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A REMARK ON THURSTON'S STABILITY THEOREM

by Richard SACKSTEDER

Let L be a compact leaf of a smooth transversally oriented fo-
liation of codimension one. Thurston [4] has generalized Reeb's
stability theorem by showing that if H^L, R) = 0, then all nearby
leaves are diffeomorphic to L. His theorem answers, for oriented
foliations, a question posed by Reeb [2]. If it were true, as has been
erroneously asserted in the literature [3, p. 96], that H ^ ( L , R) = 0
implies that Hi(I/ , R) = 0 when L' is a 2-fold cover of L, then
Thurston's assymption of transversal orientability would be un-
necessary. However the assertion is false (cf. [1, p. 4101), as has been
pointed out to the author painfully often.

In fact, the example below shows that Thurston's theorem
cannot be generalized to non-oriented foliations, since in the example
there is a compact leaf L with H^L, R) = 0, but which has a neigh-
borhood in which all leaves are non-compact.

The universal covering of L is S2 x R1 and TT = TT^(L) is the
semi-direct product of Z^ = { — 1, -+- 1} and the integers Z, where
Z^ acts on Z in the obvious way. The product of elements of TT is
given by

(^i , ^ i ) •(^2 ,^) = (w^ ,Wi^ 4- ^ i ) ,

where w, is in Z^ and n^ is in Z. The action 0 of TT on S2 x R is
given by

0 ((w , n) \ (s , r)) = (ws , wr + n), where s -> — s

is the antipodal map of S2. The quotient L is an oriented manifold
that is easily seen to have the properties that H^(L , Z) = Z^, hence
Hi (L , R) = 0, and S2 x S1 is a 2-fold cover of L.
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To define a foliation of a neighborhood of L it suffices to de-
fine a representation V/ of TT by C° diffeomorphisms of neighborhoods
of 0 E R. Let / be any C°° diffeomorphism of R satisfying :

fW=0, f'(0)= 1,^(0) =0 if n>\,f(x)<x

for x ^ 0, and

(D/W =-/~ l(-x) , hence /"(x) =-/-"(- jc) for n = 0,
± 1 , . . . .

An / satisfying these conditions is easily defined for x > 0 and
can be extended to x < 0 by (1). It is easy to check that the deri-
vatives match at 0 so the extended map is C°°. The second half of
(1) shows that V / ( w , n) (x) = ̂ (wx) defines a representation of TT
with the desired properties. The leaves, other than L itself, of the
foliation defined by ^ are non-compact, since fn(wx) = x can only
occur if (w, n) = (1 , 0), or x == 0.
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