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INVARIANT SUBSPACES
ON OPEN RIEMANN SURFACES

by Morisuke HASUMI

1. Introduction.

The purpose of the present paper is to classify completely
the closed invariant subspaces of the L^ spaces with respect
to a harmonic measure on the Martin boundary of a certain
hyperbolic Riemann surface. Our problem has its origin in a
famous paper [1] of Beurling, where he characterized, among
others, the closed shift-invariant subspaces of the Hardy class
H2 on the unit disk. He showed that such a subspace is gene-
rated by a single inner function. In recent years, efforts have
been directed to extending this result to multiply connected
regions. We now know what happens for any bordered compact
Riemann surface, due to works by Voichick [15, 16], Forelli [4]
and the author [5]. Very recently, in his thesis [6] (see also [7]),
Neville has studied extensively the invariant subspaces of the
Hardy classes on certain infinitely connected plane regions
called Blaschke regions and has obtained quite remarkable
results. In a very long forthcoming paper [8], he has genera-
lized his thesis results further to a class of Riemann surfaces
including all Blaschke regions. The main result of the present
paper will be general enough to imply all these previous
results.

In this paper, we shall deal with a class of hyperbolic Rie-
mann surfaces satisfying conditions (A), (B) and (C). Our
conditions are almost the same as those discussed by Neville [8]
and will be stated in Section 5. In order to prove our main
result (Theorem 7.1), we shall follow the program developed
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by Neville [6]. Namely, we shall first prove a generalized
Cauchy9 s theorem and its converse formulated in terms of the
Martin boundary. At one delicate point, we shall employ the
Brelot-Choquet theory of Green lines [2]. Once we get Cauchy
theorems, it will not be so hard to determine the closed
(weakly* closed, if p == oo) invariant subspaces of L^ on
the Martin boundary of our surface. The results concerning
the Hardy classes can then be deduced rather quickly.

Now we sketch the contents of this paper. In Section 2,
we shall list some basic facts, taken from Neville [6, 8], about
the inner-outer factorization of certain meromorphic functions
on a hyperbolic Riemann surface R and also about the
Hardy classes H^R). In Section 3, we shall give the integral
representation of functions in certain classes /^(R) of harmo-
nic functions on R and study the duality of such spaces.
After proving a Cauchy theorem in its weaker form in Section 4,
we shall establish in Section 5 direct and inverse Cauchy theo-
rems for R satisfying the conditions (A), (B) and (C) (Theo-
rems 5.3 and 5.12). Section 6 will contain further properties
of the lifting operation from the surface R to its universal
covering surface. Finally in Section 7, we shall determine the
closed H°°(R)-submodules of the spaces 1^ on the Martin
boundary of R and prove, as a special case, the characteri-
zation theorem of the closed H°°(R)-submodules of H^R)
(Corollary 7.2).

The present paper came out of our efforts to answer some
open questions posed in Neville's thesis [6]. After the first
draft of this paper was written, we were informed that Neville
himself had already found the same direct and inverse Cauchy
theorems as well as the same characterization of the closed
invariant subspaces of the Hardy classes prior to our disco-
very. His results will appear in [8]. But the two works look
different in techniques. His discussion is based on the Hayashi
boundary, whereas ours on the Martin boundary. By using
the Martin boundary, we shall be able to give a much shorter
exposition of the main results in [8]. Furthermore, our tech-
niques will allow us to classify the closed invariant subspaces
of the Lp spaces on the Martin boundary of our surface,
which we believe is new. On the other hand, H. Widom has
informed us that our condition (B) implies the condition (C)
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for any Riemann surface, independently of (A). So the condi-
tions (A) and (B) alone will imply all our results. But we leave
our conditions unchanged, in the hope that the conditions
may be weakened in some way or other.

We were benefited in every way from Neville's thesis [6]
and its influence on the present paper is quite evident. We
wish to thank Professor Lee A. Rubel for having allowed us
to see this very interesting thesis as soon as it was completed.
Our thanks are also due to Professor Harold Widom for sup-
plying us the valuable remark.

2. Definitions and some basic facts.

This section contains a brief sketch of some basic results
in Neville [6, 8]. Let R be a hyperbolic Riemann surface,
which will be fixed throughout this section. For any domain D
on R, HP(D) will denote the real vector space of functions
on D which can be expressed as the difference of two posi-
tive harmonic functions on D. Let Ui G HP(R ^ Z;), i == 1, 2,
where Zi and Zg are discrete subsets of R. We identify
Ui and Ua if there is a discrete subset TA^ of R such that
Zi U Zg c Z3 and u^ = Ug on R ^ Z3. The union of the
sets HP(R ^ Z), with discrete Z c R^ after the above
identification, is denoted by SP(R). If u e HP(R - Z)
with discrete Z c R, then every point a in Z is seen to be
either a logarithmic singularity of u or a removable one.

PROPOSITION 2.1 ([8; Theorem 2.2.1]). — SP(R) is a vector
lattice with respect to the pointwise operations. It is order complete
in the sense that, if {u\} c SP(R) and if there exists an ele-
ment u e SP(R) with u\ ^ u for all X, \/u\ exists in SP(R).

For each u e SP(R), we put ||u|] = u V (— u). For each
subset A of SP(R), we define A1- to be the set of all u
in SP(R) such that || u|| A |H == 0 for any v e A. We put
I(R) = {I}1 and Q(R) == I(R)1. A function in I(R) (resp.,
Q(R)) is called inner (resp., outer or quasibounded).

PROPOSITION 2.2 ([8; Theorem 2.2.2]). — Both I(R) and
Q(R) are bands of SP(R) and SP(R) = I(R) © Q(R). The
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projection maps pi and pq associated with this decomposition
are positive.

For any u e SP(R), pi(u) and pq(u) are called the inner
and the outer parts of u, respectively. They are also denoted
as ui and UQ, respectively. The following two facts are
easily seen.

PROPOSITION 2.3. — For any u e SP(R), its outer parts uq
has no irremovable singularities^ so that u and u\ haw the
same singularities.

PROPOSITION 2.4. — For any u e SP(R), we have

UQ == lim lim [(— m) V (^ A u)].
ro^-oo n>oo

Now let f be a meromorphic function of bounded charac-
teristic on R, i.e., f=filf2 with bounded analytic functions
fi and ^ on R. Then, log \f\ = log |/i| - log |/a| is
contained in SP(R), so that log \f\ (== u, say) is decom-
posed into its inner and outer parts u\ and UQ. We put
/i = exp (Mi + ^i)*) and /Q == exp (uq + i(uo)^, where
the asterisk denotes the harmonic conjugate normalized in
some fixed way. Then, jfi and /Q are multiplicative mero-
morphic functions of bounded characteristic and \f\ == l / i l l /ol?
where /Q is analytic in view of Proposition 2.3. Here, multi-
plicativity of a (multiple valued) meromorphic function h
on R means the following. Let Hi(R;Z) be the first singular
homology group of R with integral coefficients and let II be
the group of multiplicative characters of Hi(R$ Z). Then,
the multiplicativity of h means that, it h^ is any function
element of h at a point a e R and if h^ denotes the function
element of h at the same point a which is obtained by the
analytic continuation of h^ along the path a e Hi(R; Z)
issuing from a, we have h^ = 6(a)7ii, where 6 is an element
of II determined uniquely by h. The character 6 is called
the character of h and denoted as 6(/i). We call a nonne-
gative extended real-valued function u on R a locally
meromorphic modulus (l.m.m.) if there exists a multiplicative
meromorphic function f on R with u = \ f\. If this f
is of bounded characteristic, then u is said to be of bounded
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characteristic. If f is analytic, then u is called a locally
analytic modulus (l.a.m.). Clearly, u is an l.m.m. of bounded
characteristic if and only if log u e SP(R). An l.m.m. u of
bounded characteristic is called inner (resp., outer) if
l o g u e l ( R ) (resp, Q(R)).

PROPOSITION 2.5 ([8; Theorem 2.3.1]). — Every l.m.m. u
of hounded characteristic can be factored uniquely into the
product of an inner l.m.m. Ui and an outer l.a.m. Uq, where
Ui = exp (pi (log u)) and Uq = exp {pq (log u)).

Next we shall define Hardy classes on R in the sense of
Rudin. For 0 < p < oo, H^R) will denote the set of analytic
functions f on R for which l/p has a harmonic majorant.
H°°(R) will denote the set of bounded analytic functions on R.
Let OQ e R be fixed. For fe H^R) with 0 < p < oo, we
put ||/1p = ((L.H.M.(|/p)(ao))^, where L.H.M. stands for
the least harmonic majorant. For fe H°°(R),

I/IL == sup {|/^)| : ;s G R}.

Then it is well known that, for 1 ̂  p ^ oo, the space H^R)
is a complex Banach space with respect to the pointwise ope-
rations and the norm ||.|[p and that H°°(R) is a Banach
algebra. Each H^R) with 1 ̂  p ^ oo is a topological
H°°(R)-module.

As is well known, the open unit disk, U, can be viewed
as a universal covering Riemann surface of R. Let 9 be
the conformal covering map from U onto R such that
9(0) == OQ. Let T be the group of covering transformations
for 9, i.e., the group of fractional linear transformations T
of U onto itself such that 9 o r == 9. Put

SPr = {s e SP(U) : s o T = s for any r e T}.

PROPOSITION 2.6 ([8; Theorem 2.4.1]). — The mapping
s -> 5 o 9 gives a vector lattice isomorphism of SP(R) onto
SPr. For u 6 SP(R), u e I(R) {resp., Q(R)) if and only if
u o 9 e I(U) {resp., Q(U)).

We note that, for any l.a.m. u such that i^ has a harmonic
majorant, there exists an analytic function f on U such that
u o 9 = |y*[. In this case, \f\p has a harmonic majorant on U,

14
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so that f is. in H^U). If g is an analytic function on U
and if g o r == g for all T e T, then there exists an analytic
function h on R such that h o <p == g.

PROPOSITION 2.7 ([8; Theorem 2.5.3]). — Let u &eanl.a.m.
on R such that either u is bounded or up has a harmonic
majorant for some 1 < p < oo. Then,

(a) L.H.M.(0 e Q(R) if p ^ oo;
{b) u is of bounded characteristic',
(c) (logu) V O e Q ( R ) ;
(d) Ui is a bounded l.a.m. and ||^i[L === 1-

3. Martin boundary and integral representation.

In this section we. shall interprete some results in
Neville [6] in terms of the Martin compactification theory
found, for instance, in Constantinescu and Cornea [3]. Let R
be a hyperbolic Riemann surface, R* its Martin compactifi-
cation, and A = R* ^ R the Martin ideal boundary. Let
G(a, z) = Ga(z) be the Green function for R with pole at
a point a e R. We shall denote by k^ b e R*, the Martin
function with pole at fc, which is defined as follows. Take a
point OQ in R, which is fixed throughout the discussion,
and let oc^ be a fixed positive number so large that

{z e R : G(ao, z) ^ oco}

is a parametric disk on R. Let 0 be an indefinitely differen-
tiable real function on [— oo, + °°] such that 0(() ^ t,
0(^ = t for t ^ 0, 0 is constant for ( ^ 1, and

d^ldt2 ^ 0.

We put Oo(^) = ̂ (t — ̂  + ̂  Then, we define
^(z )=G(&, ^)/<Do(G(fc, ao))

for &, z e R. The function b -> k^ & e R, is then extended
by continuity to R* and we get the Martin functions k^
for b e R*. Let A^ be the set of points b e A such that /c&
is a minimal harmonic functions on R. Then, A^ is a G§
subset of A. The fundamental role of A^ in the integral
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representation of harmonic functions on R is given by the
following

PROPOSITION 3.1 ([3: Folgesatz 13.1]). — There exists a
unique vector lattice isomorphism u —>• p-u of HP(R) onto
the space M(Ai) of finite real regular Borel measures on A^
such that

u= f^d\L^h}.

Let ^ denote the measure corresponding to the constant function 1.
Then, u e HP(R) is outer (resp.y inner) if and only if the
measure (Jiu is absolutely continuous (resp.y singular) with
respect to ^.

We note that / is the harmonic measure on A^ for the
point OQ. We say that a function on A^ is measurable
(resp., integrable) if it is so with respect to /, and that a pro-
perty holds a.e. on A^ if it holds on Ai a.e. with respect
to ;c.

Next we shall define the boundary values of a function
defined on R. For a positive superharmonic function s
on R and a closed subset F of R, we define Sp to be the
greatest lower bound of the positive superharmonic functions
which are not smaller than s quasi-everywhere on the set F.
Now let b e A^. We shall denote by ^ = ^bW the family
of nonempty open subsets D of R such that k^ -^ (/C^R-D.
Then, ^ is seen to be a filter base for each b e A^.

Let f be any function from R into the complex sphere 0.
For b e A^, we put f(6) = n{Cl /(D) : D e ^}. Clearly,
/"'(&) depends only on the values of f taken on the outside of
any compact set in R. So the same definition can be made
when f is defined only off some compact subset of R. Let
2(f) be the set of b e A^ for which /^(&) is a singleton.
We define f(b) for each b e 2(f) by the condition

{fw}=nb)
and call f the boundary function for /*. Then we have the
following

PROPOSITION 3.2 ([3; Hilfssatze 14.1, 14.2]). — Suppose
that a function f: R -> Q is continuous outside a compact
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subset of R, Then:
a) For any open neighborhood D' of f{b) in Q, /^(D')

contains a set of ^.
b) The function f : Q{f) -> t2 is measurable. In particular^

Q{f} is a Borel subset of A^.
As for harmonic functions on R, we have the following

PROPOSITION 3.3 ([3; Folgesatz 14.2]). — If u e HP(R),
then u exists a.e. on A^ and the outer part of u is given by

f^u{b)k,d^b)

In particular, if u e HP(R) is outer, then the measure d^y
given by Proposition 3.1 is equal to u d^. So we have

COROLLARY 3.4. — If u* is a real ifztegrable function on A^,
then

(1) u=f^u*{b)k,dy.{b)

is an outer harmonic function in HP(R) and u == u* a.e.
on AI.

Let /^(R), 1 < p < oo, be the space of complex-valued
harmonic functions f on R such that [/'[p has a harmonic
majorant, and /^(R) the space of complex-valued bounded
harmonic functions on R. We define the norm ||.||p in
^ ( R ) , l < p < o o by setting \\f\\, = ((L.H.M.(|/^))(oo))^
and the norm || .L in A°°(R) by ||/'||» = sup {\f{z)\ : z e R}.
We shall denote by the symbol ^u*] the right-hand member
of (1).

THEOREM 3.5. — Let 1 ̂  p ^ oo. For each fehp{I{),
the boundary function f is defined a.e. on A^ and belongs to
L^d/). Put Sf=f. Then, S is a linear map of h^R)
into L^rf^) such that.

a) S is isometric and surjecti^e for 1 < p < oo,
&) S is norm-decreasing for p = 1, and is isometric as well

as surjective on the space /A(R) of all outer functions in /^(R).
S is isometric and surjecti^e on H^R).
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Proof. — Consider the universal covering surface (U, 9)
of R such that 9(0) = Oo. For f e /^(R) with 1 ̂  p ^ oo
(or /•e H^R)), we have fo 9 e ^(U) (or /'o 9 e H^U)).
We know that fo 9 is outer and so, by Proposition 2.6,
f is outer, too. By Proposition 3.3, f exists a.e. on A^,
belongs to L^d^) and

f=f^f{b)k,d^b).

Suppose first that 1 < p < oo and yeA^R). Put

u = L.H.M.(|/'|P).

Since l/p < u, it follows that \f\p ^ u a.e. on A^ and
so f E L^d^). The Holder inequality then shows that

IA^ =|J1/(&)^) ^(6)f ^ /Jf(6)|^(.) dz(6).

Namely, |/p ^ A[|^|^] and therefore u ^ h[\f\P]. Since
Q(R) is an order ideal, u is outer. So, A^p] ^ h[u] = u.
Hence, we have u == h^f^]. Consequently we have

W = ̂ o) = h[\M{a,) = f^f(b)\^M d^(b)
=f^\fWd^b)=\\Sf\\^

Thus, S is isometric. Surjectivity of S is obvious.
The case p = oo can be treated similarly.
Finally, let fehl{R). Then, by Proposition 3.3,

f^h[f]=f^f{b)k,d^b).

Let u = L.H.M. (|/Q|). Then we have u = h[\f^\] = h[\f\],
so that S: A^(R) -> L1^'^) is isometric and surjective,
Next, let v = L.H.M.(|/'[) and let p = ^i + ^Q be the inner-
outer decomposition of v. Then, \f\ ^ v == ^q a.e. on A^.
So, H ^ l l i - ̂ o(ao) ^ ^(ao) = ll/ 'lli. Thus, S : ^(R) ̂  LI(^)
is norm-decreasing. The result for H^R) comes from the
fact H^R) c ^(R). Q.E.D.

Now we introduce the notion of P topology (or strict
topology) in a space H of bounded functions on R as
follows. Let Co(R) be the space of continuous complex func-
tions f on R such that {z e R : \f(z)\ > s} is compact for
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any e > 0. Then, a net {h\} in H is defined to converge
to an h e H with respect to the (3 topology if (h\ —h)f-> 0
uniformly for each f e Co(R). This topology has been studied
extensively for the spaces of bounded analytic functions by
Rubel and Shields [11] and Neville [8; Chapter 4, Section 5].

THEOREM 3.6. — For 1 < p < oo, the Banach space dual of
/^(R) is isometrically isomorphicwith L^rf^) wl/t^

p-i+p'-i=l,

where the duality is given by

<^8^-f^^sf)W^Wd^W

for fe /^(R) and g* e L^ (d^). For p = 1, the Banach
space dual of A^(R) is isometrically isomorphic with L°°(^)-
The dual of the space A°°(R) equipped with the P topology is
identified with L^d^).

Proof. — The last statement is a direct consequence of the
theory of the P topology. Other assertions are also simple
consequences of Theorem 3.5 and the duality theory of 1̂
spaces.

4. A preliminary Cauchy theorem.

We again consider a hyperbolic Riemann surface R and
use the notations in the preceding section. Let f be a real
continuous function defined on R ^ K, where K is any
compact subset of R. Let ^[f] (resp., i^[f]) be the class
of superharmonic (resp., subharmonic) functions s on R
for which there exists a compact subset K, of R with
s ^ f (resp., s ^ f) on R -_(K u KJ. If neither JT[f]
nor ^[/•] is empty, put W[/*](^ = inf {s{z) : s e i^[f}}
and W[/1]^) ==sup {s{z) : s e iT[f]} for z e R. Then, both
W[/*] and W[/*] are harmonic functions on R and

W[f] < WE/*].

If these functions coincide, then we denote the common func-
tion by W[/"].
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Suppose that the surface R is regular in the sense of
potential theory, i.e., the set

{ze R : G(a, z) ^ e}

is compact for any a e R and any s > 0. Let a e R. Since
the set of critical points of G<, is at most countable, we can
find a monotonically decreasing sequence {s^} of positive
numbers converging to zero, in such a way that

R,= { z e R : G ( a , z ) > s ,} ,n=l ,2 , . . . ,

are Jordan regions, Cl R^ c R^+i for n = 1, 2, . . .,
00

U R » = R ,
n==l

and 8G(a, z) = 2b^G(a, z) dz is non-vanishing on each &R^,
1where c^ == — (b^. — K^y) denotes the partial differentiation
A

with respect to z •==• x + iy for any local coordinate. We call
such an exhaustion {Rn} of R a regular exhaustion of R
with center a. Now we show the following

LEMMA 4.1. — Let K be a compact subset of R and F
a positive continuous Wiener function on R ~ K, in the sense
of [3; p. 55], such that there exists an outer harmonic function u
on R with 0 ^ F ^ u on R ^ K . Then, the boundary
function F for F exists a.e. on A^ and is integrable.

Suppose further that R is regular. Let a e R and {R^}
a regular exhaustion of R with center a. Then, we have

- l i m 1 ^ F{z) 8G(a, z) = f F(b)k,(a) d^b).
n>oo ZTCtJ^ J^

Proof. — Since F is a Wiener function on R ^ K, it
follows from [3; Hilfssatz 14.3] and Proposition 3.2 that F
exists a.e. on A^ and is measurable. Since we have

0 < F ^ u

on R ^ K, we have 0 ^ F ^ u a.e. on A^. Since u is
integrable, so is F.
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Now we suppose R to be regular. To show the conver-
gence of the integrals, we first assume that 0 ^ F ^ 1.
Then, by [3; Satz 14.2], W[F] exists and is given by

W[F]==^F(6)/C^X(6).

We also know (cf. [3; Hilfssatz 6.1]) that there exists a poten-
tial p on R such that p is finite everywhere on R and,
for every e > 0, there exists a compact set Kg s R with
W[F] - ep ^ F < W[F] + sp on R - Kg. Take n so
large that Kg c R^ and integrate this inequality with res-

1pect to d[L^ which is the restriction of — ^—; 8G(a, z) to
?)R^ Since we have 27Tl

W[F](a) =^W[F](z) d^{z) =f^¥{b)k,{a) d^b)

and

f^P^^n^) ^ p(a),

we conclude that

|j^F(z) d^{z) -f^(b)k,(a) d^{b)\ ̂  ep{a).

So the desired result follows in this case.
Next we consider the general case. Put F^ = min {F, m}

for m = 1, 2, . . .. It is known that F^ are Wiener functions
on R ^ K and F^ = min {F, m} a.e. on A^ (cf. [3]).
By what we have shown in the preceding paragraph, there
exists, for any m and any s > 0, a number riQ == ^o^? £)
such that

|^F,(z) d^{z) -f^(b)k,(a) d^{b)\ < e for n ^ ^

Since F is integrable and F^ -> P a.e., there exists, for
any e > 0, a number m^ = mo(e) such that

J^F(&)/c,(a) d^(b) < f^{b)k,{a) d^b) + e for m ^ m,.

Since 0 ^ F ^ u, we have F — F^ < u — u^ on R ^ K,
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where u^ = min (u, m). If K c R^ then we thus have

0 ^ f^ Wd^) -f^ F^) d^(z)

^ f^n u^ d^ ~~ f^n um^ d[Ln^

^ u(a) — (u A w)(a).

If we take m ^ mo(e) and M ^ y^o(m5 £)? then we have

|J^ F(6)/c,(a) <W) - f^ F(z) rf^(.)|
^ 2e + ̂ (») — (u A m)(a).

Since u is outer, (u A ^z)(a) -> u(a), so that we are done.

THEOREM 4.2. — Suppose that R 15 regular and let a e R
&e fixed. Let z^, . .., z^ &e Z distinct critical points of the
function Ga and let Cj, j == 1, 2, . . . , ^, 6^ ^Ae multiplicity

I l \of Zj. Put g{z) == exp ( — ^ ^^(zy, z) ). //' /* 15 a mero-
\ j=i /

morphic function on R such that \f\g has a harmonic majorant
on R, t/i<?n f exists a.e. <m A^, is integrable and

f{a) = f^f(b)k,{a} d^b}.

Proof. — Since \f\g has a harmonic majorant, Propo-
sition 2.7 (a) shows that its least harmonic majorant, u, is
outer. Since R is regular, there exist a compact set K in
R and a constant c > 0 such that the interior of K contains
2:1, . . ., Zi and g ^ c on R ^ K. So we have |/*| ^ c~^u
on R ^ K. Since both Re f and Im f are harmonic on
R ^ K and majorized there in modulus by the outer
harmonic function c^u, they are Wiener functions on
R ^ K. So, by [3; Hilfssatz 14.3], f exists a.e. on A^ and
is measurable. Moroever, we have | / | ^ c^u a.e. on A^.
Hence, f e L^c^c).

Let {Rn} be a regular exhaustion of R with center a.
Then, Ga — £„ is the Green function for R^ with pole at a.
We may assume without loss of generality that K is contained
in RI. For each n, f{z)8G{a, z) is a meromorphic differential
in z on Cl R^ with only one pole at a, whose residue is
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equal to —2nif{a). Thus we have

fW = - 0^ f f^ SG^ z)-^J^

By applying Lemma 4.1, we get the desired result.

5. Direct and inverse Cauchy theorems.

Let R be a hyperbolic Riemann surface and OQ the point
in R which is used for defining the Martin functions. We
consider the following three conditions (A), (B) and (C) :

(A) R is regular.
(B) Let 11 be the group of multiplicative characters of

the group Hi(R; Z). There exists a family of outer La.m/s
{8(6) : 6 e II}, such that (a) 8(1) = 1; (6) 8(6) has character 6
for each 6 e H; (c) 0 < 8(6) < 1 for each 6 e IT; (rf) if a
sequence of the form {8(6J : n = 1, 2, . . .} is pointwise
convergent to a function of the form |/*| with fe H^R),
then f is (B exterior in the sense that ^H^R) is (3 dense
in H^R).

In order to state the condition (C), we denote, for each
a e R, by Z(a) === {zj = Zj{a) : / === 1, 2, . . . } a univalent
enumeration of the critical points of G^ and by Cj == Cj{a)
the multiplicity of Zj. And we put

(2) g(^)^exp(- S ^G(z,, z)).

(C) There exists a point a e R for which ^ ^G(zj, z) < oo
on R - Z(a). . j

Remark. — H. Widom [18] observed that (C) holds (if and)
only if ^ cj{a)^{zj{a)^ z) < °° on R ^ Z(a) for every

j
a e R, provided that R satisfies (A). According to a recent
private communication from him, the results in [18] will
show that the condition (B) (or less : there only has to be a
8(6) for each 6 e I I such that 8(6) ^ 1 and 8(6)^0)
implies the condition (C) for any Riemann surface, indepen-
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dently of (A). Thus, the condition (C) can be suppressed
without changing our main results. For an interesting class
of Riemann surfaces satisfying the conditions (A), (B) and (C),
we refer the reader to Neville [8; Chapters 5 and 8]. See also
Widom [17].

Our main objective of this section is to prove a Cauchy
theorem and its converse for any surface R satisfying (A),
(B) and (C). These theorems have also been found by Neville [8].
We shall begin with

LEMMA 5.1. — Let R fee a hyperbolic Riemann surface for
which (C) holds. Then, g^ exists a.e. on A^ and is equal to 1
a.e. on A^.

Proof. — Put s{z) = ̂  CjG{zj, z). Then, our hypothesis

shows that s is a positive superharmonic function on R.
It is therefore a Wiener function (cf. [3$ p. 56]). By
[3; Satz 14.2], s exists a.e. on A^ and the outer part of
W|>] is equal to Cs(b)kk d^{b). For n= 1, 2, . . . , we

n J

put s^{z) = ^ ^{zj, z) and s'n == s — s^. Since s^ is
y=i

a potential, we have W[^] = 0 and so W[$] === W[5n] for
n == 1, 2, .... Thus, W[^] ^ s'n for all n. Since ^ CjG(zj, z )

j
is convergent on R ^ Z(a), {s^: n = 1, 2, . . .} converges
to zero on R. So W[^] == 0 and therefore s = 0 a.e.
on Ai. Q.E.D.

LEMMA 5.2. — Let R be a hyperbolic Riemann surface for
which (B) and (C) hold. Then there exists a sequence

{ B ^ / = l , 2 , ...},

of functions in H°°(R) and a strictly increasing sequence of
integers {v(/) : / === 1, 2, . . . } such thaty for each /, the inner
factor of |Bj| is exp /— ^ ^G î, z)\ and such that

\ i>va') /

lim Bj (== B, say)
J'->00

exists in the (3 topology and is (B exterior.
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proof. - We put C/z) = exp /- S ^G(^, z)\, / == 1,
\ i^J I

2, . . . . By (C), ^ cft{Zi, z) is finite on R ^ [z,: i ^ /}.
i^-J

Since each G(z;, z) belongs to I(R), the order completeness
of I(R) implies that ^ ^G(Zi, z) belongs to I(R), so that

i^J
each Cj is an inner l.a.m. on R. Let Qj be the character
of Cy. Then there exists an ¥j e H°°(R) such that

1^1 = 0,8(671).

Since [F,| ^ 1, / = 1, 2, . . . , there exists a [B convergent
subsequence {F^.) : / == 1, 2, ... } of {Fj}. We put Bj = F^,
/ = 1, 2, . . ., and let B be the (B limit of

{ B , : / = l , 2 , ...}.

Since ^ ^G(zy, z) converges uniformly on compact subsets

of R ^ Z(a), we see that lim ^ ^G(^, z) == 0 uniformly
^00 1>J

on compact subsets of R. So Cj tend to 1 uniformly on
compact subsets of R. Thus,

S^o^-IFvd/Cvo^lBl

with respect to the (3 topology. Hence, by (B), the function B
is P exterior.

Now we are in the position to prove our Cauchy theorem.

THEOREM 5.3. — Let R be a hyperbolic Riemann surface for
which (A), (B) and (C) hold. Let aeR be fixed. Let f
be a meromorphic function on R such that \f\^ay has a har-
monic majorant. Then, f exists a.e. on A^, is integrable, and

fw = f^fww <w).
Proof. — We know that log ̂  e I(R) c SP(R). So,

log|/'| =log(|/'|g(''>)-logg<'') belongs to SP(R), too. We
denote by Y the function z —>• log | z| on the complex
sphere Q. Y is non-constant and continuous on 0 and the
composite T o f (=log|/' |) is a Wiener function on R,
since it is in SP(R). So,by[3;Folgesatzl0.1andSatzl.4.4],
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f exists a.e. on A^. By Lemma 5.1, we have g^ = 1 a.e.
on AI. So, \f\ = l^lg^ ^ u a.e. on Ai, where u denotes
the least harmonic majorant of \f\gw on R. Since
u e L1^), we have ^ e L^d^), too.

Now we use the notations in the proof of Lemma 5.2 and put

( v(J)-l \

g/z)=exp - S ^G(^, z)^ / = 2 , 3, . . . . Then, for any

s e H°°(R), fsBj is meromorphic on R and

[^^^(^[^^(O^))-!),

the latter having a harmonic majorant in view of our assump-
tion. Applying Theorem 4.2, we have

(3) (fsB^a) = ̂ /(&)5(&)B,(^(a) AW.

By Lemma 5.2, Bj -> B in H°°(R) with respect to the (3
topology. In view of Theorem 3.6, we have By -^ B in L^c^c)
with respect to the weak topology (^L^ri^)? L1^)). Letting
/ -> oo in (3), we get

(^B)(a) == f^ f(b}s{b)B{b)k,{a) d^(b).

Since B is (3 exterior, there exists a net {^} c H°°(R)
such that s^B -> 1 with respect to the (B topology.
So s-^B -> 1 with respect to o^L00^), L1^)) and conse-
quently

f(a) = lim (/^B)(a) = lim ̂  f(b)WB(b)k,{a) d^b)

=f^fWWd^{b),

as was to be proved.
We proceed to prove an inverse Cauchy theorem, which

will generalize previous results by Read [9], Roy den [10]
and Neville [6], and which has also been found by Neville [8].
Here we shall follow Neville's method in [6]. In order to do so,
however, we have something to settle in advance, which we
now describe.

For any two points a, a' e R, we set

P(a, a'; z) == 8G(a', ^)/8G(a, z) for z e R.
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Then, P(a, a ' ; z) is a meromorphic function on R. If a ̂  a',
then it vanishes at a and has poles in the set Z(a) U {a'}.

Lemma 5.4. — L e t R 6<? a hyperbolic Riemann surface
for which {A), (B) anrf (C) AoZd. Let a, a' e R fee /î d!. Then,
P(a, a'; 6) î5te a.e. on A^ anrf 15 equal to k^a^/k^a) a.e.
on AI.

Of course, we have only to consider the case a 1=- a'. The
proof is rather long. We first prove the existence of the boun-
dary function and will evaluate the function after some dis-
cussion about Green lines. We shall assume throughout the
conditions (A), (B) and (C) even when we do not need the full
strength of the conditions.

Existence of the boundary function. — Let {R^} be a regular
exhaustion of R with center a and let G^a', z) be the
Green function for R^ with pole at a'. Since G^ — £„ is the
Green function for R^ with pole at a, the Harnack inequality
shows that there exists a constant c, depending only on a,
a' and R, such that 0 < SG^a', z)/8G(a, z) < c on &R^.

Put u(a, a'; z) = ^\z) exp (— G(a', z)), where ^
was defined by (2). Then, the condition (C) implies that
u(a, a'; z) is a nontrivial inner l.a.m. on R. Since

u{a, a'; z) ^ 1
on R, we have

0 ^ u(a, a'; ^(SG^a', z)/8G(a, z)) ^ c on OR,.

Since u(a, a'; ^SG^a', z)/8G(a, z)| is an l.a.m. on Cl R,,
the maximum principle implies that

u[a, a'-, z)\W\a', z)^G{a, z)\ ^c on C1R,.

Since SG^a', z) converge to 8G(a', z) almost uniformly
on R ^ {^}j we have

(4) u(a, a'; z)|P(a, a'; z)| ^ c on R.

In particular, we have log|P(a, a'; z)\ e SP(R). By [3;
Folgesatz 10.1 and Satz 14.4], P(a,a'; b) exists a.e. on A^,
as was to be proved.



INVARIANT SUBSPACES ON OPEN RIEMANN SURFACES 259

Some properties of Green lines. — In order to evaluate
P(a, a ' ; V) on Ai, we need the concept of Green lines. Let
a e R be fixed and define r{z) and co(z) by the equations
dr{z)lr{z) = — dG{a, z) and d^{z) = — *dG{a, z). The first
equation is solved by r(z) = exp (—G(a , z)), which we
shall use in what follows. Put

R(p) = {z e R : G(a, z) > p} = {z e R : r{z) < e-^}

for p with 0 < p < oo. We call R(p) regular if SG^ -^ 0
on the boundary of R(p). An open arc on R is called a
Green arc for Ga if it is a level arc of the function co on
which du{z) + 0 and co(z) is constant. A maximal Green
arc is called a Green line. We shall denote by G === G(R; a)
the totality of Green lines L for Ga issuing from the point a.
For a sufficiently large p > 0, R(p) is regular and

w = f{z) = e^r(z) exp (ico(z))

is a conformal mapping from Cl R(p) onto the unit disk
{w e C : \w\ ^ 1}. We fix such a p (== po, say) and put
J == ^yR(po). The function z = />-l(w) maps {w : \w\ ^ 1}
onto R(po) ^ J? so that each point z on J is represented
by a real number <o e [0, 27c) where z = /'^(e1^). So, every
L e G can be parametrized with co as L = L^ where (x>
represents the point in L n J. We define a measure m,
called the Green measure on G (or, more exactly, on J), by

dm (L) === dm (co) == duftrc with L = L^.

We also put Eo = Eo(R; a) == {L e G : Cl L is compact in R}.
Clearly, L e Eo (if and) only if L ends in a point of Z(a).
It follows that Eo is countable. Since R is regular, we see
that sup {r{z) : z e L} == 1 for L e G if and only if L ^ Eo.
If we take the branch of co(z) at z e L^ with 0(2) = co,
then we can use the single-valued function r^e1^ = re1^
as a global coordinate on the star region

G' = G'(R; a) = u { L : L e G} u {a}.

Thus, if R(p) is regular and if u is a harmonic function on
R(p), continuous on Cl R(p), then the usual Green formula
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states the following:

u{a) = - -l f u(z) *dG{a, z) = -!- f^ u )̂ rfco
^7r J^R(P) ^7r Jo£7^

== u^e^) dm(L^) with r == ^P.
„

Let /* be a function on R. We say that f has a radial limit
a.e. on G if

/•(L,) = lim /•(r^) = lim {f(z) : z e L,, r(^) ^ 1}
r-^l

exists m-a.e. on G ~ Eo. Then, we have the following

LEMMA 5.5. — a) Every bounded analytic function f
on G' = G'(R; a) possesses a radial limit a.e. on G == G(R; a)
and the limit function /'(L) is m-measurable on G. If f ̂  0,
then f(L) ^ 0 m-a.e. on G. 77^$ 15 (rue of every meromorphic
function f of bounded characteristic.

b) Suppose that R is regular and let 1 ̂  p < oo. If
an analytic function f on G' is such that \f\p is majorized
on G' by a harmonic function u e Q(R), then f has a radial
limit a.e. on G and the function L -> /*(L) belongs to L^rfm).

Proof. — Part a) is essentially contained in [12; Chapter III,
Theorems 6D and 61]. So, we shall prove fc).

Let f satisfy the condition in &). Then, by Proposition 2.7,
\f\ is of bounded characteristic, so that f itself is of bounded
characteristic on G' because G' is simply connected.
By a), there exists a measurable subset M of G ^ Eo such
that m(G ^ (Eo u M)) = 0 and ^(L) exists for every
L e M. Let 0 < p < oo be such that R(p) is regular.
Then,

f^ IA^I^LJ ^ f^ u^) dm{L^) = u(a) with r = e^.

Take any decreasing sequence { p ^ : n == 1, 2, .. .} with
pn —> 0 such that R(pn) is regular for each n. Put

P,(L,) = l/^)!"

Added in proof, — The suggestion made for the proof of Lemma 5.5 (a) is
inexact; however, the lemma itself is true and follows from the conditions (A)
and (C).
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with r^ == exp (— pn). Then, lim ^n(L) (== ^(L), say) exists
n»-oo

for every L e M and ^(L) = [/"(L^. So, by the Fatou
lemma, we see that v is m-integrable and

f y(L) dm{L) = lim f ^(L) dm(L) ^ u(a).
J n^oo ^

This is what we wished to show. Q.E.D.
Returning to our case, we see by the condition (B) that

there exists a function F e H°°(R) with

|F| =u(a,a'<; .)8(6(u(a,a'; .))-i).

Put f{z) == P(a, a'; z)F(z). In view of (4), we have fe H°°(R).
By Lemma 5.5, F(L) and /*(L) exist m-a.e. on G ~ Eo.
Since F ^ 0, we have F(L) ^ 0 m-a.e. on G. It follows
that P(a, a'; L) exist and is finite m-a.e. on G.

Let L e G ~ Eo and let e^ be the end of L, i.e.,

e^ = C1(L) - (L u {a})

in R*. Thus, e^ is a non-void subset of A. We want to
evaluate P(a, a'; L) when it exists. At each z e L, we take
a local coordinate z = x 4- iy such that dx = d!G(a, z)
and dy = *dG(a, z). Along L, we then have

8G(a, z} = ̂ G(a, z) dx = dx
and

8G(a', z) = [^G(a', z) + ̂ G(a', z)J dx,

where G(a', z)^ denotes the harmonic conjugate of G(a', z),
We may assume that x = G(a, z) and y == yo == constant
along L. Then we have on L

(5) R^(P(a ,a ' ;z ) )
= {dG (a', x + iy^dx)l[dQ (a, x + iyo)ldx).

Suppose that P(a, a! $ L) exists. Then, (5) has a limit as x
tends to zero. Since both G(a, x + ^/o) ^d G(a7, x + ^/o)
tend to zero as x tends to zero in view of the condition (A),
F Hospital's rule shows that

Re (P(a, a'; L)) = lim {dG (a', x + iz/o)/cb)/(dG (a, ^ + M/o)/Ar)
3;->0

= lim G(a', a; + M/o)/G(a, re + it/o).
3;->0
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Let b e e^. Then, there exists a sequence of points z^ in L
with the coordinates x^ + "/o suc!1 that x^ -> 0 and z^ -> 6.
So, the final member is equal to ^(^^/^(a). Since & is
arbitrary in e^ /^(a/)//c^,(a) is constant on e^ as a function
in b.

Now let a' run over a countable dense subset A of R.
Then we see that there exists a measurable subset A
of G - Eo such that (i) m(G - (Eo U A)) = 0; (ii) for
each a' e A and L e A, F(L) and /(L) exist and are finite,
and F(L) ^ 0. So, for each a' £ A and L e A, P(a, a'$ L)
exists. Therefore, if b, b' E e^ with L e A, then

Wlk^a) = k^jk^a)

for every a' e A. Since the function k^ with b e A is
continuous on R, the density of A in R implies that A^
and k^ are proportional. Hence we have b == V by the
fundamental property of the Martin functions (cf. [3; pp. 135-
136]). Namely, e^ consists of a single point for each L e A.

We next prove

LEMMA 5.6. — Let (V, ^) be a parametric disk in R and
put V(l/4) = ̂ (l^O; 1/4)), where U(^; . r) denotes the
open disk in C with center w and, radius r. Let a e R be
fixed. Then, there exists a constant C such that

|P(a, a'; z} - P(a, a"; z)\^(z) ^ Cj^a') - +(a")|

for any a', a" e V(l/4) and any z e R - Cl V.

Proof. — Let {Rn} be a regular exhaustion with center a
such that Cl V c R^. Let a', a" e V(l/4) and let G^a', z)
and G^a", z) be the Green functions for R^ with poles at
a' and a", respectively. Then, for any real outer harmonic
function h on R^, we have

(6) h(a') - h(a") = - i C h^^Y- z)
2"iJan, ' '\ 8G(a,z)

8GW(a", z)\
~~ 8G (a, z) Y 8G(a' z)-

Put A+ == A v 0 and h- = {— h) V 0. Then, A+ and A-
are positive outer harmonic functions on R,. By the Harnack
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inequality, we have c(r)~1 < /^(a^/A'^a") ^ c(r), where
',=^)_^^

and c(r) == (3 + ^/(S —4r) , The same is true of the function
h~. So,

(7) |/i(a')-^(a")! < l/r^a') - ̂ (a')! + ^-(a7) - /r-(a")|
<8r(/i+(a") +h-(a"))

Q / 1 \ r IL/ M8^^ , z ^p/ ^= 8r - 9~; 1^) s ^ / ' / 8G(^ z)\ ^/J^ 8lj(a, z)

^W-^V |^)|8G(a,^),\ Zm/J^

where X is a constant depending only on a, V and R, and
not on n. Combining (6) and (7), we have

SG^a^z) 8G^{a\z} ^ 8Xr on ^FL.
,8G(a, z) 8G(a, z)

We put ^(z) = ^\z) exp (— G(a', z) - G(a", z)). Then,
p(z) is an inner l.a.m. on R and is ^ 1. So,

|8G(n)(a/, z) SG^a^z)}^(z) ^ 8Xr on ^R^.(8) 8G(a, z) 8G(a, z)

Since the left-hand member of (8) is an l.a.m. on Cl R^ so
that the inequality sign remains to hold when z runs over R^.
Letting n -> oo, we have |P(a, a'; z) — P(a, a"; z)|^(z) ^ 8Xr
on R. Since Cl V(l/4) is a compact subset of V g Cl V,
the set of functions exp (G^' + G^') with a', a" e V(l/4)
form a uniformly bounded family of functions on R ^ Cl V.
Hence, there exists a desired constant C. Q.E.D.

Now let a" e R be any point and take a sequence {a^}
in A which converges to a". We may assume that {a^}
is contained in V(l/4), where (V, ^) is a fixed parametric
disk centered at a". By the preceding lemma, we have, for
z == x + iyo ^ L in A,
|P(a, 6V, x + iyo) — P(a, a^; x + ^o)||F(^ + M/o)|

^ C|+(a,)-^(a,)|
for M, m = 1, 2, . . ., and also

|P(a, a"; .r + iyo) — P(^ »n; ^ + "/o)l|F(^ + ^o)l
^ C|+(a")-+(aJ|
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for all x sufficiently near zero. It follows at once from these
inequalities that P(a, a"; L) exists for L e A. Summing up,
we have the following.

PROPOSITION 5.7. — Let a e R be fixed. Then, there exists
a measurable subset A of G(R;a) ^ Eo(R$ a) with

m(G - (Eo u A)) = 0

such that F(L) (^ 0) and P(a, a'$ L) exist and are finite
for every a' e R and every L e A. Furthermore, e^ consists
of a single point, b^, for every L e A and

Re(P{a,afs,L))=k,{at)ik,{a)

for every a' e R and every b == &L with L e A.
We can thus apply the Brelot-Choquet theory of Green

lines [2] to our problem. We know that the Martin compacti-
fication is metrizable and resolutive (cf. [3; Satz 13.4]). For
each point b e A^, let ^ be the filter of all sets of the form
R n W where W varies over the fine neighborhoods of b
in R*. As was shown by L. Nairn [19], there exists a measu-
rable subset A' c AI such that x(A') == 1 and the family
^ == {^: f e e A'} satisfies Brelot-Choquet's conditions A
and B, where

A : If h is subharmonic and bounded above and if we have
limsup h ^ 0 along any ^ e %, then h < 0;

B : For each ^ e ̂ , there exist an open neighborhood W
of b in R* and a superharmonic function v > 0 on W n R
such that lim v = 0 along ̂  and, for any neighborhood V
of b, inf {v{z} : z e (W n R) - V} > 0.

Moreover, Proposition 5.7 shows that almost all Green lines
in G(R; a) ~ Eo(R; a) converge in R*. Hence, the Brelot-
Choquet theorey [2] implies the following

PROPOSITION 5.8. — Let a e R be fixed and let A = A(a)
be the set of Green lines L e G(R; a) ^ Eo(R; a) fo^ which
the end e^ consists of a single point, say &L. Then, the following
hold:

a) m(G - (Eo u A)) ==0 ;
b) The function L -> b^ from A into A is measurable
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and is measure preserving with respect to the measure dm on A
and the harmonic measure k^{a) d-^{b) on A corresponding to
the point a. In particular, the points in A which are not in
the image of A under the above mapping form a null set in A.

c) Let f* be a bounded measurable function on A^ and
let f= h[f*] be the solution of the Dirichlet problem for R
with the boundary values f* (cf. Section 3). Then, f has a
radial limit a.e. on G and /'(L) == f*{b^) m-a.e. on A.

Combining this with Corollary 3.4, we have the following

COROLLARY 5.9. — L e t f* be a bounded measurable function
on AI and f = h[f*]. Let a e R. Then, f has a radial
limit a.e. on G(R; a) and

(9) f(b) = f*{b) == /-(L) a.e. on A,

where b == b^ with L e A(a).
By Proposition 5.7 and Corollary 5.9, we conclude this:

COROLLARY 5.10. — Let a, a' e R be fixed. Then,

(10) Re (P(a, a'; 6)) = ^(a')/^(a) a.e. on A,.

Proof. — Using the notations defined after the proof of
Lemma 5.5, we have P(a, a'; z) = /'(z)/F(z) and it is
clear that (9) is valid for both f and F. From this the
desired result follows at once.

Completion of the proof of Lemma 5.4. — Let now a, a'
and a" be any pairwise distinct three points in R. Then,
P(a, a'; z) = P(a, a"; z)P(a", a'; z). So, if P(a, a"; fc) and
P(a", a'; fc) exist and are finite for some b e A^, then
JP(a, a'; fc) exists and P(a, a'; b) == P(a, a"; 6)P(a", a'; fc).
By Corollary 5.10, we see that, for almost all b e A^,

R^ (P(a, a"; 6)P(a", a'; &)) - Re (P(a, a'; 6)) = /^(a')//c,(a)
== R6? (P(a, a"; b)) Re (P(a", a'; fe)).

For such & e AI, either ^(a, a"; fc) or ^(a", a'; &) should
be real.

Finally we fix two distinct points a, a' e R and suppose,
on the contrary, that there exists a measurable subset A'
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of Ai with x(A') > 0 such that, for each b e A', P(a, a ' ; b}
exists, satisfies (10) and is non-real. Take a sequence of points
a,(^ a') in R converging to a'. Then, there exists a measu-
rable subset A" of A' with ^A") > 0 such that P(o,a,; b)
exist for all n and all & 6 A". Since P(a, a ' ; b) is non-
real for any b e A', we may assume, in view of the above
observation, P(a, a^; b) exists and is equal to k^jk^a)
for all n and all b e A", By the Harnack inequality, we see
that ^l < |P(a', a,,; b)\ <S \ a.e. on A" and therefore

(11) \^ < |P(a, a'; b)lP{a, a,; b}\ < X, a.e. on A",

where {X,,} is a sequence of positive numbers tending decrea-
singly to 1. There exists a point b in A" for which (11)
holds for all n. For such b, we have

1 = lijn [P(a, a ' ; &)/P(a, a,; b)\ = Inn |P(a, a'; &)|^(a)/^(a,)

=|?(a,a';&)|^(a)//c,(a').
Since (10) holds for this 6, we should have

P(a, a'; b) = k,{a')lk,(a),

which is real. This contradiction shows that P(a, a ' ; b) is
real a.e. on \. In view of Corollary 5.10, this completes the
proof of Lemma 5.4.

LEMMA 5.11. — Let R be a hyperbolic Riemann surface for
which (A), (B) and (C) hold. Let ae R be fixed, (V, ^) a
parametric disk in R ~ Z(a), an<^ J any closed rectifiable
curve contained in V(l/4). Put

PJ(Z) := fw P^' ^(^); z) ̂  /br z e R ~ (Z(a) u Cl V),

where ^ denotes the inverse map of +. Then, Pj is regular
analytic on R ~ (Z(a) u Cl V) and can be extended analy-
tically to R ~ Z(a). Pj(a) = 0, Pj ^ meromorphic, the set
of poles of Pj is contained in Z(a) and, for each z, 6 Z(a),
<Ae order of pole of Pj at Zj is not larger than c/. Moreover,
jPjj^ M; bounded, Pj[b) exists a.e. o?i A^ and;

(12) P,(&)=/^(/c^'(S))/^(a))^ a.e.on A,.
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Proof. — Since the poles of P(a, a ' ; z) are contained in
Z(a) U {a'}, the function Pj is analytic on

R ~ (Z(a) u C1V(1/4)).

If ^, ^ e U = <p(V), then

G(+'(S), ^'(^')) = - log |^ - S'| + h{^ ^') for i; ^ S',

where /i(^, ^ /) is symmetric in ^ and ^', is harmonic in ^
and has a removable singularity at ^/ === ^. So, we have

8G(+'(S), ^'(S')) = - (S - S7)-1 ̂ ' + W, S'),

where 8^A(^, S') is an analytic differential in ^' G U. For
^ ' e U with 1/4 < |S'| < 1, we have

f p(,,^);w))«=f (8E^/8G('•_(£))),s,
J^(J) J^(J) \ ^ / ^^ /

the right-hand member being analytic throughout U. Hence,
the function Pj can be continued analytically to the whole V,
so that Pj can be regarded as analytic on R ^ Z(a).

Since 8G(a, z) has a pole at a, Pj(a) = 0. The poles of
Pj are contained in Z(a) and have the asserted orders. Since
J is compact, the Harnack inequality shows that there exists
a constant c depending only on a, J and R with

IP^I^-z) < c

on R. Thus, log[Pj| belongs to SP(R) and therefore Pj
exists a.e. on A^.

Finally we shall prove (12). Let y : [0, 1)-> ^(J) be a
fixed parametrization of the curve ^(J). Since

a' -> P(a, a' $ z)

is continuous on J for any fixed z e R ^ (Z(a) u Cl V),
we have for such z

w=f^a^'^•'z)^
=l imS P(a,^(^);z)(^-^-i)

n^oo ./==!

where ^j = y^V^)? J ' = °? i? • • • ? ^ — 1, and Sn.n ^ Sn,o-
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Let A' be a measurable subset of A^ with

X ( A I ~ A ' ) = O

such that, for b e A', gW^b) == 1 and

^y(^j};b)=W{^))lk,(a)

for every n and /. Such a set A' exists in view of Lemmas
5.1 and 5.4.

Take any b e A'. Then, for any 0 < e < 1 and any n,
there exists an open set D, e ̂  such that D, s R ~ Cl V
and

Cl Wz)P{a, <)/(^); z) : z e D,} = U(P(a, <j/(^,); &); e)
=U(/c^'(^/))/^(a);s)

for / '=1,2, ...,n. Thus, for z e D»,

S g<a>(z)P(a,<^'(^);z)(^,-^_,)
,/=i

y W(^.,)} .. _, .
A /c,(a) (s^ ^^-1)

< 2 g^P^ 4-'(^,/)); z) - ̂ ^^•^ \^j - ̂ j-z\^J 0 \~/- \"7 T \ - > J l , J U 5 ~/ 7 / \y=i I ^(^)
< e length (^(J)).

We take no in such a way that y([(/ ~ l)/^, fin]) is contai-
ned in a disk of diameter e for each n ^ no and / == 1, 2,
. . . , n. Put J n . y = Y ( [ ( / ~ l ) / ^ /7^]), /==! , 2, . . . , n.
Let z e D^ with TZ ^ TZo. Since |S — SnJ < e for each
^ e J^ ^, we have, in view of Lemma 5.6,

I/^^^P^,^^);^^

- S §(a^)P(^^(S^);z)(^,-^,-x)|
•/—^

< ^^{^(^(a,^^);^

-^(^(a,^^);^}^!
< Ce. length (+(J)).

Since a' -> /c»(a') is continuous on R, there exists an n^
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such that, for n > rii,

v w^)} (. . ^ r W(il)^ < .
2j ——7, (^ ^n.J — ^.j-l) — | ,^ ^ < £-
y=i ^bW JW ^bW

Hence, for n > max {n^ n^j and for z e D^, we have

Î P )̂ - J^ (W(i;))//c,(a)) dS
< s.length (^(J)) + Ce.length (4/(J)) + e.

Thus we have shown that the boundary function for g^Pj
exists a.e. on A^ and is equal to J,^ (/^(^'(^/^(a)) dS.
By Lemma 5.1, g^ = 1 a.e. on A^, so that we obtain the
desired result. Q.E.D.

THEOREM 5.12. — Let R be a hyperbolic Riemann surface
for which (A), (B) and (C) hold. Let a e R be fixed. Let

u* E LW
and suppose that

f^h{b)u^b)k,(a) d^b) = 0

for each function hy meromorphic on R, such that \h\^
is bounded on R and h{a) = 0. Then, there exists an f in
H^R) such that f = u* a.e. on A^.

Proof. — We put

m=f^u*{b}k,(z)d^b) for z e R.

Then, f is an outer harmonic function on R. Let (V, ^)
be any parametric disk contained in R ^ Z(a) and let J
be any closed rectifiable curve in V(l/4). Then, the Fubini
theorem and Lemma 5.11 show that

f f{yw) ̂  = C ( C ^-^ d^ww dy.w
J^(J) */A, V'KJ) ""ft^ /

- f P,{b}u*{b)k,(a) dy.(b) = 0.
JA.

By the Morera theorem, f is analytic on R ~ Z(a). Since f
is continuous on R, every point in Z(a) is a removable
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singularity and indeed / is analytic everywhere on R.
Clearly, \f\ has a harmonic majorant, so that fe H^R).
f = u* a.e. on A^ by Corollary 3.4. This completes the proof.

6. Further properties of the lifting.

We again consider a hyperbolic Riemann surface R and
its universal covering Riemann surface (U, 9), where U
is the open unit disk and 9 is a conformal mapping of U
onto R with 9(0) == OQ. We know that the Martin compac-
tification of U is the usual closed unit disk, the Martin
boundary is the usual circumference bU, and the harmonic
measure for the origin is exactly the normalized Lebesgue

j[
measure on bU, which we shall denote by rf<r( (*))== —rfco.

ZTT
Further T will denote the group of covering transformations
for 9. Since both U and R are hyperbolic, the boundary
function 9 for 9 is defined a.e. on <)U with values in the
Martin compactification R* of R by [3; Satz 10.2
and Satz 14.4]. Put v{z) == exp (— G(«o, ?(^))) tor z e U.
Then, v is an inner l.a.m. on U, so that, by Lemma 5.1., v
exists and is equal to 1 a.e. on bU. By using the notation
defined before Proposition 3.2, we set

Q) = {yv e bU : w e Q)(^} n ^(9) and v(w) == 1}.

LEMMA 6.1. — Q) is a T-iwariant Borel subset of ^V with
cr(^) == 1. Further, $ maps Q) into A.

Proof. — The first half is obvious. So, let w e 0). By
Proposition 3.2, we see that, for any s > 0, ̂ ((l — e, 1 + e))
belongs to ^(U). Suppose, on the contrary, that 9(w) e R.
Then, there exist an open neighborhood W of $(w) in R
and a constant c > 0 such that G(ao, a) ^ c for every
a e W. Again by Proposition 3.2, 9~1(W) e ^u,(U). It follows
that 1 — s < p(z) == exp (— G(ao, 9(^)) ^ e~6 for any z
in the set ^((l — e, 1 + s)) ^ ^"^(W). As e is arbitrary,
this gives a desired contradiction. Q.E.D.

In what follows, we regard 9 as defined not on ^(9)
but on 2.



INVARIANT SUBSPACES ON OPEN RIEMANN SURFACES 271

LEMMA 6.2. — L e t f* be any real or complex continuous
function on A and put f == h[f*] o<p. Then, for any w e Q)^
f(w} exists and is equal to f* o 9(w). In particular,

(is) A[r] ° 9 = h[r o $]
on U, where the right-hand member of (13) is of course the
solution of the Dirichlet problem for U with the boundary
values f* o <p.

Proof. — We put A = h[f*} on R and == /'* on A.
Then, h is continuous on R*. Let w e Q and put 6 == $(w).
Since /i is continuous, h~l(V(f*{b); s)) is an open neighbor-
hood of b for any e > 0. So, by Proposition 3.2,

^-WrW; s))) (=D, ,say)

belongs to ^(U). This implies that /*(Dg) is contained in
U(/**(fc); s). As s is arbitrary, we see that f(w) exists and
is equal to /**(&) == (f* ° ?)(w)- Since f is bounded and
harmonic on U, Proposition 3.3. shows that f= h[f* o 9],
as was to be proved.

LEMMA 6.3. — The formula (13) is true of any bounded measu-
rable function f* on A.

Proof. — We suppose first that f* is a real function defined
everywhere on A. Suppose moreover that f* is lower semi-
continuous and let {f^} be the set of real continuous func-
tions on A majorized by /**. Then, f* = sup /^. In view

^ . .of the vector lattice isomorphism given by Proposition 3.1,

we have V W] = h [sup f^] = h[f*]. Next, we regard

f* o <? and f^ o 9 as defined everywhere on oU by conti-
nuing them to be zero on &U ^ 2. Then, they are bounded
measurable on ^U and f* o 9 == sup (f^ o 9). So, again

x
using Proposition 3.1 now for U, we have

h[r ^] =\/h[f^ ̂
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By Lemma 6.2, we see h[f^ o <p] == h[f^] o <p. It follows
from Proposition 2.6 that

^r ] "9=(yA[^ ] )o^=Vw?]o<p)
-Vw0?] = ^r0?].

The formula (13) is thus true of any lower semi-continuous f*
and also of any upper semi-continuous /**.

Suppose now that /** is just measurable. Then, there exist
an increasing sequence {g*} of bounded upper semi-conti-
nuous functions and an decreasing sequence {/^} of bounded
lower semi-continuous functions on A such that g* ^ f^ ^ h*
for all n and

lun t g!{b) dl{b) = f ^W dx W == I™ / A?(&) ̂  (&).

It follows that {h[g^] : n = 1, 2, . . . } is increasing, {h[h^]:
n = l , 2, . . .} is decreasing, and h[g^] ^ h[f*} ^ h[h^]
for all n. Moreover,

W](ao) - A[^](ao) = / W{b) - g*(&)) ̂  W -^ 0.

So we have V W] = /i^*] = /\ A[/^]. By Proposition 2.6,
" n

V ( [̂gn*] ° ?) = /»[/•*] ° <p = A Wn*] ° ?) and consequently
n n

VA[g ;oy ] =A[r ] °v =A^[^°y] .
71 n

On the other hand, it is clear that

V w o cpj ^ h[r o 9] < A w ° ?].
n n

Hence, we have h[f*] o <p === /^y o $].
So far, we have assumed that /** is defined everywhere on A.

Since h[f*] does not change by any change of /** on a negli-
gible subset of A, we infer that f* o 9 changes only on a
negligible subset of bU by a mentioned change on /**. Hence
we conclude that the formula (13) is true of any class function
f* e L°°(^/), as was to be proved. Q.E.D.
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COROLLARY 6.4. — If a measurable subset A of A is
negligible (resp. has positive measure), then ^(A) is negli-
gible (resp., has positive measure) in ^U.

This has essentially been proved in the last paragraph of
the proof of Lemma 6.3. This shows us that f* o 9 is a well-
defined class function on bU for any f* e L^di^). We
finally show the following.

PROPOSITION 6.5. — If f* G L^d/), then f* o 9 e L^do)
and (13) holds. If f* €= I/(^) with 1 ^ p ^ oo, (AeM /'* o 9
belongs to L^do) and! (/ie correspondence f* -> f* o <p ^
an isometric isomorphism of L^rf^) onto L^dcr)-!., wAere
L^C^T denotes the set of T-invariant functions in Lp{da).

Proof. — We may suppose that f* is real and positive.
We put f* == inf {/•*, n}, n = 1, 2, . . . . By Lemma 6.3,
we have /i[/**] o <p == A[/** o $], n == 1, 2, . . . . Corollary 3.4
shows that /*,* o <p can be regarded as the boundary function
for the harmonic function h[f^~\ o cp. Clearly, h[f*] o <p
is a majorant of h[f^] o 9 for each n. It follows that, if h
is the boundary function for h[f*] o <py we have h e L^do)
and /^ ° 9 ^ A a.e. for each M. So, f* o 9 ^ A a.e. and
consequently /'* o 9 e L^dcr). Moreover, we have

/,[/•*] o <p = /, [sup /•;] o <p = (V Wl) ° 9 = V (^[^] ° ?)
n \ n / n

= V w ° $] = h [sup (/•; o <p)j = h[r ° y],
n n

as was to be proved.
Next we suppose f* e L^rf^) with 1 ̂  p < oo. Then,

h[f*] belongs to /^(R) and so h[f*] o 9 e ^(U). Since
/'* o y is, by (13), the boundary function for A[/**] ° 9, it
belongs to L^cfo) by Theorem 3.5. Moreover, the same
theorem shows that

iinip = wnip = wn o 9iip== iî [r ° 9]iip - \\r ° $11?,
and therefore that the correspondence f ^ ^ f * 0 ^ is an
isometric map of L^dl^) onto L^A^T.
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7. Invariant subspaces of LP(^).

Let R be a hyperbolic Riemann surface which satisfies
the conditions (A), (B) and (C). We know by Theorem 3.5
that the map h -> h gives an isometric linear injection of
H^R) into L^c?/) for each p with 1 ̂  p < oo. By use
of this map, we can identify, for each p, H^R) with a sub-
space of L^rf/), which we shall denote by H^rf/). We
define

HWo = i u* e HW : f ^(b) d^b) = O J .

We note that H°°(rf/) and H^^o are both subalgebras
of L00^)- In this section, we are going to determine closed
(weakly*-closed, if p == oo) subspaces of L^rf/) that are
invariant under multiplication by functions in H°°(6^).
To do this, we first define the boundary values of multipli-
cative analytic functions. We say (cf. [5]) that a function Q:
a —> Q(. ; a) of Hi(R; Z) into the space of all measurable
functions on A^ modulo /-null functions is an m'function
of character 6 e II, if Q(. ; a) == e(a)6((B)- lQ(. ; p) a.e. for
any a, (3 in Hi(R; Z). Two m-functions Qi and Qg are
called equivalent and denoted as Qi == Qg if they have the
same character 6 and there is an oco e Hi(R; Z) such that
Q2(. ; a) = 6(ao)Qi(. ; a) a.e. for every a e Hi(R; Z).

Now, we denote by MH^R), 1 ̂  p ^ oo, the set of all
multiplicative analytic functions f on R such that \f\p

has a harmonic majorant on R if p < oo and |/*| is bounded
on R if p === oo. Let f be a non-constant function in
MH^R) with character 6. Take any single-valued branch of
f on the Green star region G'(R; Oo) (cf. Section 5) and
denote it as f{z\ 0), where 0 denotes the zero element of
Hi(R; Z). For any a e Hi(R; Z), we denote by /*(z; a) the
single-valued branch of f on G'(R$ Oo) which is obtained
by an analytic continuation of f{z'y 0) along the path a.
We clearly have f{-z', a) == 6(a)/^; 0) for each a e Hi(R; Z)
and z e G'(R; Oo). By Lemma 5.5, /*(z; 0) has a radial limit
a.e. on G(R; Oo). We put f( fc ; 0) =/•(L; 0) if L e A(oo),
b = &L, and /'(L; 0) exists in the sense explained in Sec-
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tion 5. In view of Lemma 5.5 and Proposition 5.8, j^ (&;0)
is well-defined as a class function on Ai and belongs to
L^rf/). For each a e Hi(R; Z), f(b, a) is defined similarly
as the radial limit a.e. of the branch f{z\ a). We have of course
f(b', a) == 6(a)/'(&; 0) a.e. for each o c e H i ( R ; Z), so that
a ->/(.; a) is an m-function. It is clear that a different choice
of the initial branch gives rise to an equivalent m-function.
Thus, each fe MH^R) defines a set of mutually equivalent
m-functions, any one of them being denoted as f.

Further, we say that an m-function Q is an i-function
if |Q(&$ a)| = 1 a.e. on A^ for each a e Hi(R; Z). Now
we are in the position to prove our main result.

THEOREM 7.1. — Let 1 ^ p ^ oo. Let STO be a closed
(weakly* closed, if p = = o o ) subspace of L^d^) such thatH°°(^C) m c a».

a) 3% is doubly invariant, i.e., H^c^o S% is dense (weakly*
dense, if p = co) in 9%, if and only if there exists a meas-
urable subset S of AI such that 9% == C^L^d^), where
Cs denotes the characteristic function of S. The set S is
determined by 9% uniquely up to a null set.

b) STO is simply invariant, i.e., H^d^oSK is not dense
(weakly* dense, if p = oo) in 9K, if and only if there exists
an i-function Q of some character 6 e II such that

(14) 9» = {f* e L^(dx) : r/Q s= ^ /^ ^m^ /i e MIP(R)}.

The i-function Q is determined uniquely by 9% up to equi-
valence.

Proof. — First we consider the case 1 ̂  p < oo. Let 9%
be a closed subspace of L^d^) invariant under the multipli-
cation of functions in H°°(d^). Let {9%}p be the smallest
closed subspace of Lp(d(5) that contains all f* o 9 with
^* e S% and is invariant under the multiplication by the
coordinate function e1^ on ^)U. Then, {9%}p is either doubly
invariant (i.e., ew{<SK}p = {STO}p) or simply invariant (i.e.,
ew{Sft}p $ {9K}p). We shall investigate these two cases
separately.
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(i) Suppose first that {^%}p- is doubly invariant: Then,
by [13], {S»}p = W(da), where,,S' is a measurable
subset of fiU and Cg- denotes its characteristic function.
Since . {SK }„, .is invariant < undjer T,,, we may assume that. S'
is invariant under T, i.e., r(S') =S' for, any T,^ T. So,
ps- e L''((fo)T. By Proposition 6.5, there exists an element Q
in L°°(rfx) such that Q o 9 == Gg, a,e. on &U. This shows
that Q takes either 0 or 1 up to a null set. Namely, Q
determines a measurable subset S of A^ such that Q = Cs.
We shall show that SO^ ̂ CsU'^). , ; . y . '

If re^, then f* o y e {S%}p so that

(CsD ° V == (Cs o v)(/"1' ° y) = Cs,(/-» o q>) = /•* o y.

Thus, C^r^f* a.e. and so ^eCsD'^x)., Hence,

' . / 1 ' 1 • ^ a» s csi/^x). ' ' ' ! ^ ' , • ' ",
In order to show the reverse inclusion, we take any s*

in L"'^) with p-1 + p'-i =^ 1. Then, s* o y e V\da}.
Now suppose that s* is orthogonal to SB^, i.e.,

.̂ ̂ wrwdy.w = o ; ; .
for every /"* e s .̂ Let g be the function defined by (2) with
a = OQ and define B(, e, H°°(R) by |Bo| = g8(6(g)-1). Let
u be any meromorphic function on R such that g\u\ is
bounded on R. Then, BQU e H°°(R) and therefore

BoUy-q^

for any f* e SIR. So we have

' ' .f^Wu{b)f*{b)^(b)d^b)=0^ , . ,.

By Theorem 5.12, there exists an analytic function M(/'*)
in H^R) such that ^(y*) ==Bo/1*.?11' a.e. on Ai. By consi-
dering the case u = 1, we have M(/'*)(o») = 0. Propo-
sition 6.5 shows us that

A[(Bo/^*) o y] = h[^f*S*] o y = M(D ° y.
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So \Bof*s*) o y is the boundary function for

M(f11) o y eH^U).

For any analytic function v on U, continuous up to the
boundary bU, we thus have

J;^(^)((6,r^) ° W") daW = ̂ (0)(M(f) o <p)(0)
= p(0)(M(D)(oo) == 0.

Taking L/ limits in ^(/** o y)^ we see that

f^ ((Bo^) o $)/, cfo = 0 for any /i e {2%},.

Since {3K}p ^Cs'L^cfo), (Bo^*) o y must vanish a.e. on S'
and consequently Bo^* must vanish a.e. on S. Since Bo
can vanish only on a set of measure 0 in view of Lemma 5.1,
s* must vanish a.e. on S. This shows that ^.LCsL^c?/)
and therefore C^L^d^) £3%, as was to be proved.

(ii) Now suppose that {9J?} p is simply invariant. Then,
by [14], there exists a function q e L°°(d<T) with \q\ == 1
a.e. on &U such that {9K}p == gH^dc). Since {S%}p is
invariant under T, there exists a character T —> c(r) of
the group T such that q o T == c(r)g a.e. on bU.

For any T e T, we draw a curve F joining the origin 0
with r(0) within U. Then <p(F) is a 1-cycle starting from
OQ. Clearly any two such curves define homologous cycles
of R. Therefore, ?(r) determines an element a in the
group Hi(R; Z). The correspondence T —> a preserves the
group operations so that it gives a homomorphism of T
onto H^(R; Z), which we call the canonical homomor-
phism of T onto Hi(R; Z). Thus, the above character
T -> c(r) of T induces a character 6 of Hi(R; Z) such that
9(a) == ^(r), where T —> a is the canonical homomorphism
of T onto Hi(R; Z).

Now let NeMH^R) be such that |N| =8(6) {= u, say)
and let N(z; a) for z e G ^ R ; Oo) and a e Hi(R; Z) be
defined as in the second paragraph of this section. Furthermore,
let NI be the analytic function on U such that

I Ni| = l N ) o < p .
15
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and Ni(0) = N(oo; 0). Then, N^ o r = c(r)Ni for any
T e T. Let f* e 9%. Then there exists a function F e H^U)
such that f* o y = qp, Multiplying Ni on both sides, we
get ^q{f* o $) =]^, where N^F is a T«invariant func-
tion in H^U). So we can find an h in H^R) with

h o 9 = N^F.
By (13), we have

h[h o y] = &[A] o y == A o <p == N^F == /i[^i^].

So, A o y == ̂ ^ a.e. on ?)U and therefore

(^/D ° ? == (^)/(r " ?) == iMi?
a.e. on ^U. This shows that hff* is independent of the choice
of f* in m.

Since u = 8(6) is outer, log u is an outer function in
HP(R) so that H exists a.e. on A^ and log u = h [log u].
Thus, we ha.ve

^ [ l o g M l ] = l o g | N J = l o g ( u o < p )
== (log u) o <p == h [log u] o <p === A [log (u o <p)].

Hence, |]^i| = u o y a.e. on bU. Now, by Proposition 2.4,

(15) log u == lim lim [(— m) V [n A (log u))].
w->oo n>'»

Put u^ = (-- m) V (^ A (log u)) for m, n == 1, 2, ....
Proposition 5.8 says that u^ has a radial limit a.e< on
G(R; ao) and u^^(L) = u^(^) a.e. on G(R; ao). It
follows from this and (15) that log u has a radial limit a.e.
and log u(L) = log u{b^) a.e., i.e., u has a radial limit a.e.
and u(L) = u(b^) a.e.

On the other hand, consider any branch N(z; a) of N
on the Green star region G'(R; Oo). Then, Lemma 5.5 states
that N(z; a) has a radial limit a.e. on G(R; Oo). Since
|N(z; a)| = u(z) on R, we conclude that |N(L; a)| == u(b^}
a.e. We define ]^(6; a) == N(L; a) with b = b^ whenever
N(L; a), L e A(ao), exists. Finally we put

Q(6;a)==^(&)]\r(fr.,a)/A(fc)
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it the right-hand side is defined. For each a e Hi(R; Z),
Q(&; a) is well-defined up to a null set and

|Q(6; a)| = ir(^(&)l|N(6; a)|== \r{b)lh{b)\u{b) == 1

a.e. So Q(&; a) is an i-function. Thus, for each f* e 3%,
we have /•*(fc)/Q(&; a) = A(6)/]N(&; a) a.e. on A^ for each
a e Hi(R; Z). Since |A(z)/N(z; a)[ o 9 == |NiF|/|Ni[ = JF|,
we see that A/N belongs to MH^R). Hence,

f^H^x;Q),
where H^^; Q) denotes the right-hand side of (14). This
shows that 9% is included in H^d^; Q).

Next we shall show the reverse inclusion. Let s* e L^rf^)
be orthogonal to 2K. Since {^Sfl}p = qH^da), we have, as
in (i),

^ ?F((6o5*) o y) da == 0 for any F e H^(U).

So, g((Bo^) o y) e ?'(^0) and f^ q{(B^) o $) da = 0.
Let ^eH^x; Q) and M e MH^R) be such that

^(6)/Q(&; a) = M(&; a) a.e. on A^ for each a G Hi(R; Z).
We use the representation Q(&; ,a) = f*(b)fi{b-, a)/A(6)
defined above. So we have ^(&) == f*(b)^{b^ a)M[(&; a)/A(6),
where N(z; a)M(z; a) is independent of a. Namely,

N(z; a)M(z; a)

defines a single-valued analytic function K(z) in HP(R).
Let Mi be the analytic function on U such that

[MJ = |M| o 9 and Mi(0) == M(oo; 0).

It follows that K o <p == M^N^ and therefore

(^ o $)((6o^) o 9) = Mig((6o^) o $) e H1^).

So, A[^6o^] ° 9 == ^[(^Bo^) o 9] = A[Mig((6o^) o 9)],
the last member being in ?(11) and vanishing at the origin 0.
Hence, A^^o^*] belongs to H^R) and vanishes at OQ.

We define v = h[v^s*}, ^+= exp ((log H) A 0) and
^ = exp (— ((log|p|) V 0)), where P_ is an outer l.a.m.
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by P^opositite c2.7. FuAhe?,t^ aefine A € H°°(R) by
1^1 = ̂ (^^(g^). Then, p/c/Bo is meromorphic on R,
vanishes at OQ and satisfies

g}^B^=.^(6y).,
Thus, g|^/c/Bo| has a feaEmonic itfaforant on R. By Theo-
rem 5.3, we have

^ (P(^(6)A(^ = /̂%)1(aol = 0.

Since ^(&) = ^*(A)6o4&)5*(&) a.e. on Ai, we get

(16) ^^(^^(^^^^ 0
for any ^* eH^x^Q) and anyl s*,jJlK.

Since k is outer, it is (3 exterior. To show this, we put
k^ = (— log |/c|) A n for n === 1, 2, ... Then, each ^ is
outer, exp (/(•„) is bounded on R and k^ -^ — log |/c|
pointwise on R. We have

\k\ exp (/cj = exp (- (- log j / c j ) + /cj < 1

and \k\ exp (/c») -^ 1 pointwise on R. We define ^ in
H^R) by the condition |^[== S(6(exp(^))-1) exp (/c,).
Then, {/c^ : n^ A, 2, ...} is a norm-bounded sequence in
H°°(R), so that it has a (3 convergent subsequence {kt^:
j =1,2, ...}. Let t E H^R) be the limit of this subsequence.
We thus have

M = ]j^ |/c^| = l^n 8(6 (exp (k^)\k\ exp (^)

=i^8(e(exp(^j>»

By the condition (B), ( i s p exterior and consequently k
is (3> exterior.

Thus, there exists a net {^} in H^(R) such that t^k
converge to 1 with respect to the P topology. Theorem 3.6
shows that t\k converge to 1 with respect to the weak*
topology a^J30^, L^rfx)).. Since H^ (rfx; Q) is invariant,
(16) implies

f^WH^^^b) W) =o
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for every(|X. Py l^lglpg la^it HI ;^, Iwe^see finally tha|b

^^t&)^(&)^C6),=
As s* is arbitrary, we have ^Je;-|£(L Hence,

p(rfx^Q)-^.
as desired.

(iii) We shall show that C^L^x) is doubly invariant for
any S c A^ and f hat H^^;^ is simply invariant for any
i-function Q.

We first consider the case 9% = GsL^^). We put

•u(2)^±e.xp (— G(^o, z))

and define Bi e H00^) by |Bi| = uS(9(u)-1). Then,

Bi(oo) == 0

so that 61 e H°°(^)o- We know that u( 6) == 1 a.e. on Ai.
Trivially, u(sgn Bi)3» == ̂  or, equivalently,

(u(sgn Bi))-1^ = a».

Since 3% is invariant, we have

® == (u(%iB^B^=^

where ^ == S(6(u)~1). A^ wfe ^shall show below, 2̂% is
dense in 3% and therefore T^^SSI is dense in 2)?, which implies
that SDtisdoubly.invnriant.

In order to show that v^Sfl is dense 3)t, we note that
— log v is a positive outer harmonic function on R. Putting
^ === (— log v} 1\ n for n '= 1, 2, . . ., we see as before that
^ are outer, exp ̂  as well as exp,(— ^J are bounded on R,
v exp (^) ^ 1, and (^ converge increasingly to — l o g ^
pointwise on R. By Propositions 3.1 and 3.3, ^ converge
increasingly to —log v in L1^^). So some sub&equence
{^nC/)2 /= Ay 2, . ..} of {^n} converges increasingly to
— log v ,a.e. oil Au and ^therefore exp (•— ^n(/)) converge
decreasingly to v a.e. on A^. Now let f* e 2%. Then,

^^.exp<^) e^aR.
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Since v.exp (^)) < 1 a.e., we have

r^exp(^)i ^ m
a.e. and /**^.exp(^o-)) converge a.e. to /** on A^. By
Lebesgue's dominated converge theorem, we (see that
f^.exp (^)) converge to /** with respect to the weak
topology cr(L^), L^(^)). Thus, ^ is weakly dense in
3%. Since ^3% is a convex subset of L^rf/), its weak
closure is exactly equal to its norm-closure. Hence 9̂% is
dense in 9%, as was to be proved.

Next we consider the case 9% = H^d^; Q). We take any
f* in the closure of H^^oSO^ i.e., there exists a sequence
{Un: u^ao) =0, n == 1, 2, . . .} in H°°(R) and a sequence
{f! : n == 1, 2, . . .} in 3% such that u^* converge to f*
in L^). L e t / i and A,, n = 1, 2, .... be in MH^R)
such that

r(&)/Q(&; a) = A(&; a) and CTW$ a) == ^(&; a)

a.e. on A^ for each oc e Hi(R; Z). We also take N e MH°°(R)
in such a way that |N| = 8(6), where 6 denotes the charac-
ter of q. Then, ]N(fc; a)^(&; a) == ]N(6; ^^(fc^fc; a) is
the Lp limit of the sequence

N(&; a)u,(fc)^(&)/Q(fc; a) = ^(&)]N(fc; a)A,(&; a).

It follows easily that the sequence of single-valued analytic
functions i^(z)N(J3$ a)/^(z; a) on R converges to

N(z;a)/^;a)

uniformly on compact subsets of R. Since u^(ao) = 0 for
each n, we have N(ao$ a)A(ao$ a) == 0 and therefore

^;a)=0.

On the other hand, let N' e MH^R) be such that

[N'l = 8(6~1).

Then, the function ]Sl'(&$ a)Q(6$ a) is independent of a and
so determines a function f e L°°(^). Since

f(6)/Q(6;oc)=^(&;a),
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we have f e H^rf^; Q) for every 1 ̂  p ^ oo and in parti-
cular f eg%. Since N'(oo; a) ^ 0, the above observation
shows that f is not in the closure of H^d^oSK. Hence, 3%
is simply invariant.

The proof of the theorem in the case of 1 < p < oo can
now be obtained easily by combining (i), (ii) and (iii). The
case p = oo can be shown in the same way as in the case
1 < p < oo by using the weak* topology ^(L00^), L1^))
in place of the 1̂  norm topology. The statements concerning
the uniqueness of S and Q can be shown easily. This comple-
tes the proof of Theorem 7.1.

Finally, we deduce Neville's main result in [8] from the pre-
ceding theorem.

COROLLARY 7.2 (Neville [8; Theorem 7.1.1]). — Let R
be a hyperbolic Riemann surface for which (A), (B) and (C) hold.
Let 1 ̂  p ^ oo and let 9K be a closed (P closed, if p == oo)
subspace of H^R). Then, S% is an ^{Rysubmodule of
H^R) if and only if it is quasi-principal, i.e., there exists a
bounded inner l.a.m. I such that, for 1 <S p < oo,

9K = {fe H^R) : (|/1/^ admits a harmonic maforant}

and, for p = oo,

m === { f e H°°(R) : I/I/I is bounded}.

Proof. — Let 9% be a non-trivial closed (p closed, if p = oo)
H°°(R)-submodule of H^R), 1 ̂  p ^ oo. Put

3»A={f:/ 'e3»},

which is the set of the boundary functions of the elements in 9)?.
It follows from Theorems 3.5 and 3.6 that SD^A is a closed
(weakly* closed, if p = oo) H^rf^-submodule of H^rfy).
Every nonzero function in 3%A cannot vanish identically
on any subset of A^ of positive measure. So, S%A cannot
be doubly invariant in view of Theorem 7.1 a). S%A is thus
simply invariant so that there exists an i-function Q of some
character 6 with S%A = ?(^5 Q). H fe^, then

^eH^c;Q)
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and so there exists an h e MH^R) such that

A&)/Q(&; a) = h(b; a)

a.e. on A^ for any a e Hi(R; Z). Namely, f{V)fh(h\ a)
is independent of the choice of /* in Sft. Since f[z)jh{z^ a)
is a multiplicative meromorphic function of bounded charac-
teristic on R whose boundary values are independent of /*,
we see that the function f{z)lh{z', a) itself is also independent
of fe aft. We put q(z9, a) == f{z)lh{z9, a) so that

$ ( f c ;a )=Q( f c ;a )

a.e. on A^ for any a e Hi(R; Z). Thus a function /*e H^R)
belongs to 3% if and only if f{z)lq{z-, a) is in MH^R).

On the other hand, Proposition 2.7 implies that

Pi (log I/I) ^ 0

for any fe^Sft. Since I(R) is order complete, we see that
V{pi( log | /1) : /'e Sft} (=^ ui, say) exists in I(R). If we
put I = exp Ui, then I is an inner l.a.m. on R and (l/i/^
admits a harmonic majorant on R (I/I /I is bounded on R,
if p == oo) for any fe 9ft. Let J e MH°°(R) be such that
| J | = = I on R. We have shown that /*(z)/J(;s; a) e MH^R)
for any f e 9ft.

From these observation follows that q(z^ a)/J(z; a) belongs
to MH°°(R). In fact, q{z\ a)/J(z; a) is evidently a multi-
plicative meromorphic function of bounded characteristic.
Suppose that this has a pole at a point, a', in R. We then
take any nonzero /*e9ft, so that f{z)|q(zf, a) G MH^R).
We suppose that ffq has a zero of order c' ^ 1 at the point
a'. Let B' be a meromorphic function on R such that
|B'| = exp (c'G^).8(6 (exp (— c'G^))). Then, /B' is a mero-
morphic function of bounded characteristic on R such that
we have f{z)B'(z)/q(z^) e MH^(R) and f6' e L^c). There-
fore, fB' also belongs to Sft^? i-e., the boundary function
of an analytic function in H^R). Since /'B' is of bounded
characteristic, it is determined by its boundary values, so
that fB' belongs to H^R), too. Hence, fB' e Sft and there-
fore /'(^B'^/J^; a) belongs to MH^R). But

^B^/J^; a) = (^)B'(^)/^; a))(^; a)/J(^; a))
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should have a pote a.1 ̂  iftivJeN ofonrcon§truGAioA?ofc B^
This contradiction shows that g(z; a)/J(z; a) must be analy-
tic. Since J is anal^ic, y is^also^^^^^a^ Since \q\ = 1
a^e. oir Ail |gj JLS ^n inner l.^.m. and |g|/I < 1. Since
(I/I /I ?1 )p admits a ha|rm^mic inaiorao^ .(Ml /I ?1 ls bounded,
if p =?= oo). and w j)^ (log lf|) < log I?) for any ^e STO,
we see that log,! <^ log jgJ, or equiyalently, I/lg| ^ 1. So,
| q\ === I and therefore q .. and J ar^ ^equivalent. Hence,
the subspace SDl has the desired form. The converse statement
is obvious. Q.E.D.
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