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SPACES OF BAIRE FUNCTIONS I
by J. E. JAYNE

1. Introduction.

In this paper it is proved that if a compact Hausdorff
space X contains a non-empty perfect subset, then for each
countable ordinal a the Banach space of bounded real-valued
Baire functions of class a on X is a proper subspace of the
Banach space of bounded real-valued Baire functions of
class a + 1 on X. This was announced in [14] and [16]
and contained in [15]. This result for uncountable compact
subsets of Euclidean space, which implies the result for all
uncountable compact metric spaces, is due to Lebesgue [19].
A proof is given by Hausdorff [12, p. 207]. If a compact space X
does not contain a non-empty perfect subset, then it is known
that the space of all bounded real-valued Baire functions on X
coincides with the space of bounded Baire functions
of class 1 [22].

In the study of the space of bounded real-valued Baire
functions on a space X the compactness of X is not essen-
tial. For example, an uncountable subset of the real line R
is a Baire (equivalently, Borel) subset if and only if it is Baire
isomorphic to the unit interval [0, 1] ([18, pp. 447 and 489]).
Thus the Banach space of bounded real-valued Baire functions
on any uncountable Baire subset of R is isometrically iso-
morphic to the space of bounded real-valued Baire functions
on [0, 1].

With this in mind the results will be phrased for a class of
completely regular Hausdorff spaces which will contain all
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compact spaces, all complete separable metric spaces, all
Baire subsets of these spaces, and more generally, all subsets
of these spaces which are obtainable from the Baire subsets
by Souslin's operation (A). These spaces, which will be called
disjoint analytic spaces, are defined to be those completely
regular Hausdorff spaces which are the images of analytic
subsets of the Baire 0-dimensional product space N^
(N == {1, 2, 3, . . .}) under disjoint upper semi-continuous
compact-valued maps. This class of spaces, as will be seen, is
a proper subclass of Choquet's completely regular K-analytic
spaces ([7] and [8]). The precise definitions are given below.

Characterizations of disjoint analytic spaces are given in
theorem 3 and significant properties in theorems 4 and 5.

The central result on the existence of Baire classes is then

THEOREM 6. — If X is a disjoint analytic space, then the
following are equivalent:

1) For each countable ordinal a the Banach space of bounded
real-valued Baire functions on X of class a is a proper
subspace of the space of bounded real-valued Baire functions
of class a 4- 1-

2) There exists a bounded real-valued Baire function on X
of class 2 which is not of class 1.

3) The family of Baire subsets of X is not invariant under
Souslin^s operation (A).

4) The space of all bounded real-valued Baire functions on X
is a proper subspace of the space of all bounded real-valued
functions on X which are continuous in the topology having
the family of Baire subsets of X as a base for the open sets.

5) The weakest topology on X for which all of the real-
valued Baire functions on X are continuous does not have the
Lindeldf property.

6) X contains a non-empty compact perfect subset.

An analogous set of equivalences is given for pseudocompact
spaces in theorem 9. This result is used to give an example
of a completely regular Hausdorff space X which contains
no non-empty compact perfect subsets, but yet has the pro-
perty that for each countable ordinal a the Banach space
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of bounded real-valued Baire functions on X of clas^ a rs
a proper subspace of the space of such functions of class a -)- 1.

In the seventh section the sequential stability index of a
space of real-valued functions defined on a set X is consi-
dered; that is, the smallest ordinal a such that the iteration
of the process of adjoining the pointwise limits bf founded
sequences of functions stops producing new functions on
precisely the a-th iteration. In these terms theorem 6 implies
that the only possible indices for the space of bounded conti*
nuous real-valued functions on a disjoint analytic space are
0, 1 and tl (the first uncountable ordinal);

In theorem 10 it is shown that for any infinite colnpletely
regular Hausdorff space the Banach spac^ of bounded real-
valued Baire functions of class 1 contains closed linear
subspaces with index a for each countable ordinal 'a.

Finally, the sequential stability index of a closed linear
subspace of the space of continuous real-valued functions on
a compact space is characterized in terms of weak^ sequential
convergence in the second dual of the subspace, thus giving
invariance of the index under isomorphic embeddings in the
space of continuous real-valued functions on any compact
space.

The second part of this paper will consider the problem of
evaluating the sequential stability index of the space of conti-
nuous real-valued affine functions on a compact convex subset
of a Hausdorff locally convex real topological vector space.

2. Preliminary definitions and notation. '•'

All topological spaces considered will be completely regular
Hausdorff spaces. The word space will be used to refer to such
a topological space. A perfect subset of a space X is a closed
subset which in its relative topology has no isolated points.

The space of bounded continuous real-valued functioits
on a space X will be denoted by C(X). Let

Bo(X)=C(X) - ' ; 5 •

and inductively define Ba(X) for each ordinal a < 0
(£1 denotes the first uncountable ordinal) to -. be:the space
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of pointwise limits of bounded sequences of functions in

U Bp(X)
P<a

With the pointwise operations and the supremum norm
each Ba(X) is a lattice-ordered Banach algebra [12, §41].

The family of Baire sets of a space X is the smallest family
of sets containing the zero sets of continuous real-valued
functions (i.e. of the form Z(/) = {x e X: f(x) ==0}), and
closed under countable unions and countable intersections.

The Baire sets of X of multiplicative class 0, denoted
Zo(X), are the zero sets of continuous real-valued functions.
The sets of additive class 0, denoted CZo(X), are the
complements of the sets in Zo(X). Define inductively for
each countable ordinal a the sets of multiplicative class
a + I? denoted Za+i(X), to be the countable intersections
of the sets of additive class a and the sets of additive class
a -|- I? denoted CZa+i(X), to be their complements. The
sets of multiplicative class X (X a limit ordinal), denoted
Z^(X), are defined to be the countable intersections of coun-
table unions of sets in j^J Za(X), and the sets of additive

a<X
class X, denoted CZ^(X) are defined to be their complements.

For every a < Q the family of sets of ambiguous class a
is defined to be

A^(X) = {S c X: S e Za(X) and S e CZa(X)}.

The family of subsets EAa(X) of exactly ambiguous class a
of X is defined by

EA^(X) == A^(X) \ U A?(X)
^<a

We have

ZQ(X) == U EA.(X),
0^a<Q

and
EA^(X) n EA^(X) ==0 for a ̂  S.

Note that for any space X we have

Z^(X) = CZ^(X).
Thus we need only consider ordinals a ^ Q.
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Baire sets and functions are related by the following classical
theorem :

THEOREM (Lebesgue-Hausdorff [18, p. 393]). — Let f be
a bounded real-valued function on a space X. For each ordinal
a < t2 /'eBa(X) if and only if /^[F] e Za(X) for every
closed subset F of R.

We also have that a set B c X is in Za(X) if and only
if there is an jfeB^X) such that B = Z{f). The suffi-
ciency is clear from the preceeding theorem. For the necessity
note that if a is not a limit ordinal then

00

0=1^1^ B^UCZ^X)
n==i P<a

and thus each B^ e Aa(X). This implies that ^5 the
characteristic function of By., is in Ba(X). Define

^S2-"^.
n==i

Then B = Z(/*) and, since this series converges uniformly,
/'eBa(X). The same argument applies for a limit ordinal X
since the countable union of sets

B,eLJz«(X)•'n ^- ^ ^ ^<X\
OL<\

is in A^(X).
If H is a family of subsets of a space X, then the Souslin

— H subsets are those of the form

U n Hs e H,
0-eN» S<0-

where N === {1, 2, 3, .. .} and s < a means that s is a
finite restriction of o.

For any space X the Souslin — Z<x(X) sets coincide with
the Souslin — Zo(X) sets for each a ^ Q. This family of
subsets of X will be denoted by ZS(X).

A map f of a space X into a space Y is called proper
if it is continuous, closed, and ^(y) is compact for every
y e Y .
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For a space X we denote by Xp the set X with the weak
topology generated by BQ(X). Since every Baire subset of X
is the union of zero sets of X, the topology of XQ coincides
with the weak topology generated by Ba(X) for each a > 0.
This topology also coincides with the weakest topology on X
such that every function in the cone of non-negative lower
semi-continuous real-valued Baire functions is continuous;
that is, this topology is the fine topology (see Brelot [4])
associated with this cone. E. R. Lorch has considered this
topology and named it the iota topology (see [20] and [21]).

3. Preliminary existence results.

THEOREM 1. — I f a space X contains a non-empty compact
perfect subset, then
"1) Za(X) ^ Z^(X) for all a < Q,

2) ZQ(X) ^ ZS(X), and
3) Xp is not a Linderlof space.

Proof. — 1) Suppose X contains a compact perfect
subset ;K. Then there exists a continuous map

f:K^[0,i]

of K onto the unit interval [24, p. 214]. For each a < Q
there exists an

H,eEA,([0, 1])
[,12, p. 207].. Since f~1 preserves unions and intersections,

/^[Ha] e EA^(K) for some S < a.
We claim that

/•^[H^] e EA^(K) if a = 0, 1, 2, or a ^ o>o.
and that

- /^.[HJeEA^K) u EA,(K) if 2 < a < coo.
Suppose a ^ o>o and /^[Ha] e EA^(K) for S < a. Then

by a trans finite induction argument we have that there exists
a sequence

So = {Z(gJ : g, e C(K), n = 1, 3, 5, ...}
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from which /^[Ha] is obtained on the S"th iterations of
the process of which the first step is to form the family 6^
of all countable unions of subfamilies of So and the second
step is to form the family of all countable intersections of
subfamilies of SS. Similarly, there exists a countable family

S, = { K \ Z(gJ : g, e C(K), n = 2, 4, 6, ...} :

from which /^[Ha] is obtained on the S-th iteration of the
analogous process.

Define
g'.K^R^

by
8(x} = [giC^ gs{x), ga{x), . . . ] . . _.

Then g[K] is a compact metric space and

g-1 » ̂ [H,]] = /•-1[H,].

Consider the map

/ • X g : K ^ [ 0 , l ] Xg[K] ;
defined by ,

f X g{x) = [f{x), g(x)].

Then, since f X g preserves the two iteration processes
described above,

and
(/ x g)-1 o f x g^EH,]] = y-^Hj

/ •Xg[^[H,]]eEA^Xg[K]).

Let TC be the restriction to f X g[K] of the projection of
[0, 1] X g[K] onto [0, 1]. Then :

^[/•xg[^[H,]]]=H,
and ^ ° ^[/' x gy-^H,]]] =/• x gy-^H,]].
This implies that TC restricted to :

fxg^W]
is a proper map. This contradicts the fact that, for Baire sets
in complete separable metric spaces, proper maps preserve
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both additive and multiplicative Baire class for a ^ con
[31, p. 585]. Therefore

/•-^HJeEA^K) for a ^ ̂

The cases <x == 0 and a == 1 are clear. The case a = 2
follows from the observation that

/•-^H,] and /^[[O, 1] \ H,]
are o-compact, which implies that

/•o/--i[H,]=H,
and

/•o/--i[[0,l]\H,]=[0,l]\H,
are <r-compact. But this implies that

H^ 6 EA,([0, 1]),
which is not the case.

If 2 < a < (OQ the same argument as given for a ^ (OQ
leads to a contradiction of the fact that, for Baire sets in
complete separable metric spaces, proper maps do not raise
additive or multiplicative Baire class by more than one for
2 < a < (OQ [31, p. 585]. Therefore

/^[H,] e EA^(K) u EA,(K) for 2 < a < ̂
Now since K is compact every continuous real-valued func-
tion on K extends to a continuous real-valued function on X
[11, p. 43]. Thus for each Z e Zo(K) there is a Z' e Zo(X)
such that

Z = Z' n K

and inductively we have that for each a < 0 that there is
a Za e ZJX) such that

f-i[H^=Z^ n K.
If

Z,eUEA,(X),

then a trans finite induction argument implies that

^[H,]eLJEA,(K),

which for a ^ coo is not the case.



SPACES OF BAIRE FUNCTIONS I 55

Therefore
Z^(X) ^ Zn(X) for all a < 0

2) As in part 1) let K be a non-empty compact perfect
subset of X and f a continuous map of K onto [0, 1].

There exists an

A6ZS([0,l])\Za([0,l])
[12, p. 207]. We have

A=uru, z,6z,([o,i]),
CTgN" S<"

and ^[A^un/'-TO.
<rgN» s<»

Therefore /•-^A] 6 ZS(K).
If

/•-I[A]£ZQ(K), then K \/--i[A] e Zo(K).

But then

and
/T/'-1^]]

/•[K\^[A]]=[0,1]\A
would be in ZS([0, 1]) [9, pp. 160-161], which implies that
A e ZQ([O, 1]) [12, p. 218]. Therefore

/•-i[A]eZS(K)\Za(K).

Now, since (as noted above) for each Z e Zp(K) there is
a Z' 6 Zo(X) such that Z = Z' n K, there is an A' e ZS(X)
such that

A = A' n K.

If A' were in Z^(X), then A would be in ZQ(K). Therefore

A' e ZS(X) \ ZQ(X).

3) If K is a non-empty compact perfect subset of X,
then, being closed in X, K is closed in Xg. Since for each
Z e Zo(K) there is a Z' e Zo(X) such that

Z = Z' n K,
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the relative topology induced on K by Xp coincides with
that of Kg. Therefore, if Xg is Lindelof, then Ka is Lindelof.
But this is the case only if K contains no non-empty perfect
subsets [23, p: 27]. Therefore X contains no compact perfect
subsets. l s

Remark. — The first two parts of theorem 1 for compact X
were announced in [14]. It is demonstrated in [6] that if X
is dense-in-itself and a Gg subset of its Stone-Cech compacti-
fication, then Z^(X) U CZa(X) ^ Z^(X) for all a < 0,
and that ZS(X) \ ZQ(X) =7^ 0. The same conclusion is
drawn in [6] if X is a dense-in-itself pseudocompact space.
For a dense-in-itself perfectly normal compact space it is
proved in [25] that Za(X) =^ ZQ(X) for all a < Q, and in
[5] that ZS(X) \ Z^(X) ^ 0.

Since the Baire sets of a space X are a base for the topo-
logy of Xft and the countable intersection of Baire sets is a
Baire set, Xeybave that the countable intersection of open sets
in Xp is open. Therefore every zero set in X is clopen
(closed and open) in Xp and the family of clopen subsets of
Xs is closed under countable unions and countable inter-
sections. More generally, we have

- THEOREM 2. —? For any space X the family of clopen subsets
of Xg is invariant under Souslin^s operation (A).

Proof. — Let A=uriz,,
; a-EN" s«y

where each Z§ is clopen in Xp. Then A is open in Xg,
being the union of open sets.

If x e,Xp A, then

t f~1 Z, for any a e N^x
s<a

Therefore for each a e N" there is a Sy < a such that
x e Z,. TIien ^n(x\zj

(TGN"
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and, since there are only countably many distinct SyS,

ri(x\zj
<reNi»

is a clopen subset of Xp contained in X \ A. Therefore A
is closed in Xp.

4. Analytic spaces.

In this section we single out a class of domain spaces, the
so-called disjoint analytic spaces, for the study of Banach
spaces of real-valued Baire functions.

Let K(X) denote the family of compact subsets of
a space X. A map from a space Y

F : Y -> K(X)

is called upper semi-continuous if

{ y e Y : F ( y ) c U}

is open in Y for each open set U in X. The map F is
called disjoint if

F(y) n F(i/') = 0 for y ^ y\

A space X is called analytic if there is an upper semi-
continuous map

F : NN -> K(X)
with

x^^^iW
(reN"

If this map F is disjoint, then X is called a Borelian [9]
or descriptive Borel space [26].

Note that a subset A of a complete separable metric
space X is a Souslin — Zo(X) set (i.e. A e ZS(X)) if and
only if it is analytic in the above sense, and a subset B of
(a complete separable metric space) X is a Borel subset
(i.e. B e Z^(X)) if and only if it is a descriptive Borel space
([8] and [9]).

Recall that a map /*: X -> Y is called proper if it is conti-
nuous, closed, and f^^y) is compact for each y e Y.
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A space X is called proper analytic if it admits a proper
map onto an analytic subset of a complete separable metric
space. It is known that a space X is proper analytic if and
only if X e ZS((BX), where (BX denotes the Stone-Cech
compactification of X, and if and only if X is homeomorphic
to a closed subset of a product of a compact space and a metri-
zable analytic space [17].

Finally, we call a space X disjoint analytic if there is an
analytic subset A c N1^ and a disjoint upper semi-conti-
nuous map

with
F : A -^ K(X)

x^U^)-
O-GA

THEOREM 3. — For any space X the following are equivalent:

1) X is a disjoint analytic space.

2) X is the one-to-one continuous image of a proper analytic
space.

3) X is the one-to-one continuous image of a space which
admits a proper map onto an analytic subset of N .̂

Proof. — 1) => 3) Let A be an analytic subset of N1^
and F an upper semi-continuous map;

F : A -> jf(X); X = U F^)-
<reA

The set of points a such that F(<r) 7-= 0 is a closed subset of
A and so an analytic subset of N^ Thus we may suppose
that

¥{a) ^ 0 for all a e A.

Let T denote the smallest topology on the set X containing
the open sets of X and the sets {F[U] : U is open in A}.
Let (X, ^) denote X with this topology. Then (X, T)
is a completely regular Hausdorff space and the function

F-1: (X, V) -> A

is a proper map (see [9, p. 164]).
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Clearly the identity map

id: (X, ^) -> X
is continuous.

3) =^ 2) Trivial.
2) ===^ 1) Let Y be a proper analytic space and

/ ' :Y-^X

a one-to-one continuous map onto X. Let A be an analytic
subset of a complete separable metric space M and

g : Y - > A

a proper map onto A. Let C be a closed subset of NN and

h: C->M

a one-to-one continuous map onto M (see e.g. [18, p. 447]).
Then A"1 [A] is an analytic subset of C and thus of N^

The map
0: h-W-^ K(X)

with
X= U W

.ce/r-^A]
defined by

<S>(x) = g-Wx)]

is an upper semi-continuous map, since the composition of
two upper semi-continuous maps is upper semi-continuous.
This also uses the fact that a continuous map is proper if and
only if its inverse is an upper semi-continuous compact valued
map.

Remarks. — 1) G. Choquet has defined a Hausdorff space
to be K-analytic if it is the continuous image of a K<^ (coun-
table intersection of countable unions of compact sets) in
some compact Hausdorff space (see [7] and [8]). The ana-
lytic spaces defined here coincide with completely regular
K-analytic spaces (see [9] or [10]).

2) The equivalence of 1) and 3) in theorem 3 is analogous
to Frolik's theorem [9, theorem 13] that a space is descriptive
Borel if and only if it is the one-to-one continuous image of



60 J. E. JAYNE

a space which admits a proper map onto a closed subset of N^
The proof given here is by the same method as used by Frolik.

3) There are disjoint analytic spaces which are not proper
analytic. The theorem of Frolik just quoted implies that
every descriptive Borel space is disjoint analytic. Let x be
a point of (3N\N. Then N u {x} with the relative topo-
logy induced by pN is a disjoint analytic space, since it is
the one-to-one continuous image of a countable discrete space.
But N u {x} is not a proper analytic space, since if it were
then there would be a zero set

Z e Zo((B(N u {x}))

x e Z c N u {x}.
with

x e Z c N u {x}.
Therefore, since

00

{x}=Z nDWN u {a;})\{n})
n=l

we would have that x is a G§ subset of (3(N u{a;}), which
(see e.g. [11, p. 89]) is equal to (3N. But this is not the case
[11, p. 132].

4) There are analytic spaces which are not disjoint analytic.
Frolik's example ([9, p. 166] and [10, p. 427]) of a <r-compact
space which is not descriptive Borel is such a space. Namely,
let X be the one point compactification of an uncountable
discrete space and let XQ e X be the compactifying point.
In the product space X X N (N == {1, 2, 3, . . .} as usual)
identify the points

{(rro, n): n e N}.

The resulting quotient space Y is a-compact. If there were
an analytic subset A of N1^ and a disjoint upper semi-
continuous map

F: A ̂  K(Y)
with

Y == U F(<^
<reA

then F[A\ {<io}] = Y\F(<To), where TO is the unique
element of A with

{(a;o, n): n e N) c F((ro),
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is a Lindelof space (since the upper semi-continuous compact
valued image of a Lindelof space is Lindelof). But this is not
the case since Y \ F((T()) is discrete and uncountable.

5) It is clear from part 2) of theorem 3 that every proper
analytic space is disjoint analytic. Since every analytic
subset of N1^ is the continuous image of N^^ and since
the composition of two upper semi-continuous compact valued
maps is again such a map, we have that every disjoint analytic
space is analytic. Therefore, we have

proper analytic => disjoint analytic =^ analytic
(== K-analytic)

and none of the implications are reversible.
Recall that a metrizable analytic space is either countable

or it contains a non-empty compact perfect subset [18, p. 479].
The following theorem extends this result to disjoint analytic
spaces and is the main property of disjoint analytic spaces
used in the next section. The word countable here includes the
possibility of being finite.

A space is called dispersed if it contains no non-empty
perfect subsets.

THEOREM 4. — Let X be a disjoint analytic space. Then
either

1) X contains a non-empty compact perfect subset, or
2) X is the countable union of dispersed compact subspaces.

In addition, these conditions are mutually exclusive.

Proof. — First, suppose that X contains a non-empty
compact perfect subset K. Since K is perfect there exists
a continuous map

f:K^[0,i]

of K onto the unit interval [24, p. 214]. Since X is disjoint
analytic it is Lindelof and thus normal. Therefore, by Tietze's
extension theorem f has an extension to a continuous function

f: X -> [0, 1]
of X onto the unit interval. This implies that X is not the
countable union of dispersed compact spaces, since every
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continuous real-valued function on a dispersed compact
space (and so on the countable union of such spaces) has a
countable range [28].

Now suppose that X does not contain a compact perfect
subset. Let A be an analytic subset of N^ and

F : A - ^ K(X),

x^U^)
<reA

be a disjoint upper semi-continuous map.
We claim that A must be countable. On the contrary,

if A were uncountable, then there would be a non-empty
compact perfect subset C c A.

Now, as in the proof of 1) ==^ 3) of theorem 3, consider the
smallest topology on the set X containing the open sets of X
and the sets {F[U] : U is open in A}. As before, this is a
completely regular Hausdorff topology. Let (X, ^ denote
the set X with this topology. Then, as before, the map

F-1: (X, ^) -> A
is a proper map onto A. Thus

F : A -> Jf((X, ^))

is upper semi-continuous. Therefore, since the upper semi-
continuous image of a compact sets is compact,

F[C]-UF(^)
o-ec

is a compact subset of (X, (^').
Since the identity map

id : (X, ^) -> X

is continuous, the restriction to F[C] is a homeomorphism.
The compact subset

id o F[C]

of X must contain a non-empty compact perfect subset,
since otherwise the continuous map

F-1 :F[C] -> A
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of F[C] onto A would have a countable range [28] contra-
dicting our assumption that A is uncountable.

Thus we have that A is countable (or finite) and therefore

X = U F^)
oeA

is the countable union of compact spaces each of which must
be dispersed since we are supposing X to contain no non-
empty compact perfect subsets.

Remark. — I do not know if theorem 4 holds for all analytic
spaces.

The next theorem implies that the continuum hypothesis
holds for the class of disjoint analytic spaces in which every
point is a G§.

THEOREM 5. — Let X be a disjoint analytic space with an
uncountable number of points. If every point of X is a G§,
then the cardinality of X is that of the continuum.

Proof. — It X does not contain a non-empty compact
perfect subset, then X is the countable union of dispersed
compact spaces (by theorem 4) each of which has all G§
points. Thus, since a dispersed compact space all of whose
points are Gg5 is necessarily countable [1, p. 34], X must
be countable. Therefore X contains a non-empty compact
perfect subset and consequently has cardinality at least that
of the continuum [1, p. 29].

From theorem 3 there is a proper analytic space P, a one-
to-one continuous map f of P onto X, and a proper map g
of P onto a metrizable analytic space A; that is,

/ • :P->X, g : P ^ A .
Let XQ e X. Then since XQ is a G§, /"^(^o) is a G§ in P.

Thus there is an he C(P) such that
Z(h) = {f-^x,)}

Let f be the extension of f to pP and h the extension of h
to PP.

Define
g x / i : ( B P ^ A x R
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8 X W == (g(p), h{p))

Then (g X ^)-i o (g x W^o)) =/•-1^,), which implies that
/^ ^o) is a Gs set in (BP. Therefore /•-i(.ro) has a countable
neighbourhood base in (SP, and so likewise in P. Thus P
satisfies the first axiom of countability.

The theorem now follows from the general result that a
first countable Lindelof space has cardinality at most that of
the continuum [3J.

Remark. — There are uncountable disjoint analytic spaces
in which every point is a Gg but yet which are not 1-st
countable. Let X be the disjoint union of the unit interval
and the set N u {x}, where x e |3N\N, with the relative
topology induced by (BN. Then X is a disjoint analytic
space since it is the one-to-one continuous image of the
complete separable metric space [0, 1] u N (disjoint union)
Every point of X is a Gg subset, but the point x does not
have a countable neighbourhood base (see e.g. [11, p. 1311).

5. Baire classes on disjoint analytic spaces.

We are now in a position to prove theorem 6 in the intro-
duction. Reformulating in terms of the notation and termino-
logy that we have developed we have

THEOREM 6. — If X is a disjoint analytic space, then the
following are equivalent:

1) BQ(X) = Ba(X) for some a < Q,
2) BQ(X) = B,(X),
3) BQ(X) = C(Xp),

4) Z^(X) = ZS(X),

5) Xp is a Lindelof space,

6) X is the countable union of dispersed compact spaces,

7) X contains no non-empty compact perfect subsets.
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Proof. — From theorem 1 we have 1) =^ 7), 4) ===> 7),
and 5) => 7). From theorem 2 we have 3) ===^ 4). It therefore
suffices to demonstrate 7) ===>• 6), 6) => 2), 6) ===^ 3), and
6) => 5).

7) ===^ 6) Since X is a disjoint analytic space, there is a
proper analytic space Y, a one-to-one continuous map

f: Y-> X

of Y onto X, and a proper map

g : Y - > M

of Y onto a metrizable analytic space M. If M is uncoun-
table then it contains a non-empty compact perfect subset K
[12, p. 205]. Then

/•"^[K]

is a compact subset of X, since the inverse of a proper map
is a compact valued upper semi-continuous map and the
image of a compact set under such a map is compact. Since
fo g^R] admits a continuous map onto a compact perfect
space, it contains a perfect subset [28, p. 39]. Therefore M
must be countable, which implies that X is the countable
union of compact dispersed spaces.

For future reference let

Then
M = K : M = 1 , 2 , 3 , ...}.

00

^=[Jfo8-lW

and each f o g^a^) is a dispersed compact zero set of X.
We will denote f o g-1 by F.

6) ==>> 2) From above we have
00

X = U F(^n)
n==:l

since for each n = 1, 2, .. ., F(a;n) is compact and dispersed,
we have by [22, p. 36] that

Z,(F(^)) = ZQ(F(^)).
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Let B e ZQ(X). Then
oo

B = U (F(^) ^ B)
71 ==1

and
00

X\B=U(W n(X\B)).
n=l

Since each
F(^) n B e Z^(X)

and
F(^) n (X\B) e Z,(X)

we have B e Zi(X). Therefore BQ(X) == Bi(X) according
to the Lebesgue-Hausdorff theorem quoted in § 2.

6) ==^ 3) From the proof of 7) -^^ 6) we have
00

X=UF(^)
71=1

Since each Z e Ze(F(rCn)) is the intersection of F(^) with a
Z' e Zo(X), the relative topology on F(o^) induced by Xp
coincides with that of F(^)p.

Let /*eC(Xp). For each n

Thus
f|p^eC(F(^))

/•lp^eB,(F(^)),

since for a dispersed compact space, say E, we have from
[22, p. 36] that Bi(E) =C(Ep). Then, since the F(^) are
zero sets in X, /"eB^X).

6) =^. 5) From above, we have that
00

X=UF(^)>
n==l

and the relative topology on each F(rCn) induced by Xp
is that of F(^)p. Since each F(n^) is dispersed, each F(r^)p
is a Lindelof space [23, p. 27]. Therefore Xp is a Lindelof
space.
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6. Baire classes on pseudocompact spaces.

Recall that a space X is called pseudocompact if every
continuous real-valued function on X is bounded, and is
called realcompact it it is homeomorphic to a closed subset
of a product of real lines. As is well known, a space is compact
if and only if it is both pseudocompact and realcompact.

The Hewitt realcompactification of a space X will be
denoted by vX. The reader is referred to [11] for a treatment
of this topic.

The following theorem due to P. R. Meyer (1961, unpu-
blished) is the key result in determining the existence of Baire
classes on a pseudocompact space.

THEOREM 7. — (P. R. Meyer) Let X be a (completely
regular Hausdorff) space. Every / 'eBa(X) has a unique
extension to an f e Ba(vX).

Proof. — Every non-empty zero set in vX intersects X
[11, p. 118]. Every Baire set B in vX, being a Souslin-Zo(vX)
set, has a representation

B=LjnZ,, Z,eZo(vX),
o-eK" s«s

and so is the union of zero sets in vX. Thus every non-empty
Baire set in vX intersects X.

As is well known [11, p. 118], every f e C(X) has a unique
extension to an /*eC(vX). Proceeding by induction let
feB^(X) and /, e Ba(X) such that

f^x) -> f{x) for all xeX.

Let XQ e vX\X and

B^={xe.X:f^x)-Ux,}=0}.
00

Since each B^ is a Baire set in vX and XQ e\ |B^ it
follows that n=l

/ °° \
(riBn) nX= 0.
\ n==l /
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Therefore fn{^o) converges to a finite limit as n -> oo and
there is an f e Ba+i(vX) such that

fnW -> fW ^T all ^ e vX
and

f[x) = f{x) for all x e X.

Suppose jf and f are two extensions of f. Then

^X\{xe^X:f{x) =ff{x)}

is a Baire set in vX which does not intersect X and is thus
empty; that is,

^)==^) for all xevX.

THEOREM 8. — For any space X and ordinal a < D.
1) B^(X) == Ba(X) if and only if B^vX) = Ba(vX), and
2) Z^(X) = ZS(X) if and only if Z^vX) = ZS(vX).

Proof. — The first statement follows immediately from
theorem 7. The second follows from the fact that for Z(/*) c Xy
/*eC(X), we have

^xZ^Z^),

where ^ e C (vX) is the extension of /" and cfyxZ(/') is the
closure of Z(/") in vX. This implies that for each A e ZS(X)
there is an A' e ZS(vX) such that

A = X n A'

and A e ZQ(X) if and only if A' e Za(vX).

THEOREM 9. — If X is a pseudocompact space, then the
following are equivalent:

1) BQ(X) == B,(X) for some a < Q.
2) BQ(X) = Bi(X).
3) Bo(vX) = C((vX)p).
4) ZQ(X) = ZS(X).
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5) Every (supremum norm) continuous linear functional on
C(X) is of the form

F(H = S a^n),
n=l

00

where (rrj is a fixed sequence in vX(== (3X) and S l^nl < °°-
n=l

If X /ia5 these properties or if Xp is a Lindelof space, then X
contains no non-empty perfect subsets.

Proof. — Since X is pseudooompact, the Stone-Cech
compactification (3X coincides with vX. Therefore the equi-
valence of 1), 2), 3), and 4) follows from theorems 7 and 8,
which also imply that these are equivalent to |BX being
dispersed.

But pX is dispersed it and only if every continuous linear
functional on C((BX) (which is isometrically isomorphic to
C(X)) is of the form

F(/-) = I a,̂ ,,),
n==l

00

where (;rJ is a fixed sequence in (BX and S 1^1 < °°
n=l

[24, p. 214]. Therefore 5) is equivalent to 1) through 4).
If X contained a non-empty perfect subset K, then

cla^K would be a perfect subset of (3X, which, as noted
above, is incompatible with 1) through 5).

If XB in Lindelof, then X must be Lindelof. Therefore X
must be compact and theorem 1 applies.

Remarks. — 1) There are spaces X which contain no
non-empty compact perfect subsets and which have

Ba(X) + Ba+i(X) for all a < Q,
and

Z^(X) ^ ZS(X).

Let, as usual, N = {1, 2, 3, . . .} and for each infinite
subset C £ N let Xc be a point in (cZpNC)\N.

Consider the space

X = N u {xc: C is an infinite subset of N}

with the relative topology induced from (3N.
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The space X is pseudocompact. If it were not there would
be an unbounded continuous function

f: X ^ R .

Since N is dense in X there would then be a sequence
S = (^i) c N such that |/'(^)1 ^ i. Then we would have

^s ^ cl^n{rii: i ^ k}

for all k = 1, 2, 3, ..., ajid so |/*(^s)l > k for every /c,
which is impossible.

Now, since N c X c pN, we have that (3X = (3N [11,
p. 89], and since (BN contains a non-empty compact perfect
subset theorem 9 implies that

B,(X)^B^(X) for all a < ^
and

Z^(X) ^ ZS(X).

It remains to show that X contains no non-empty compact
perfect subsets. In fact, every compact subset of X is finite.
This follows from the fact that every infinite compact subset
of pN has cardinality 2C, where x denotes the cardinality
of the continuum [11, p. 130-133], since the cardinality of X
is at most c.

This example was used in [13] to illustrate other phenomena.
2) There are pseudocompact non-compact spaces whose

Stone-Cech compactifications are dispersed. The space of
ordinals {a : a < jQ} with the interval topology is such
a space [11, p. 74]. Its Stone-Cech compactification is
{a : a ^ t2}.

3) All finite spaces X have the property that

C(X) = BQ(X),

all dispersed infinite compact spaces have

C(X) ^ B,(X) == B^(X),

and all other compact spaces have

BQ(X) ^ B,+i(X) for all a < 0
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Do there exist spaces, Xa say, with the property that for
2 < a < a

U B?(X,) ^ B,(X,) = B^(X,)?
^<a

Under the assumption of the continuum hypothesis it is
known [30, p. 43] that there exist subsets X of the line R
such that

B,(X) ^ B,(X) == Ba(X).
I am not aware of any other examples of this nature.

7. The sequential stability index.

Let S be a set of bounded real-valued functions on a set X.
Let Si be the set of pointwise limits of bounded sequences
in S. For each ordinal a inductively define

= (U Ss) .
\ $ < a /I

s.
\ $ < a /I

We call the smallest ordinal a such that

S<x == Sa+i

the sequential stability index of S. We denote this index
by .[S].

As noted at the end of § 6, without axiomatic assumptions
only the existence of (completely regular Hausdorff) spaces X
with

i[C(X)] = 0, 1, and a

is known, and assuming the continuum hypothesis there is a
subset X of R with

.[C(X)]=2.

This index was defined in [2] where it was shown that if X
is a non-dispersed compact space, then for each ordinal a < 0
there exists a uniformly closed linear subspace

M- c (C(X))i == B,(X)
with

i[M^] = a.
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Here we observe that this result holds for every space X
with an infinite number of points. '

THEOREM 10. — If a (completely regular Hausdorff) space X
has an infinite number of points, then for each ordinal a < 0.
there exists a uniformly closed linear subspace M01 of BJX)
with i[M01] ==a. v /

Proof. — The key to the proof is the following theorem of
D. Sarason [29]: For each ordinal a < Q there exists a
uniformly closed linear subspace M® of the space of bounded
complex-valued functions on N = {1 2 } with
i^] =oc. . i ,,.../

Given such a space M^ of complex-valued functions on N
we obtain a corresponding linear space M^ of bounded real-
valued functions on N with

i[Ma]=o,

as follows : Let N = N1 U N3, the disjoint union of two
copies NI and N3 of N.

For each f = u + iv e M® define

by
/ : N -> R

f^\ ̂  Wx) if XE NI
/ K 7 (^{x) if xe^.

Then it is not difficult to check that

M0^ {f'.feM^}

is a uniformly closed linear subspace of C(N) with
i[M^] = a.

Now let X be a space with an infinite number of points.
Let h e C(X) be such that h[X] is infinite and let F be a
closed countably infinite subset of h[X] (considering h[X]
with the relative topology).

Considering the above space M01 to be defined on the
countable set F and extending each g e M" to all of h[X]
by defining

g{x) =0 for x e A[X]\F
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we have
M01 c Bi(/i[X]).

Then the linear snbspace

P ^ = { g o h : geM-} c Bi(X)

is uniformly closed and ^[P01] = a.

Remarks. — 1) The question remains open as to whether
or not for every infinite space X and ordinal a < 0. there
exists a linear subspace M" of C(X) with ^[M^ = a.
A, positive answer is given in [2] for the spaces [0, 1) and N^

2) If in the definition of the sequential stability index we
define Si to be the space of bounded functions on X which
are the pointwise limits of sequences in S (not necessarily
bounded sequences), then we obtain a quite different index,
which we denote by i ' . For example, if X is a dispersed
compact space, then every subset S of Bi(X) has
i'[S] ^ 1 ([22]). On the other hand by theorem 10 every
infinite dispersed compact space has for each a < Q subspaces
W- c Bi(X) with i[M01] = a.

Let B be a Banach space. Define B^ to be the subset
of B**, the second dual of B, consisting of weak* limits
of sequences in the canonical injection of B in B**. Induc-
tively for each ordinal a define B^» to be the subset of B**
consisting of weak* limits of sequences in {_J B^. The
smallest ordinal a such that s<a

U p?? -̂  Ra _ Ra+l
^W* /^ ^w* —— -DM/*

^<a

will be called the weak* sequential stability index of B and
will be denoted by ^[B]-

THEOREM 11. — If X is a compact space and B is a closed
linear subspace of C(X), then

i[B] = ̂ [B].

Consequently the sequential stability index of B is the same for
every isomorphic (i.e. linear homeomorphic) embedding of B
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into a space of continuous real-valued functions on a compact
space.

Proof. — Let as usual Ba be the space of functions obtained
from B on the oc-th iteration of the point-wise sequential
limiting operation on X. Let j f eBi and {Q c B, ||̂ |[ ^ M,
n = 1, 2, . . ., such that

Then
fn{x) -> f{x) for all x e X.

f fnd^ -> f fd[L

for each finite signed Baire measure (A on X by the bounded
convergence theorem. Thus from the Riesz representation
theorem and the weak* sequential completeness of B**
there is a unique element, say f, in B** which is the weak*
limit of the canonical image of the sequence (/*J in B**.

Conversely if g e B^ and (Q c B c B** such that
/. w*
/n——^g,

then
Fx(/n) -> Fx(g)

where Fx, x e X is the functional which evaluates at x.
Thus the function f defined by f{x) == Fx(g) is in Bi and
A

/ =g-
Thus the map

defined by
9 : B, ̂  B^

<p(n = f
is one-to-one and onto.

It is not difficult to check that the map <p is a linear
isometry.

Arguing inductively we obtain that the map 9 extends
for each a ^ Q to a linear isometry of Ba onto B^. This
concludes the proof.

The second part of this paper will consider the problem of
evaluating the sequential stability index of the space of
continuous (real-valued) affine functions on a compact convex
subset of a Hausdorff locally convex real topological vector
space.
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