}_{\mathfrak{K}}(T)$ the vector space of continuous real functions on T endowed with the topology of compact convergence. Since T possesses a dense σ -compact set the one point sets of $\mathscr{C}_{\mathfrak{K}}(T)$ are G_{δ} -sets.

Let us denote for any $t \in T$ by μ_t the map

$$\mathbf{A} \longmapsto (\boldsymbol{\mu}(\mathbf{A}))(t) : \mathfrak{R} \to \mathbf{R}.$$

Then μ_t is a \Re -regular real valued measure on \Re for any $t \in T$. Assume that for any countable subset M of T there exists $A \in \Re$ which is a null set for any μ_t with $t \in M$ and is not a null set for μ . Let ω_1 be the first uncountable ordinal number. We construct by transfinite induction a family $(t_{\xi})_{\xi < \omega_1}$ in T and a decreasing family $(A_{\xi})_{\xi < \omega_1}$ in \Re such that we have for any $\xi < \omega_1$:

a) A_{ξ} is a null set for any $\mu_{t_{\eta}}$ with $\eta \leq \xi$;

b) any set $A \in \Re$ is a null set for μ if it is a null set for any $\mu_{t_{\eta}}$ with $\eta \leq \xi$ and if $A \cap A_{\xi} = \emptyset$;

c) $\bigcap_{\eta < \xi} A_n \setminus A_{\xi}$ is not a null set for μ .

Assume that the families were constructed up to $\xi < \omega_1$. By the hypothesis of the proof there exists a set of \Re which is a null set for any $\mu_{t_{\eta}}$ with $\eta < \xi$ and which is not a null set for μ . Hence there exists $B \in \Re$ and $t_{\xi} \in T$ such that B is a null set for any $\mu_{t_{\eta}}$ with $\eta < \xi$ and such that

$$\mu_{t_{\mathbf{i}}}(\mathbf{B}) \neq 0.$$

Let \mathfrak{R}' be the set of sets of \mathfrak{R} which are null sets for any $\mu_{t_{\eta}}$ with $\eta \leq \xi$. Then \mathfrak{R}' is a σ -ring of sets and by [7] Theorem II.4 (*) the map $\mathfrak{R}' \to \mathscr{C}_{\mathfrak{K}}(T)$ induced by μ is a measure. By the preceding proposition there exists $C \in \mathfrak{R}'$ such that any $D \in \mathfrak{R}'$ with $C \cap D = \emptyset$ is a null set for μ . We set

$$A_\xi := C \ \cap \Bigl(\bigcap_{\eta < \xi} A_\eta \Bigr).$$

a) is obviously fulfilled. Let $A \in \mathfrak{R}'$ with $A \cap A_{\xi} = \emptyset$. Then $A \setminus C \in \mathfrak{R}'$ and it is therefore a null set for μ . For any $\eta < \xi$ the set $A \setminus A_{\eta}$ is a null set for μ by the hypothesis of the induction. Hence A is a null set for μ and b) is fulfilled. Since $B \cap C$ is a null set for $\mu_{t_{\xi}}$ we get

$$\mu_{t_{\mathbf{f}}}(\mathbf{B} \mathbf{\mathbf{\mathbf{C}}}) \neq \mathbf{0}.$$

For any $\eta < \xi$ the set $(B \setminus C) \setminus A_{\eta}$ is a null set for $\mu_{t_{\zeta}}$ for any $\zeta \leq \eta$ and by the hypothesis of the induction

 $(B \ C) \ A_{\eta}$

is a null set for μ . It follows that $(B \setminus C) \setminus \bigcap_{\eta < \xi} A_{\eta}$ is a null set for μ and therefore

$$\mu_{t_{\xi}}\Big((\mathbf{B}\mathbf{C}) \cap \left(\bigcap_{\eta < \xi} \mathbf{A}_{\eta} \mathbf{A}_{\xi}\right)\Big) = \mu_{t_{\xi}}\Big((\mathbf{B}\mathbf{C}) \cap \left(\bigcap_{\eta < \xi} \mathbf{A}_{\eta}\right)\Big) \neq 0.$$

We deduce that $\bigcap_{\eta < \xi} A_{\eta} \setminus A_{\xi}$ is not a null set for μ which proves c).

Again by [7] Theorem II 4 any countable subfamily of the family $\left(\mu\left(\bigcap_{\eta<\xi}A_{\eta}\setminus A_{\xi}\right)\right)_{\xi<\omega_{4}}$ is summable in $\mathscr{C}_{\mathfrak{K}}(T)$ and this contradicts Proposition 1. Hence there exists a sequence $(t_{n})_{n\in\mathbb{N}}$ in T such that any set of \mathfrak{R} is a null set for μ if it is a null set for any $\mu_{t_{n}}$ with $n\in\mathbb{N}$. We set

$$\alpha_n: = \sup_{\mathbf{A} \in \mathfrak{R}} |\mu_{t_n}|(\mathbf{A}) < \infty$$

(*) Or [8] Theorem 7.

([1], III 4.5). The map

$$\mathbf{A}\longmapsto\sum_{n\in\mathbf{N}}\frac{1}{2^{n}}\,|\boldsymbol{\mu}_{t_{n}}|(\mathbf{A}):\boldsymbol{\Re}\rightarrow\mathbf{R}$$

is a positive \Re -regular real valued measure on \Re and μ is absolutely continuous with respect to it.

Let us treat now the general case. Let E' be the dual of E endowed with the $\sigma(E', E)$ -topology and let $(U_n)_{n \in \mathbb{N}}$ be a sequence of closed convex 0-neighbourhoods in E whose intersection is equal to $\{0\}$ and such that

$$U_{n+1} \subset \frac{1}{2} U_n$$
 for any $n \in \mathbf{N}$.

For any $n \in \mathbf{N}$ let U_n^0 be the polar set of U_n in \mathbf{E}' . Then, for any $n \in \mathbf{N}$, U_n^0 is a compact set of \mathbf{E}' and $\bigcup_{n \in \mathbf{N}} U_n^0$ is a dense set in \mathbf{E}' . Let \mathbf{T}' be the topological (disjoint) sum of the sequence $(\mathbf{T} \times U_n^0)_{n \in \mathbf{N}}$ of topological spaces. Then \mathbf{T}' is a Hausdorff topological space possessing a dense σ -compact set. Let $\mathscr{C}(\mathbf{T}')$ be the vector space of continuous real functions on \mathbf{T}' endowed with the topology of pointwise convergence. For any $\mathbf{A} \in \mathfrak{R}$ let us denote by $\lambda(\mathbf{A})$ the real function on \mathbf{T}' equal to

$$(t, x') \longmapsto \langle (\mu(\mathbf{A}))(t), x' \rangle : \mathbf{T} \times \mathbf{U}_n^{\mathbf{0}} \to \mathbf{R}$$

on $T \times U_n^0$. It is easy to see that $\lambda(A) \in \mathscr{C}(T')$ and that λ is a \Re -regular measure on \Re with values in $\mathscr{C}(T')$. Let $A \in \Re$ be a null set for λ and let $t \in T$. Since $(\mu(A))(t)$ vanishes on $\bigcup_{n \in \mathbb{N}} U_n^0$ and since this set is dense in E' we deduce $(\mu(A))(t) = 0$. The point t being arbitrary $\mu(A)$ vanishes. Hence μ is absolutely continuous with respect to λ . By the first part of the proof there exists a positive \Re -regular real valued measure ν on \Re such that λ is absolutely continuous with respect to ν . Then μ is absolutely continuous with respect to ν .

Remark. For $\Re = \Re$ this result could be deduced from [4] Theorem 2.2 and [3] Theorem 2.5. A simpler proof can be given by using [9] Theorem 2.3 or [10] Theorem 2.

2. Let \Re be a δ -ring of sets, let \Re be a set, let E be a Hausdorff locally convex space, and let \mathscr{M} be the set of \Re -regular E-valued measures on \Re . Then \mathscr{M} is a subspace of the vector space E^{\Re} . For any continuous semi-norm pon E and for any σ -ring of sets \Re' contained in \Re the map

$$\mu \longmapsto \sup_{\mathbf{A} \in \mathfrak{R}'} p(\mu(\mathbf{A})) : \mathscr{M} \to \mathbf{R}_+$$

([1], III 4.5) is a semi-norm on \mathcal{M} . We shall call the topology on \mathcal{M} generated by these semi-norms the *semi-norm* topology of \mathcal{M} . If \mathfrak{R} is a σ -ring and E is **R** then the seminorm topology on \mathcal{M} is defined by the lattice norm

$$\mu \to \sup_{\mathbf{A} \in \Re} |\mu|(\mathbf{A}) : \mathscr{M} \to \mathbf{R}_+$$

and \mathcal{M} endowed with this norm is an order complete Banach lattice.

Let \mathfrak{R} be a σ -ring of sets and let $T(\mathfrak{R}) := \bigcup_{\Lambda \in \mathfrak{R}} A$. A real function f on $T(\mathfrak{R})$ is called \mathfrak{R} -measurable if for any positive real number α the sets $\{x|f(x) > \alpha\}, \{x|f(x) < -\alpha\}$ belong to \mathfrak{R} . Let μ be a real valued measure on \mathfrak{R} . $\mathscr{L}^{1}(\mu)$ will denote the set of \mathfrak{R} -measurable μ -integrable real functions on $T(\mathfrak{R})$. Let f be a subset of $\mathscr{L}^{1}(\mu)$ such that f' = f'' μ -almost everywhere and therefore

$$\int f' \ d\mu = \int f'' \ d\mu$$

for any $f', f'' \in f$. We set

$$\int f d\mu := \int f' \ \mu,$$

where f' is an arbitrary function of f. $L^{1}(\mu)$ and $L^{\infty}(\mu)$ will denote the usual Banach lattices and $\|\|\|_{\mu}^{*}$, $\|\|\|_{\mu}^{\infty}$ will denote their norms respectively. Any element of $L^{\infty}(\mu)$ is a subset of $\mathscr{L}^{1}(\mu)$ ([1], III 4.5).

PROPOSITION 4. — Let \Re be a σ -ring of sets, let \Re be a set, let \mathcal{M} be the Banach lattice of \Re -regular real valued measures on \Re and let

$$\mathscr{F} := \left\{ f \in \prod_{\mu \in \mathcal{M}_0} L^{\infty}(\mu) | \mu \ll \nu \Longrightarrow f_{\nu} \subset f_{\mu} \right\}.$$

Then \mathscr{F} is a subvector lattice of $\prod_{\mu \in \mathcal{M}} L^{\infty}(\mu)$ such that for any subset of \mathscr{F} which possesses a supremum in $\prod_{\mu \in \mathcal{M}} L^{\infty}(\mu)$ this supremum belongs to \mathscr{F} . For any $f \in \mathscr{F}$ we have

 $\|f\|:=\sup\|f_{\mu}\|_{\mu}^{\infty}<\infty$

and the map

$$f \longmapsto \|f\|: \mathscr{F} \to \mathbf{R}_+$$

is a lattice norm. \mathscr{F} endowed with it is a Banach lattice. For any $f \in \mathscr{F}$ we denote by $\varphi(f)$ the map

$$\mu\longmapsto \int f_{\mu} d\mu: \mathcal{M} \to \mathbf{R}.$$

Then $\varphi(f)$ belongs to the dual of \mathscr{M} for any $f \in \mathscr{F}$ and φ is an isomorphism of Banach lattices of \mathscr{F} onto the dual of \mathscr{M} .

Let $f, g \in \mathcal{F}$, let $\alpha \in \mathbf{R}$, and let $\mu, \nu \in \mathcal{M}$ such that $\mu \ll \nu$. Then $f_{\nu} \subset f_{\mu}, g_{\nu} \subset g_{\mu}$ and therefore

$$(f + g)_{\nu} = f_{\nu} + g_{\nu} \subset f_{\mu} + g_{\mu} = (f + g)_{\mu},$$

$$(\alpha f)_{\nu} = \alpha f_{\nu} \subset \alpha f_{\mu} = (\alpha f)_{\mu}.$$

This shows that \mathscr{F} is a vector subspace of $\prod_{\mu \in \mathcal{M}} L^{\infty}(\mu)$.

Let \mathscr{G} be a subset of \mathscr{F} possessing a supremum f in $\prod_{\mu \in \mathcal{M}} L^{\infty}(\mu) \text{ and let } \mu, \nu \in \mathscr{M} \text{ such that } \mu \ll \nu.$ Then for any $g \in \mathscr{G}$ we have $g_{\nu} \subset g_{\mu}$ and therefore

$$f_{\mathsf{v}} = \sup_{g \in \mathcal{C}_{\mathsf{f}}} g_{\mathsf{v}} \subset \sup_{g \in \mathcal{C}_{\mathsf{f}}} g_{\mu} = f_{\mu}.$$

Hence \mathscr{F} is a subvector lattice of $\prod_{\mu \in \mathcal{M}} L^{\infty}(\mu)$ such that for any subset of \mathscr{F} , which possesses a supremum in

$$\prod_{\mu\in\mathcal{M}} L^{\infty}(\mu),$$

this supremum belongs to \mathcal{F} .

Let $f \in \mathcal{F}$. Assume

$$\sup_{\mu\in\mathcal{M}_0}\|f_{\mu}\|_{\mu}^{\infty}=\infty.$$

Then there exists a sequence $(\mu_n)_{n \in \mathbb{N}}$ in \mathscr{M} such that

$$\lim_{n\to\infty}\|f_{\mu_n}\|_{\mu_n}^{\infty}=\infty.$$

We set

$$\mu:=\sum_{n\in\mathbf{N}}\frac{1}{2^n\|\mu_n\|}\,|\mu_n|.$$

Then $\mu_n \ll \mu$ for any $n \in \mathbb{N}$ and therefore $f_{\mu} \subset f_{\mu_n}$. We get

$$\|f_{\mu_n}\|_{\mu_n}^{\infty} \leq \|f_{\mu}\|_{\mu}^{\infty},$$

and this leads to the contradictory relation

$$\infty = \lim_{n \to \infty} \|f_{\mu_n}\|_{\mu_n}^{\infty} \leq \|f_{\mu}\|_{\mu}^{\infty} < \infty.$$

Let
$$f, g \in \mathcal{F}$$
, and let $\alpha \in \mathbf{R}$. We have

$$\begin{split} \|f+g\| &= \sup_{\mu \in \mathcal{M}} \|f_{\mu} + g_{\mu}\|_{\mu}^{\infty} \leq \sup_{\mu \in \mathcal{M}} \left(\|f_{\mu}\|_{\mu}^{\infty} + \|g_{\mu}\|_{\mu}^{\infty} \right) \leq \|f\| + \|g\|, \\ \|\alpha f\| &= \sup_{\mu \in \mathcal{M}} \|\alpha f_{\mu}\|_{\mu}^{\infty} = \sup_{\mu \in \mathcal{M}} |\alpha| \|f_{\mu}\|_{\mu}^{\infty} = |\alpha| \|f\|, \\ f &= 0 \iff (\mu \in \mathcal{M} \Longrightarrow \|f_{\mu}\|_{\mu}^{\infty} = 0) \iff \|f\| = 0, \\ \|f\| &\leq |g| \implies \|f\| = \sup_{\mu \in \mathcal{M}} \|f_{\mu}\|_{\mu}^{\infty} \leq \sup_{\mu \in \mathcal{M}} \|g_{\mu}\|_{\mu}^{\infty} = \|g\| \end{split}$$

Hence

$$f \longmapsto \|f\| : \mathscr{F} \to \mathbf{R}_+$$

is a lattice norm.

Let $f \in \mathcal{F}$, let $\mu, \nu \in \mathcal{M}$, and let $\alpha \in \mathbf{R}$. Then

$$f_{|\mu|+|\nu|} \subset f_{\mu} \cap f_{\nu} \subset f_{\mu+\nu}, \quad f_{\mu} \subset f_{\alpha\mu},$$

and therefore

$$\begin{aligned} (\varphi(f))(\mu + \nu) &= \int f_{|\mu|+|\nu|} d(\mu + \nu) \\ &= \int f_{|\mu|+|\nu|} d\mu + \int f_{|\mu|+|\nu|} d\nu = (\varphi(f))(\mu) + (\varphi(f))(\nu), \\ (\varphi(f))(\alpha\mu) &= \int f_{\mu} d(\alpha\mu) = \alpha \int f_{\mu} d\mu = \alpha(\varphi(f))(\mu). \end{aligned}$$

This shows that $\varphi(f)$ is linear. From

$$|(\varphi(f))(\mu)| = \left|\int f_{\mu} d\mu\right| \leq ||f_{\mu}||_{\mu}^{\infty} ||\mu|| \leq ||f|| ||\mu||$$

we get $\|\varphi(f)\| \leq \|f\|$. Hence $\varphi(f)$ belongs to the dual of \mathcal{M} . It is obvious that φ is an injection and that φ maps the positive elements of \mathscr{F} into positive linear forms on \mathcal{M} .

Let us prove now that φ is a surjection. Let θ be a conti-

nuous linear form on \mathscr{M} and let $\mu \in \mathscr{M}$. For any $g \in L^{1}(\mu)$ we denote by $g.\mu$ the map $A \longmapsto \int_{A} g \, d\mu : \mathfrak{R} \to \mathbf{R}$. Then $g.\mu \in \mathscr{M}$ and the map $g \longmapsto \theta(g.\mu) : L^{1}(\mu) \to \mathbf{R}$ is a continuous linear form on $L^{1}(\mu)$. Hence there exists $f_{\mu} \in L^{\infty}(\mu)$ such that $\|f_{\mu}\|_{\mu}^{\infty} \leq \|\theta\|$ and

$$\theta(g.\mu) = \int f_{\mu}g \, d\mu$$

for any $g \in L^1(\mu)$. Let μ , $\nu \in \mathcal{M}$ such that $\mu \ll \nu$. By Lebesgue-Radon-Nikodym theorem there exists $h \in L^1(\nu)$ such that $\mu = h \cdot \nu$. We get for any $g \in L^1(\mu)$, $gh \in L^1(\nu)$ and

$$\int f_{\mu}g \, d\mu = \theta(g.\mu) = \theta(gh.\nu) = \int f_{\nu}gh \, d\nu = \int f_{\nu}g \, d\mu.$$

This shows that $f_{\nu} \subset f_{\mu}$. Hence $f := (f_{\mu})_{\mu \in \mathcal{M}} \in \mathscr{F}$ and it is clear that $\varphi(f) = \theta$. Moreover

$$\|f\| = \sup_{\mu \in \mathcal{M}} \|f_{\mu}\|_{\mu}^{\infty} \leq \|\theta\|.$$

Hence φ is an isomorphism of normed vector lattices. We deduce that \mathscr{F} is a Banach lattice.

PROPOSITION 5. — Let \Re be a δ -ring of sets and let \Re_1 , \Re_2 be σ -ring of sets contained in \Re . Then there exists a σ ring of sets \Re_0 contained in \Re and containing $\Re_1 \cup \Re_2$ and such that any set of \Re which is contained in a set of \Re_0 belongs to \Re_0 .

Let us denote by \Re_0 the set of $A \in \Re$ for which there exists $(B, C) \in \Re_1 \times \Re_2$ such that $A \subset B \cup C$. It is easy to check that \Re_0 possesses the required properties.

PROPOSITION 6. — Let \Re be a δ -ring of sets, let \Re be a set, and let \Re' be a σ -ring of sets contained in \Re and such that any set of \Re contained in a set of \Re' belongs to \Re' . Let further E be a Hausdorff locally convex space, let \mathscr{M} (resp. \mathscr{M}_0) be the vector space of \Re -regular E-valued measures on \Re (resp. \Re') endowed with the semi-norm topology, and let \mathscr{M}' (resp. \mathscr{M}'_0) be its dual. For any $\mu \in \mathscr{M}$ we have $\mu | \Re' \in \mathscr{M}_0$ and the map φ

$$\mu \longmapsto \mu | \mathfrak{R}' : \mathcal{M} \to \mathcal{M}_{\mathbf{0}}$$

is linear and continuous. Let p be a continuous semi-norm on E, let \mathcal{N} (resp. \mathcal{N}_0) be the set of $\mu \in \mathcal{M}$ (resp. $\mu \in \mathcal{M}_0$) such that

$$\sup_{\mathbf{A}\in\mathfrak{A}'}p(\boldsymbol{\mu}(\mathbf{A}))\leqslant 1,$$

let $\mathcal{N}^{\mathbf{0}}$ (resp. $\mathcal{N}_{\mathbf{0}}^{\mathbf{0}}$) be its polar set in \mathcal{M}' (resp. $\mathcal{M}'_{\mathbf{0}}$) and let $\varphi': \mathcal{M}'_{\mathbf{0}} \to \mathcal{M}'$ be the adjoint map of φ . Then $\varphi'(\mathcal{N}_{\mathbf{0}}^{\mathbf{0}}) = \mathcal{N}^{\mathbf{0}}$.

It is obvious that $\mu \in \mathcal{M}$ implies $\mu|\mathfrak{R}' \in \mathcal{M}_0$, that φ is linear and continuous, and that $\varphi(\mathcal{N}) \subset \mathcal{N}_0$. Hence

$$\varphi'(\mathcal{N}_0) \subset \mathcal{N}_0$$

Let $\theta \in \mathcal{N}^0$ and let $\nu \in \mathcal{M}_0$. For any $A \in \mathfrak{R}'$ we denote by ν_A the map

$$\mathbf{B}\longmapsto \mathbf{v}(\mathbf{A} \cap \mathbf{B}): \mathfrak{R} \rightarrow \mathbf{E}.$$

It is immediate that $v_A \in \mathcal{M}$. Let F be the quotient locally convex space $E/p^{-1}(0)$ and let u be the canonical map $E \rightarrow F$. Then the one point sets of F are G_{δ} -sets and $u \circ v$ is an F-valued measure on \mathfrak{R}' . By Proposition 2 there exists $A \in \mathfrak{R}'$ such that any $B \in \mathfrak{R}'$ with $B \cap A = \emptyset$ is a null set for $u \circ v$. Let $A' \in \mathfrak{R}'$, $A \subset A'$. For any $B \in \mathfrak{R}$ the set $A' \cap B \setminus A \cap B$ is a null set for $u \circ v$ and therefore

$$p(\mathbf{v}_{\mathbf{A}'}(\mathbf{B}) - \mathbf{v}_{\mathbf{A}}(\mathbf{B})) = 0.$$

Hence $v_{A'} - v_A \in \varepsilon \mathcal{N}$ for any $\varepsilon > 0$. We get $\theta(v_{A'}) = \theta(v_A)$. Hence if \mathfrak{F} denotes the section filter of \mathfrak{R}' ordered by the inclusion relation then the map

 $A\longmapsto \theta(\nu_A): \mathfrak{R}' \to \mathbf{R}$

converges along \mathfrak{F} .

Let $\theta \in \mathcal{N}^{0}$. With the above notations we set for any $\nu \in \mathcal{M}_{0}$

$$\theta_0(v) := \lim_{A, \ {\mathfrak F}} \theta(v_A).$$

It is easy to see that θ_0 is a linear form on \mathcal{M}_0 . If $\nu \in \mathcal{N}_0$ then $\nu_A \in \mathcal{N}$ for any $A \in \mathfrak{R}'$ and therefore $|\theta_0(\nu)| \leq 1$. It follows $\theta_0 \in \mathcal{N}_0^0$. Let $\mu \in \mathcal{M}$. We set $\nu := \varphi(\mu)$. Let A be a set of \mathfrak{R}' such that any $B \in \mathfrak{R}'$ with $B \cap A = \emptyset$

is a null set for $u \circ v$. Then $\theta_0(v) = \theta(v_A)$. For any $B \in \Re'$ we have

$$p(\mu(\mathbf{B}) - \nu_{\mathbf{A}}(\mathbf{B})) = p(\mu(\mathbf{B} - \mathbf{A} \cap \mathbf{B})) = 0.$$

Hence $\mu - \nu_A \in \varepsilon \mathcal{N}$ for any $\varepsilon > 0$ and therefore

$$\theta(\mu) = \theta(\nu_A).$$

We get

$$\langle \mu, \, \phi'(\theta_0) \rangle = \langle \phi(\mu), \, \theta_0 \rangle = \langle \nu, \, \theta_0 \rangle = \langle \nu_A, \, \theta \rangle = \langle \mu, \, \theta \rangle.$$

Since μ is arbitrary it follows $\varphi'(\theta_0) = \theta$. Hence

$$\varphi'(\mathcal{N}_0^0) = \mathcal{N}^0.$$

PROPOSITION 7. — Let \Re be a δ -ring of sets, let $\widehat{\mathbf{x}}$ be a set, let Γ be the set of σ -rings of sets \Re' contained in \Re and such that any set of \Re contained in a set of \Re' belongs to \Re' , and let \mathcal{E} be a Hausdorff locally convex space. For any $\Re' \in \Gamma \cup {\Re}$ let $\mathscr{M}(\Re')$ be the vector space of \Re -regular \mathcal{E} -valued measures on \Re' endowed with the seminorm topology, let $\mathscr{M}(\Re')'$ be its dual, let $\varphi_{\Re'}$ be the map

$$\mu \longmapsto \mu | \mathfrak{R}' : \mathscr{M}(\mathfrak{R}) \to \mathscr{M}(\mathfrak{R}')$$

(Proposition 6), and let $\varphi'_{\mathfrak{R}'} : \mathscr{M}(\mathfrak{R}')' \to \mathscr{M}(\mathfrak{R})'$ be its adjoint map. Then

$$\mathscr{M}(\mathfrak{R})' = \bigcup_{\mathfrak{R}' \in \Gamma} \varphi'_{\mathfrak{R}'}(\mathscr{M}(\mathfrak{R}')').$$

Let $\theta \in \mathscr{M}(\mathfrak{R})'$. By Proposition 5 there exists $\mathfrak{R}' \in \Gamma$ and a continuous semi-norm p on E such that $|\theta(\mu)| \leq 1$ for any $\mu \in \mathscr{M}(\mathfrak{R})$ with

$$\sup_{\mathbf{A}\in\mathfrak{R}'}p(\boldsymbol{\mu}(\mathbf{A})) \leq 1.$$

By Proposition 6 there exists $\theta_0 \in \mathscr{M}(\mathfrak{R}')'$ such that

$$\varphi'_{\mathfrak{R}'}(\theta_0) = \theta$$
.

3. Let \Re be a δ -ring of sets, let \Re be a set, let \mathscr{M} be the vector space of \Re -regular real valued measures on \Re endowed with the semi-norm topology, and let \mathscr{M}' be its dual. Let further E be a Hausdorff locally convex space, let E' be its dual, and let μ be a \Re -regular E-valued

measure on \Re . Then for any $x' \in E'$, $x' \circ \mu$ belongs to \mathcal{M} . If $\theta \in \mathcal{M}'$ then

$$x' \longmapsto \langle x' \circ \mu, \ \theta \rangle \colon \mathbf{E}' \to \mathbf{R}$$

is a linear form on E'. If there exists $x \in E$ such that

$$\langle x' \circ \mu, \theta \rangle = \langle x, x' \rangle$$

for any $x' \in E'$ we say that θ is μ -integrable. Then x is uniquely defined by the above relation and we shall denote it by $\int \theta \, d\mu$. Any $A \in \Re$ may be considered as an element of \mathscr{M}' namely as the linear form θ_A on \mathscr{M}

 $\nu\longmapsto\nu(\mathbf{A}):\mathscr{M}\to\mathbf{R}.$

It is easy to see that

$$A\longmapsto \theta_A: \Re \to \mathscr{M}$$

is an injection, that θ_A is μ -integrable and

$$\int \theta_{\mathbf{A}} \, d\mu = \mu(\mathbf{A}).$$

If any $\theta \in \mathcal{M}'$ is μ -integrable we say that the measure μ is *normal*. It will be shown in Theorem 10 that if E is quasicomplete then any E-valued measure is normal. If \Re is a σ -ring of sets then any bounded \Re -measurable real function f may be considered as a map θ_f

$$\mathbf{v}\longmapsto \int f\,d\mathbf{v}:\mathcal{M}\to\mathbf{R}$$

which obviously belongs to \mathcal{M}' . For any normal measure μ we shall write

$$\int f\,d\mu:=\int\theta_f\,\,\mu.$$

If μ is a normal measure then it may be regarded as a map

$$\theta \longmapsto \int \theta \ d\mu : \mathscr{M}' \to \mathbf{E}$$

and, identifying \Re with a subset of \mathscr{M}' via the above injection, this map is an extension of μ to \mathscr{M}' . If \mathscr{N} is a set of normal \Re -regular E-valued measures on \Re then, taking into account the above extensions of the normal measures, it may be regarded as a set of maps of \mathscr{M}' into E and so we may speak of the topology on \mathscr{N} of pointwise convergence in \mathscr{M}' .

We want to make still another remark. If F is another Hausdorff locally convex space and if $u: E \to F$ is a continuous linear map then for any \Re -regular E-valued measure μ on \Re the map $u \circ \mu$ is a \Re -regular F-valued measure on \Re . Moreover any μ -integral $\theta \in \mathcal{M}'$ is $u \circ \mu$ -integral and

$$\int \theta \ d(u \circ \mu) = u \left(\int \theta \ d\mu \right).$$

PROPOSITION 8. — Let \Re be a δ -ring of sets, let \Re be a set, let \mathscr{M} be the vector space of \Re -regular real valued measures on \Re endowed with the semi-norm topology, and let \mathscr{M}' be its dual. Let further E be a Hausdorff locally convex space, let $\mathscr{M}(E)$ be the vector space of \Re -regular E-valued measures on \Re endowed with the topology of pointwise convergence in \Re , and let \mathscr{N} be a compact set of $\mathscr{M}(E)$ such that any measure of \mathscr{N} is normal. Then the topologies on \mathscr{N} of pointwise convergence in \Re or in \mathscr{M}' coincide.

Since \Re may be identified with a subset of \mathscr{M}' we have only to show that the topology on \mathscr{N} of pointwise convergence in \Re is finer than the topology on \mathscr{N} of pointwise convergence in \mathscr{M}' . By Proposition 7 we may assume that \Re is a σ -ring of sets. Let $\theta \in \mathscr{M}'$ and let p be a continuous semi-norm on E. We denote by E_p the normed quotient space $E/p^{-1}(0)$, by u_p the canonical map $E \to E_p$, and by $\mathscr{C}(\mathscr{N}, E_p)$ the vector space of continuous maps of \mathscr{N} (endowed with the topology of pointwise convergence in \Re) into E_p endowed with the topology of pointwise convergence. For any $A \in \Re$ let $\lambda(A)$ be the map

$$\mu\longmapsto u_p\circ\mu(\mathbf{A}):\mathcal{N}\to\mathbf{E}_p.$$

Then $\lambda(\mathbf{A}) \in \mathscr{C}(\mathscr{N}, \mathbf{E}_p)$ and it is obvious that λ is a \Re -regular measure on \Re with values in $\mathscr{C}(\mathscr{N}, \mathbf{E}_p)$. By theorem 3 there exists a \Re -regular real valued measure ν on \Re such that λ is absolutely continuous with respect to ν . By Proposition 4 there exists a bounded \Re -measurable real function f on $\bigcup_{\Lambda \in \Re} \Lambda$ such that $\theta(\rho) = \int f d\rho$

for any \Re -regular real valued measure ρ on \Re which is absolutely continuous with respect to ν . Let E'_p be the dual of E_p . Then for any $x' \in E'_p$ and for any $\mu \in \mathcal{N}$ the map $x' \circ u_p \circ \mu$ is a \Re -regular real valued measure on \Re absolutely continuous with respect to ν . Hence

$$\langle x' \circ u_p \circ \mu, \theta
angle = \int f d(x' \circ u_p \circ \mu)$$

for any $\mu \in \mathcal{N}$ and for any $x' \in E'_p$. We get

$$u_p\left(\int \theta \ d\mu\right) = \int \theta \ d(u_p \circ \mu) = \int f \ d(u_p \circ \mu)$$

for any $\mu \in \mathcal{N}$. Let $(f_n)_{n \in \mathbb{N}}$ be a sequence of step functions with respect to \mathfrak{R} converging uniformly to f. Since \mathcal{N} is compact the set $\{\mu(A) | \mu \in \mathcal{N}\} \subset E$ is bounded for any $A \in \mathfrak{R}$. We deduce that the set $\{\mu(A) | \mu \in \mathcal{N}, A \in \mathfrak{R}\}$ is bounded ([5], Corollary 6). Hence the sequence

$$\left(\mu\longmapsto\int f_n\,d\mu:\mathcal{N}\to\mathrm{E}\right)_{n\in\mathbf{N}}$$

of functions on \mathcal{N} converges uniformly to the function

$$\mu \longmapsto \int f \, d\mu : \mathcal{N} \to \mathbf{E}.$$

The functions of the sequence being continuous with respect to the topology on \mathcal{N} of pointwise convergence in \mathfrak{R} we deduce that the last function is continuous with respect to this topology. We deduce further that the map

$$\mu\longmapsto u_p\left(\int\theta\;d\mu\right):\mathscr{N}\to \mathrm{E}_p$$

is continuous with respect to the topology on \mathscr{N} of pointwise convergence in \mathfrak{R} . Since p is arbitrary it follows that the map

$$\mu\longmapsto \int \theta \ d\mu: \mathcal{N} \to \mathbf{E}$$

is continuous with respect to this topology. Since θ is arbitrary the topology on \mathscr{N} of pointwise convergence in \Re is finer than the topology on \mathscr{N} of pointwise convergence in \mathscr{M}' .

COROLLARY. — Let \Re be a σ -ring of sets, let \Re be a set, and let \mathcal{N} be a set of \Re -regular real valued measures on \Re compact with respect to the topology of pointwise convergence in \Re . Then any sequence in \mathcal{N} possesses a convergent subsequence with respect to this topology.

Let \mathscr{M} be the vector space of \Re -regular real valued measures on \Re endowed with the semi-norm topology. By the proposition, \mathscr{N} is weakly compact in \mathscr{M} and the assertion follows from Šumlian theorem.

Let X be an ordered set and let Y be a topological space. We say that a map $f: X \to Y$ is order continuous if for any upper directed subset A of X possessing a supremum $x \in X$ the map f converges along the section filter of A to f(x). An ordered set X is called order σ -complete if any upper bounded increasing sequence in X possesses a supremum.

THEOREM 9. — Let E be an order σ -complete vector lattice, let F be a locally convex space, and let u be a linear map of E into F. If u is order continuous with respect to the weak topology of F then it is order continuous with respect to the initial topology of F.

Let U be a 0-neighbourhood in F, let U⁰ be its polar set in the dual F' of F endowed with the induced $\sigma(F', F)$ topology, let $\mathscr{C}(U^0)$ (resp. $\mathscr{C}_u(U^0)$) be the vector space of continuous real functions on U⁰ endowed with the topology of pointwise convergence (resp. with the topology of uniform convergence), and let us denote for any $x \in E$ by f(x) the map

$$y' \longmapsto \langle u(x), y' \rangle : \mathbf{U}^{\mathbf{0}} \to \mathbf{R}$$

which obviously belongs to $\mathscr{C}(U^0)$.

Let $(x_n)_{n \in \mathbb{N}}$ be an increasing sequence in E with supremum $x \in E$. Then for any $M \subseteq \mathbb{N} \left(\sum_{\substack{n \in M \\ n \leq m}} (x_{n+1} - x_n)\right)_{m \in \mathbb{N}}$ is an upper bounded increasing sequence in E and possesses therefore a supremum. Since u is order continuous with respect to the weak topology of E it follows that

$$(f(x_{n+1} - x_n))_{n \in \mathbf{M}}$$

is summable in $\mathscr{C}(U^0)$. The space U^0 being compact we deduce by [7] Theorem II 4 that $(f(x_{n+1} - x_n))_{n \in \mathbb{N}}$ is sum-

mable in $\mathscr{C}_{a}(U^{0})$. Its sum has to be $f(x - x_{0})$. Hence

 $(f(x_n))_{n \in \mathbb{N}}$

converges uniformly to f(x).

Let now A be an upper directed subset of E with supremum $x \in E$ and let \Re be its section filter. If f does not map \mathfrak{F} into a Cauchy filter on $\mathscr{C}_{u}(U^{0})$ then it is easy to construct an increasing sequence $(x_n)_{n \in \mathbb{N}}$ in A such that $(f(x_n))_{n \in \mathbb{N}}$ is not a Cauchy sequence in $\mathscr{C}_u(U^0)$. Since E is order σ -complete and $(x_n)_{n \in \mathbb{N}}$ is upper bounded by x it possesses a supremum and this contradicts the above considerations. Hence f maps \mathfrak{F} into a Cauchy filter on $\mathscr{C}_n(U^0)$ and therefore, by the completeness of $\mathscr{C}_n(U^0)$ into a convergent filter on $\mathscr{C}_n(U^0)$. Using again the hypothesis that uis order continuous with respect to the weak topology of F we deduce that $f(\mathfrak{F})$ converges to f(x) in $\mathscr{C}(\mathrm{U}^0)$ and therefore in $\mathscr{C}_{u}(U^{0})$. Since U is arbitrary it follows that u converges along \Re to u(x) in the initial topology of F which shows that u is order continuous with respect to this topology.

Let E be a locally convex space, let E' be its dual endowed with the $\sigma(E', E)$ -topology, and let \hat{E} be the set of linear forms y on E' such that for any σ -compact set A of E'there exists $x \in E$ such that x and y coincide on \overline{A} . We say that E is δ -complete if $\hat{E} = E$.

LEMMA. — Any quasicomplete locally convex space is δ -complete.

Let E be a quasicomplete locally convex space and let $y \in \hat{E}$ (with the above notations). Let \mathfrak{l} be the neighbourhood filter of 0 in E and for any $U \in \mathfrak{l}$ let U^0 be its polar set in the dual of E and let A_U be the set of $x \in E$ such that x and y coincide on $\bigcup_{n \in \mathbb{N}} nU^0$. It is obvious that there exists $\alpha_U \in \mathbb{R}$ such that $A_U \subset \alpha_U U$. Let \mathfrak{F} be the filter on E generated by the filter base $\{A_U | U \in \mathfrak{l}\}$. Then \mathfrak{F} is a Cauchy filter on E containing the bounded set $\bigcap_{U \in U} \alpha_U U$ and converging to y uniformly on the sets $U^0(U \in \mathfrak{l})$.

Since E is quasicomplete $y \in E$ and therefore E is δ -complete.

Remark. $-l^1$ endowed with its weak topology is sequentially complete and δ -complete but it is not quasicomplete.

THEOREM 10. — Let \Re be a δ -ring of sets, let \Re be a set, let \mathscr{M} be the vector space of \Re -regular real valued measures on \Re endowed with the semi-norm topology, and let \mathscr{M}' be its dual endowed with the Mackey $\tau(\mathscr{M}', \mathscr{M})$ -topology. Let further E be a Hausdorff sequentially complete δ -complete locally convex space, let E' be its dual, let \mathscr{L} be the vector space of continuous linear maps of \mathscr{M}' into E endowed with the topology of uniform convergence on the equicontinuous sets of \mathscr{M}' , and let $\mathscr{M}(E)$ be the vector space of \Re -regular Evalued measures on \Re endowed with the semi-norm topology. Then for any $\theta \in \mathscr{M}'$ and for any $\mu \in \mathscr{M}(E)$ there exists a unique element $\int \theta d\mu$ of E such that

$$\langle x' \, \circ \, \mu, \, heta
angle = \left\langle \int heta \; d \mu, \; x'
ight
angle$$

for any $x' \in E'$. For any $\mu \in \mathcal{M}(E)$ the map $\psi(\mu)$

$$\theta\longmapsto \int \theta \ d\mu: \mathscr{M}' \to \mathbf{E}$$

belongs to \mathscr{L} and it is order continuous. ψ is a linear injection of $\mathscr{M}(E)$ into \mathscr{L} which induces a homeomorphism of $\mathscr{M}(E)$ onto the subspace $\psi(\mathscr{M}(E))$ of \mathscr{L} . For any σ -ring of sets \mathfrak{R}' contained in \mathfrak{R} and for any $\mu \in \mathscr{M}(E)$ the closed convex circled hull of $\{\mu(A) | A \in \mathfrak{R}'\}$ is weakly compact in E.

In order to prove the existence of $\int \theta \, d\mu$ we may assume by Proposition 7 that \Re is a σ -ring of sets. Let \mathscr{F} be the Banach space of bounded \Re -measurable real functions on $\bigcup_{A \in \Re} A$ with the supremum norm. Since E is sequentially complete we may define in the usual way $\int f \, d\mu \in E$ for any $f \in \mathscr{F}$. Let A be a subset of E' σ -compact with respect to the $\sigma(E', E)$ -topology. By Theorem 3 there exists $\nu \in \mathscr{M}$ such that $x' \circ \mu \ll \nu$ for any $x' \in \overline{A}$. By Proposition 4 there exists $f \in \mathcal{F}$ such that

$$\langle x' \circ \mu, \theta
angle = \int f d(x' \circ \mu) = \left\langle \int f \, d\mu, \, x'
ight
angle$$

for any $x' \in \overline{A}$. Since E is δ -complete there exists

$$\int \theta \ d\mu \in \mathbf{E}$$

such that

$$\langle x' \circ \mu, \theta \rangle = \left\langle \int \theta \ d\mu, x' \right\rangle$$

for any $x' \in E'$.

Let $\mu \in \mathcal{M}(E)$. It is obvious that $\psi(\mu)$ is linear and from the relation defining it, it follows that it is continuous with respect to the $\sigma(\mathcal{M}', \mathcal{M})$ and $\sigma(E, E')$ topologies. We deduce that $\psi(\mu)$ belongs to \mathscr{L} . From Proposition 4 or from the theory of Banach lattices we deduce that $\psi(\mu)$ is order continuous with respect to the weak topology of E. By the preceding theorem it is order continuous with respect to the initial topology of E.

It is obvious that ψ is linear. Let $\mu \in \mathcal{M}(E)$ such that $\psi(\mu) = 0$. Let $A \in \Re$ and let θ be the map

 $\nu\longmapsto\nu(A):\mathscr{M}\to\mathbf{R}.$

Then $\theta \in \mathcal{M}'$ and we get

$$\mu(\mathbf{A}) = \int \theta \ d\mu = (\psi(\mu))(\theta) = 0.$$

Since A is arbitrary we get $\mu = 0$. Hence ψ is an injection.

Let p be a continuous semi-norm on E and let \mathscr{A} be an equicontinuous set of \mathscr{M}' . Then there exists a σ -ring of sets \mathfrak{R}' contained in \mathfrak{R} such that

$$\alpha := \sup_{\substack{\theta \in \mathcal{N} \\ \nu \in \mathfrak{N}}} |\langle \nu, \theta \rangle| < \infty,$$

with

$$\mathcal{N} := \{ \mathsf{v} \in \mathcal{M} | \sup_{\mathbf{A} \in \mathfrak{R}'} | | \mathsf{v}(\mathbf{A}) | \leq 1 \}.$$

Let $\mu \in \mathcal{M}(E)$ such that

$$\sup_{\mathbf{A}\in\mathfrak{R}'}p(\mu(\mathbf{A})) \leq \frac{1}{\alpha+1}.$$

Let further $x' \in E'$ such that $\langle x, x' \rangle \leq 1$ for any $x \in E$ with $p(x) \leq 1$. We get

$$\sup_{\mathbf{A}\in\mathfrak{R}'} |x' \circ \mu(\mathbf{A})| = \sup_{\mathbf{A}\in\mathfrak{R}'} |\langle \mu(\mathbf{A}), x' \rangle| \leq \frac{1}{\alpha+1}$$

and therefore $x' \circ \mu \in \frac{1}{\alpha + 1} \mathcal{N}$ and

$$|\langle (\psi(\mu))(\theta), x' \rangle| = |\langle \int \theta \ d\mu, x' \rangle| = |\langle x' \circ \mu, \theta \rangle| \leq 1$$

for any $\theta \in \mathscr{A}$. Since x' is arbitrary it follows

$$p((\psi(\mu))(\theta)) \leq 1$$

for any $\theta \in \mathscr{A}$. Hence ψ is a continuous map of $\mathscr{M}(E)$ into \mathscr{L} .

Let p be a continuous semi-norm on E and let \mathfrak{R}' be a σ -ring of sets contained in \mathfrak{R} . Let us denote by \mathscr{N} the set of $\nu \in \mathscr{M}$ such that

$$\sup_{\mathbf{A} \in \mathfrak{R}'} |\mathbf{v}(\mathbf{A})| \leq 1$$

and by \mathcal{N}^{0} its polar set in \mathcal{M}' . Then \mathcal{N}^{0} is an equicontinuous set of \mathcal{M}' . Let $\mu \in \mathcal{M}(E)$ such that

$$\sup_{\theta \in \mathcal{W}^{0}} p((\psi(\mu))(\theta)) \leq 1$$

and let $A \in \Re'$. We denote by θ the map

$$\mathsf{v}\longmapsto\mathsf{v}(\mathbf{A}):\mathscr{M}\to\mathbf{R}.$$

Then $\theta \in \mathcal{N}^0$ and therefore

$$p(\mu(\mathbf{A})) = p((\psi(\mu))(\mathbf{\theta})) \leq 1.$$

This shows that ψ is an open map of $\mathscr{M}(E)$ onto the subspace $\psi(\mathscr{M}(E))$ of \mathscr{L} .

In order to prove the last assertion we may assume by Proposition 5 that any set of \mathfrak{R} contained in a set of \mathfrak{R}' belongs to \mathfrak{R}' . The map $\psi(\mu)$ is continuous if we endow \mathscr{M}' with the $\sigma(\mathscr{M}', \mathscr{M})$ -topology and E with the weak topology. Let \mathscr{N} be the set of $\mu \in \mathscr{M}$ such that

$$\sup_{\mathbf{A}\in\mathfrak{R}'}|\mu(\mathbf{A})| \leq 1$$

and let $\mathscr{N}^{\mathbf{0}}$ be its polar set in \mathscr{M}' . $\mathscr{N}^{\mathbf{0}}$ is compact with respect to the $\sigma(\mathscr{M}', \mathscr{M})$ -topology and therefore $(\psi(\mu))(\mathscr{N}^{\mathbf{0}})$ is weakly compact in E. Since $\mathscr{N}^{\mathbf{0}}$ is circled and convex and since it contains the set $\{\mu(A)|A \in \mathfrak{R}'\}$ we infer that the closed convex hull of $\{\mu(A)|A \in \mathfrak{R}'\}$ is weakly compact.

Remarks 1. — J. Hoffmann-Jørgensen proved ([2] Theorem 7) that if E is quasicomplete and if \Re is a σ -algebra then $\{\mu(A)|A \in \Re\}$ is weakly relatively compact in E, under weaker assumptions about μ .

2. — In the proof we didn't use completely the hypothesis that E is sequentially complete but only the weaker assumptions that any sequence $(x_n)_{n \in \mathbb{N}}$ in E converges if there exists a bounded set A of E such that for any $\varepsilon > 0$ there exists $m \in \mathbb{N}$ with $x_n - x_m \in \varepsilon A$ for any $n \in \mathbb{N}$, $n \ge m$.

3. — Let F be another Hausdorff locally convex space, let $\mathcal{M}(F)$ be the vector space of \mathfrak{R} -regular F-valued measures on \mathfrak{R} endowed with the seminorm topology, and let u: $E \to F$ be a continuous map. Then for any $\mu \in \mathcal{M}(E)$ we have $u \circ \mu \in \mathcal{M}(F)$, the map

$$\mu \longmapsto u \circ \mu : \mathscr{M}(\mathbf{E}) \to \mathscr{M}(\mathbf{F})$$

is continuous, and for any $\theta \in \mathcal{M}'$ we have

$$\int \theta \ d(u \circ \mu) = u \left(\int \theta \ d\mu \right).$$

4. — The theorem doesn't hold any more if we drop the hypothesis that E is δ -complete.

THEOREM 11. — Let \Re be a δ -ring of sets, let \Re be a set, let E be a Hausdorff sequentially complete δ -complete locally convex space such that for any convex weakly compact set K of E and for any equicontinuous set A' of the dual E' of E the map

$$(x, x') \longmapsto \langle x, x' \rangle \colon \mathbf{K} \times \mathbf{A}' \to \mathbf{R}$$

is continuous with respect to the $\sigma(\mathbf{E}, \mathbf{E}')$ -topology on K and $\sigma(\mathbf{E}', \mathbf{E})$ -topology on A', let $\mathscr{M}(\mathbf{E})$ be the vector space of \mathfrak{R} -regular E-valued measures on \mathfrak{R} , and let $(\mu_{\iota})_{\iota \in \mathbf{I}}$ be a family in $\mathscr{M}(\mathbf{E})$ such that for any $\mathbf{J} \subset \mathbf{I}$ the family $(\mu_{\iota})_{\iota \in \mathbf{I}}$

is summable in \mathcal{M} with respect to the topology of pointwise convergence in \mathfrak{R} . Then for any $\mathbf{J} \subset \mathbf{I}$ the family $(\mu_{\iota})_{\iota \in \mathbf{J}}$ is summable in $\mathcal{M}(\mathbf{E})$ with respect to the semi-norm topology on $\mathcal{M}(\mathbf{E})$.

Let $\mathfrak{B}(I)$ be the set of subsets of I. The map of $\mathfrak{B}(I)$ into $\{0, 1\}^{I}$ which associates to any subset of I its characteristic functions is a bijection. We endow $\{0, 1\}$ with the discrete topology, $\{0, 1\}^{I}$ with the product topology, and $\mathfrak{P}(I)$ with the topology for which the above bijection is an homeomorphism. Then $\mathfrak{B}(I)$ is a compact space. The assertion that any subfamily of a family $(x_i)_{i \in I}$ in a Hausdorff topological additive group is summable is equivalent with the assertion that there exists a continuous map fof $\mathfrak{P}(\mathbf{I})$ into G such that $f(\mathbf{J}) = \sum x_i$ for any finite subset J of I ([6]). By the hypothesis there exists therefore a continuous map f of $\mathfrak{B}(I)$ into $\mathcal{M}(E)$ endowed with the topology of pointwise convergence in R such that $f(J) = \sum_{i \in J} \mu_i$ for any finite subset J of I.

Let \mathscr{M} be the vector space of \mathfrak{R} -regular real valued measures on \mathfrak{R} endowed with the semi-norm topology, and let \mathscr{M}' be its dual. By Theorem 10 any measure of $\mathscr{M}(E)$ is normal and therefore $\mathscr{M}(E)$ may be considered as a set of maps of \mathscr{M}' into E. By Proposition 8 the above map fis continuous with respect to the topology on $\mathscr{M}(E)$ of pointwise convergence in \mathscr{M}' . It follows that for any $J \subset I$ the family $(\mu_t)_{t \in J}$ is summable in $\mathscr{M}(E)$ with respect to this last topology.

Let us endow \mathscr{M}' with the Mackey $\tau(\mathscr{M}', \mathscr{M})$ -topology, let \mathscr{L} be the vector space of continuous linear maps of \mathscr{M}' into E, and let ψ be the injection $\mathscr{M}(E) \to \mathscr{L}$ defined in Theorem 10. It is obvious that ψ is continuous with respect to the topology on $\mathscr{M}(E)$ and \mathscr{L} of pointwise convergence in \mathscr{M}' . Hence for any $J \subset I$ the family $(\psi(\mu_i))_{i \in J}$ is summable in \mathscr{L} with respect to the topology of pointwise convergence in \mathscr{M}' .

Let U be a closed convex 0-neighbourhood in E and let U⁰ be its polar set in E' endowed with the $\sigma(E', E)$ -topology. Let \Re' be a σ -ring of sets contained in \Re , let \mathscr{N}

be the set $\{\nu \in \mathscr{M} | \sup_{A \in \mathfrak{K}'} |\nu(A)| \leq 1\}$, and let $\mathscr{N}^{\mathbf{0}}$ be its polar set in \mathscr{M}' endowed with the $\sigma(\mathscr{M}', \mathscr{M})$ -topology. For any $\mu \in \mathscr{M}(E)$ the map

$$\theta \longmapsto \int \theta \ d\mu : \ \mathcal{N}^{\mathbf{0}} \to \mathbf{E}$$

is continuous with respect to the weak topology of E. It follows that the image of \mathcal{N}^0 through this map is a convex weakly compact set of E. By the hypothesis about E the map $\hat{\mu}$

$$(\theta, x') \longmapsto \langle \int \theta \ d\mu, x' \rangle \colon \mathscr{N}^{\mathbf{0}} \times \mathrm{U}^{\mathbf{0}} \to \mathbf{R}$$

is continuous. Let $\mathscr{C}(\mathscr{N}^0 \times U^0)$ be the vector space of continuous real functions on $\mathscr{N}^0 \times U^0$. By the above proof for any $J \subset I$ the family $(\hat{\mu}_{\iota})_{\iota \in J}$ is summable in $\mathscr{C}(\mathscr{N}^0 \times U^0)$ with respect to the topology of pointwise convergence. By [7] Theorem II 4 the same assertion holds with respect to the topology of uniform convergence. Let $J \subset I$. Then there exists a finite subset K of J such that

$$\left|\sum_{\iota\in\mathbf{L}}\hat{\mu}_{\iota}(\theta, x') - \sum_{\iota\in\mathbf{J}}\hat{\mu}_{\iota}(\theta, x')\right| \leq 1$$

for any finite subset L of J containing K and for any $(\theta, x') \in \mathcal{N}^0 \times U^0$. We get

$$\sum_{\mathbf{t}\in\mathbf{L}}\mu_{t}(\mathbf{A})-\sum_{\mathbf{t}\in\mathbf{J}}\mu_{t}(\mathbf{A})\in\mathbf{U}$$

for any finite subset L of J containing K and for any $A \in \Re'$. Since \Re and U are arbitrary this shows that the family $(\mu_{\iota})_{\iota \in J}$ is summable in $\mathscr{M}(E)$ with respect to the seminorm topology.

BIBLIOGRAPHY

- [1] N. DUNFORD and J. T. SCHWARTZ, Linear operators Part. I., Interscience Publishers Inc., New York, 1958.
- [2] J. HOFFMANN-JØRGENSEN, Vector measures, Math. Scand., 28 (1971), 5-32.
- [3] J. LABUDA, Sur quelques généralisations des théorèmes de Nikodym et de Vitali-Hahn-Saks, Bull. Acad. Pol. Sci. Math., 20 (1972), 447-456.

- [4] J. LABUDA, Sur le théorème de Bartle-Dunford-Schwartz, Bull. Acad. Pol. Sci. Math., 20 (1972), 549-553.
 [5] D. LANDERS and L. ROGGE, The Hahn-Vitali-Saks and the uniform
- [5] D. LANDERS and L. ROGGE, The Hahn-Vitali-Saks and the uniform boundedness theorem in topological groups, *Manuscripta Math.*, 4 (1971), 351-359.
- [6] A. P. ROBERTSON, Unconditional convergence and the Vitali-Hahn-Saks theorem, Bull. Soc. Math. France, Mémoire 31-32 (1972), 335-341.
- [7] E. THOMAS, L'intégration par rapport à une mesure de Radon vectorielle, Ann. Inst. Fourier 20, 2 (1970), 55-191.
- [8] I. TWEDDLE, Vector-valued measures, Proc. London Math. Soc., 20 (1970), 469-485.
- [9] L. DREWNOWSKI, On control submeasures anal measures, Studia Math., 50 (1974), 203-224.
- [10] K. MUSIAK, Absolute continuity of vector measures, Coll. Math., 27 (1973), 319-321.

Manuscrit reçu le 23 décembre 1974.

Corneliu Constantinescu, ETH, Mathematisches Seminar 8006 Zürich, Switzerland.