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TOPOLOGICAL CONJUGACY
OF LOCALLY FREE R71-1 ACTIONS

ON n-MANIFOLDS
by D. TISCHLER and R. TISCHLER

This paper considers locally free differentiable actions of
R/1""1 on a compact orientable n-manifold which have no
compact orbits. For such an action, it is known that all orbits
are isomorphic to T^ X R"-^-1 for k fixed, n — k ^ 2,
where ^lc is the /c-torus [I], We associate to such an action
a collection of rotation numbers which are elements of S1.
Theorem 1 states that when such an action is free (/c = 0),
it is topologically conjugate (i.e. in a parameter preserving
sense) to a linear action on a torus, provided one of the rotation
numbers is sufficiently irrational (i.e. satisfies a Liouville
inequality). Theorem 2 treats the case of a sufficiently irra-
tional rotation number and k ^ 0. It gives again a topolo-
gical conjugacy to a linear action on the n-torus when

n — k > 2.

When n — k == 2, it gives a topological conjugacy to a
certain type of action on a principal T^ bundle over T2.

We would like to thank R. Sacksteder for many helpful
conversations.

We will take the /c-torus T^ to be the^ quotient of R^
by the integer lattice V. An action a: R^ X T" -> T"
of R^ on T" is said to be linear if it is obtained as the pro-
jection of an action a of R^ on R" defined by

a(r, x) = x + Ar,
12
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where A is an n X k matrix of real numbers. Two actions 9
and 9' of a Lie group G on manifolds V and V respec-
tively are said to be topologically conjugate if there is a homeo-
morphism f: V —^ V such that /*(9(g, ^)) = 9'(g, /*(^)) tor
all g in G, v in V. All actions will be differentiable and
differentiable will mean of class C°°. Further details of part I
can be found in the thesis of R. Tischler [3].

1. Let 9 be a locally free action of R""1 on a compact
connected orientable M-manifold V" with no compact orbits.
We begin by describing results in [1] about the foliation
whose leaves are the orbits of 9. It is known that since no
orbit of 9 is compact, every orbit is dense in V" and the
holonomy group of each orbit has at most two elements ([I],
theorems 8 and 9). Since V is orientable the foliation is orien-
table and hence there is no holonomy.

One can find a differentiably embedded circle S1 in V"
which is transverse to the orbits of 9. Each orbit meets this
circle since they are dense. There is induced by the foliation
a pseudogroup F of local orientation preserving diffeomor-
phisms of S1.. These are defined by holonomy mappings
from one interval to another interval on the embedded circle.
Theorem 6 of [1] shows that there is a bundle-like metric on V71

for which the embedded circle is orthogonal to the leaves.
This means that the orthogonal flow to the leaves parametrized
by arc length leaves the foliation invariant, and in parti-
cular that the metric induced on the transversal circle is inva-
riant under the action of I\ In fact, we can assume S1 to
be parametrized as R(, t in R/Z, such that for each element f
in r there is a X in S1 such that f{pt) == pt+\ for any R(
in the domain of /*.

In order to have the bundle-like metric differentiable, it is
necessary in general to choose a new atlas for V". The new
atlas, ([I], p. 97), is constructed as follows: let

h: U -> R1 X R"-1

be a chart such that the projection to R1 defines the foliation
locally. Then a chart for the new atlas is constructed from h
by composition with a homeomorphism of R1 X R""1 which
is the product of the identity on R""1 and a particular
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homeomorphism of R1. Because the change of atlas is of this form,
the R""1 action remains differentiable for the new atlas on V".

THEOREM 1. — Let 9 be a free differentiable action of R/1"1

on a compact connected oriented n-manifold V71. Suppose that
there is a real number X such that for some f in F described
above, and some p^ f{pt) .== p^, where X satisfies the
Liowille inequality

(1.1) x ± m- > c
n n^

for arbitrary integers m, n, and fixed real numbers C and y
with Y > 2. Then 9 is topologically conjugate to a linear
action a of R/1"1 on the n-torus T".

It is known that all irrational numbers except a set of
transcendental numbers of measure zero satisfy an inequality
such as (1.1).

Remark. — Theorem I gives a topological conjugacy to
a linear action. However, if one uses the atlas on V" which
makes the bundle-like metric differentiable, then the proof
of theorem 1 actually gives a differentiable conjugacy with a
linear action. This remark will be needed for theorem 2.

The proof of theorem 1 will involve a series of lemmas in
which the hypotheses of theorem 1 will be assumed.

L E M M A I . I . — I f for some fin F,P( in the domain of /*, and X
in S1, f(pt) == Pt+\y then there exists an J m ^ such that J
restricted to the domain of f is the same as /*, and for all p^
in SS J { p t ) = p^x.

Proof. — The orthogonal flow to the leaves parametrized
by arclength leaves the foliation and embedded circle invariant.
Hence it sends elements of F into elements of F by trans-
lating domain and range. Since the orbit of pt under this flow
is the entire embedded circle the lemma is proved.

We see therefore that F actually comes from a group of
rotations of the circle. This group of rotations of the embedded
circle is independent of the choice of bundle-like metric. We
call X as in lemma 1.1 a rotation number, and when 9 is
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free we can define a unique « return function » r\: S1 -> R/1-1

by the equation (p(r^((), pt) == pn-x. One can show that r^
is differentiable. The next lemma shows that if one return
function is constant, then all return functions are constant.

LEMMA 1.2. — Let r\ and r^ be two return functions.
Suppose that X is irrational and r\ constant. Then r« is
constant.

Proof. — Consider the closed curve ^ defined by

?^ == y(ra(0), pt)
where t is in R/Z. Since <p(r^, ^+p,) == q^^ the curve ^
is r^-invariant, and intersects the curve p< at p« == q^.
Since X is irrational, the set {(JL + n\\n e Z} is dense in
R/Z. Thus py.-n\ == qy.-n\ tor n in Z. We conclude that
9t+p. = Pt+u. tor all t in R/Z. Thus <p(r^(0), R() = P(+^. and
hence r^(0) = ry,{t) for all (. This completes the proof of
lemma 2.

We want to find an embedded circle with all return functions
constant. To do this, we need the following lemma (see [5]).

LEMMA 1.3. — Let F be a C30 mapping from S1 to R"-1

such that j F = 0. Define the map T of the set of continuous
maps from S1 to R71-1 to itself by Tg (() = g(t + X), for t
in R/Z. J/* X satisfies the inequality (1.1), ^M (Aere 15 a C^
solution g mapping S1 (o R"^ of the equation

(1.2) g - T g = F .

Proof. — The mapping F is C°° if and only if for each
k == 1, . . ., n — 1 and for all integers 5 ^ 0 ,

(1.3) S ^|a5| < oo
y=-oo

where a$ is the /th Fourier coefficient of the mapping F^
from S1 to R, where F == (F1, . . . , F71-1) ([4], page 26.)
Thus if the equation (1.2) has a solution g === (g1, . . ., g"~1),
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where g^ has the Fourier expansion

g^) - s V]^,
J=- oo

then a simple calculation yields that

L/c / i \ ^(-^-f) ,b^=( ) e < ^a)\2 sin /TCX/ •/

and so î -^)^-
The inequality (1.3) and the fact that X satisfies (1.1) allow
one to show that if g is defined by {&)}, then g is a C00

solution to (1.2) and lemma 1.3 is proved.

MAIN LEMMA 1.4. — Suppose that there is a real number X
such that for some f in F, f{pt) = P(+X? where X satisfies (1.1).
Then there is an embedding of the circle q^ in V" 5uc/i t/iat
aM return functions are constant.

Proof. — By lemma 1.2 it suffices to find an embedding q^
of the circle in V" with just one return function r\ constant,
provided that X is irrational. In some cases one can construct
an embedding p^ of the circle with constant X-return func-
tion from the original embedding pt in the following way.
If K is a mapping of S1 to R71"1, and we define p^ by
pt = <p(K((), p t ) , then the return functions r\ and r\
respectively corresponding to the rotation number X are
related as follows;

(1.4) rx(t) == r^{t) - K(() + K(( + X).

So if r\ is to be a constant C, one must have

K ( ( ) - K ( ( - X ) = r ^ ) - C ;

or, differentiating, K'(() — K^t + X) == r{(t). Since X satis-
fies (1.1), lemma 1.3 guarantees the existence of a C°° mapping
K from S1 to R"-1 such that equation (1.4) is true. pt need
not be an embedding; however if R( == p i , then for all
integers n, p^ = p^+n\, so for all \ pi = pt+^-t^ One
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can find an embedding as desired by considering

<o = min {t\pt = po}

and representing S1 as R/Z. to. The minimum exists since
qi is an immersion, and we can assume that to == 1- Thus
the Main lemma is proved.

Proof of theorem 1. — We can assume that there is an embed-
ding pt of R/Z in V'1 with all return functions constant.
Such constants form a subgroup of R""1. We can now define
an action Y of R1 on V" in the following way; every
point v in V71 can be written as 9(r, p^ for some ( in R/Z,
r in R^. Let T(5, <p(r, p<)) = <p(r, p^-,). In particular,
Y(5, pt) = pt+s' The action Y is easily seen to be well-
defined, and clearly Y commutes with <p, and so we have an
action 0 of R" on V" defined by

<D((r, ^), „) = Y(^, <p(r, „)) = <p(r, Y(^, „))

for (r, s) in R"-1 X R.
The orbit of any point v of V'1 under 0 is the whole

of V; thus the map % of R" to V'1 given by
W = $(r, „)

induces a homeomorphism h of R^/Iy to V", where !„
denotes the isotropy subgroup of v under 0. The action 0
on V" corresponds to the action of R'1 on R^Iy induced
by the natural action of R" on itself. Note that

^ = ( 0 , ...,0,1)
in R" is an element of Iy$ also if r\ in R"-1 is a return
constant for the action 9 corresponding to a rotation
number X, then (r^, — X) is also in ly.

In fact, it is known that the quotient of R" by a discrete
subgroup is a compact n-manifold if and only if the subgroup
is isomorphic to Z\ This implies that ly is generated over
the integers by n vectors in R"; it is clear that we can choose
a set of free generators of the following type;

{e, r^ — \e, . . ., r^ — \^e}

where r^. = (r^., 0) and r^ is the return constant in R'1-1
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corresponding to a rotation number \. Note that we have
used \ to denote both a real number and its class in R/Z.
Since ly is discrete, this set is also linearly independent
over R. (Hence the set {r^, ..., y^n-i} m R""1 is linearly
independent and gives a set of free generators for the group
of return constants.)

There is thus an isomorphism I : Z" —> ly which extends to
a group automorphism I of R". This defines a homeomor-
phism I : R^Z" -> R^/Iy which respects the naturally induced
R" action on both spaces. If r and w are elements of R",
[w] the class of w in T", then one has that

Z-^(r, hl[w}} = W + [I-^r],

which means that $ is conjugate by hi to a linear R"
action on T\ Since <p(r, ^) is equal to 0((r, 0), ^), we
have (^^(r, hl[w]) = [w] + [A(r)] where we set

A(r)=7-i(r,0).

This completes the proof of theorem 1.
One cannot expect to prove a result like theorem 1 without

some condition on the degree of irrationality of a rotation
number. That is, there do exist free actions with no compact
orbits for which there are no circles with constant return
functions. An example of such an action of R1 on T2 is
given in [2].

2. In this section we will generalize the results of theorem 1
for free actions to locally free actions of R""1 which are not
free, but which have no compact orbits. For such actions, as
mentioned above, all the orbits are dense, and it follows
easily that the isotropy subgroups are equal at every point.
Hence, every orbit is diffeomorphic to R"-^-1 x T^, k ^ 0,
k constant, and we have that the action induces a free action
9 of R^-i x T^ on V\ The restriction of 9 to {0} X ^
defines a principal ^k bundle structure on V71 and 9 pro-
jects to a free action <p of R"-^-! on the quotient space
V^/T^. For such a 9 we have the lemma :

LEMMA 2.1. — If 9 is conjugate to a linear action of R"-^-!
on T^ by a diffeomorphism of T^ onto V^T^, then
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either a) the action of T^ on V" defines a trivial principal
^k bundle, or b) the dimension of V"/!̂  is 2, i.e. n — k == 2.

This lemma, combined with theorem 1, will enable us to
prove the following theorem:

THEOREM 2. — If any of the rotation numbers of 9 satisfy
the Liouville inequality (1.1) then there are two possibilities:

a) If n — /c > 2, 9 is topologically conjugate to a free linear
action of R^-i x T^ on T"; or

b) If n — k == 2, V" is the quotient space of R" by a group
of covering transformations which are affine mappings of R".
Furthermore^ 9 can be topologically conjugated to an action T
on V" which is cohered (relative to the above covering) by a
linear action of R"""1 on R\

Proof of lemma 2.1. — We will assume that n — k > 2
and show that a) is true. We are given that there is a diffeo-
morphism from T""^ to V^/T^ which conjugates 9 to a
linear action on ^n~k. This diffeomorphism pulls back V"
to a differentiable principal T^ bundle over rTn~k, and
conjugates 9 to a free R"-^-! x Tp action on this bundle
which projects to the linear action of R^^-i on T^^ that
is conjugate to 9. Thus we lose no generality by assuming
that 9 is actually linear. The principal T^ bundle is a
product of k principal S1 bundles over T""^ each a quotient
of the T^ bundle by a T^"^ subgroup of T^ 9 induces a
free R"-̂ --! x S1 action on each of these S1 bundles. Hence,
it suffices to assume that k = 1, for if each of these S1

bundles is trivial, then so is the ^k bundle. Since 9 is
linear it induces a free linear action of R2 on any linear
3-torus in ^n~k. Furthermore 9 will restrict to a free action
of R2 X T* on the portion of the T^ bundle sitting over the
3-torus. Since the Chern classes of the principal S1 bundles
are in H^T""^ Z), and since we are assuming that

n — k > 2,

it is sufficient to prove the lemma in the case n — k •===• 3.
Thus it suffices to prove lemma 2.1 in the special case where
V4 is a principal S1 bundle over T3 and where 9 is a free
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action of R2 X S1 on V4 which projects to a free linear
action of R2 on T3. Let {x^ x^ x^) be the usual angular
coordinates on T3. Let T^ 0 ^ i < j ^ 2, denote the
2-torus defined by ^ == 0, 0 < k ^ 2, k ^ i, /. Then the
R2 action <p induces a linear vector field on each Ty, unique

up to a constant multiple. Let X = — + P —> and
b.Ti bx^

Y- b -4-^Y — ^— -^- a^—?
!>XQ l̂

with a, (3, real constants, be the induced vector fields on Tig
and TOI respectively. We observe that the numbers 1, (B,
a(3 are independent if the reals are considered as a vector
space over the rationals. Otherwise, it is easy to construct a
periodic vector field on T3 which is a linear combination of X
and Y and this would contradict the fact that 9 is a free
action.

The action 9 restricted to an R1 subgroup of R2 X S1

defines a vector field on V4. Let X and Y be two such
vector fields which project respectively to X and Y.
Y induces a flow a^ on V4 and Oi maps the portion of V4

over Tia diffeomorphically onto itself. We denote V4 res-
tricted over Tig by N3 and proceed to describe N3 as a
quotient space of R3. Let {x^ x^ z) denote the usual coor-
dinates on R3. Then consider the group of diffeomorphisms
of R3 generated by

Yi(^i, x^ z) = [x^ x^ z + 1)
Y2(^i, ̂  z) = (o;i + 1, x^ z)
Y3(^i, x^ z) == (;Ti, x^ + 1, z + prci),

where p, an integer, denotes (up to sign) the Chern class of
the principal S1 bundle N3 evaluated on Tia. The quotient
space of R3 by this group is a principal S1 bundle over Tia
by projection to the first two coordinates, equivalent to N3

since such a bundle is classified by its Chern class. Since Y
commutes with the action of S1 along the fibers of V4, we
see that Oi is covered by a diffeomorphism Oi of R3 which
can be written

01(̂ 1, x^ z) == (^ + a, x^ z + g(x^ ^3)),
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where g is differentiable. From the form of the covering trans-
formations Yi? 1 ̂  l ^ 3? we see that g has the properties :

(2.1) g{x^ + I? ^2) = §'(^1? x^) + ^? yyi an integer
(2.2) g(^i, ̂  + 1) == g(a;i, ^2) + pa + q, q an integer

Since X is tangent to N3 and commutes with the action
of S1 on N3 we can lift X to a vector field X on R3 which
has the form

X——4-P-^+A^)^ox^ ox^ oz

Since X is invariant by Y2 we have that

f{x^ + 1, x^) = f{x^ x^).

Since [X, Y] == 0 on V4, a^ must leave X invariant.
Hence, by applying the jacobian of 5i, we find that

(2.3) f{x^ + a, x^) — f{x^ x^) — gi{x^ x^) = (Bg^, ^2)

where gi == -°-
bXi

If we integrate (2.3) with respect to x^ from 0 to 1,
we find, by (2.1), that

— rn= Pj^&sO?, ^2) ds.

If we then integrate with respect to x^ from 0 to 1 we
find from (2.2) that

- m = P f^ [g{s, 1) - g(^, 0)] ds = pap + q^

This contradicts the rational independence of 1, (3, and
a(3 if p ^ 0. Thus, p == 0, which means that the Chern
class of V4 evaluated on Ti2 is zero. A similar argument
shows that the Chern class is zero on Toi and Tog as well.
Hence V4 is a trivial bundle, and lemma 2.1 is proved.

Proof of theorem 2. — We can apply theorem 1 to 9. That
is, there is a topological conjugacy of 9 to a linear action Y
of R^-^-i on T"^. However, to apply lemma 2.1, we need
a differentiable conjugacy. According to the remark after
theorem 1, we can make the conjugation differentiable provided



TOPOLOGICAL CONJUGACY OF LOCALLY FREE 223

we use the right choice of atlas on V^/T^. If we change the
atlas on V^/T^ without changing the atlas on V", then the
projection of V'1 to V^/T^ may not be differentiable. We give
an indication of how to find atlases on V" and V/T^ for
which 9 and 9 are differentiable and for which the pro-
jection of V" to V^/T^ is differentiable. Recall that in order
to define the rotation numbers, a bundle-like metric was
constructed as well as a corresponding new atlas for which
the bundle-like metric is C°°. There is a bundle-like metric
for 9 which is invariant by the T^ action on the fibers of
Nn. This is true because any metric which admits a closed
loop orthogonal to the leaves can be modified to a bundle-
like metric [I], This metric and corresponding new atlas
can be projected to V"/^ where it is a bundle-like metric
for 9. Hence, we can use the remark after theorem 1 to see
that lemma 2.1 applies to 9 and 9 with the new atlases.
The change of atlases causes no loss of generality since the
conclusion of theorem 2 gives only a topological conjugation
of 9.

First we consider the situation where case a) of lemma 2.1
applies. In this case, the diffeomorphism from T"^ onto
V^/T^ conjugates 9 to a linear action Y on T"^ and
conjugates 9 to a differentiable action Y of R/1-^-1 x 'Tk

on the trivial Tk bundle, T"^ X T^. The action T restricted
to {0} X ^ gives translation along the fibers of this T7'
bundle.

We will be able to show that theorem 2 is true in case a)
if we can find a section a : T"^ -> T^ X ^ with the pro-
perty : (T is invariant under the action of Y restricted to a
subgroup G of R/1-^-1 x T^, where G is isomorphic to
pn-fc-i ^^ ^ conjugates the action of Y restricted to G
to the action Y. For each x in T"-^, let a^{x) denote the
projection of a{x) on the T^ factor. Then we can map
T^ X T^ to itself by sending (re, () to (x, t + c^{x)). This
map is a principal T^ bundle isomorphism. Furthermore,
this mapping conjugates T to an action of G X T^ on
^n-k ^ ̂  ^yh^h is given by T^ translation T in the second
factor and where the action of G on T""^ in the first factor
is conjugate to the linear action Y. Hence, we have that Y
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is conjugate to the linear action Y X T of R^-i x T^
on T"-^ X T\ This conjugation involves an isomorphism
of the group G X T" to R^-i x T" as well as a homeo-
morphism of the space on which the group acts. However,
this does not affect the conclusion that 9 is topologically
conjugate to a linear action since the isomorphism of groups
is a linear isomorphism. Thus to prove case a) of theorem 2,
it sufficesj/o produce a section <r as above.

Since Y is linear, there is a linear circle C in T^ trans-
verse to the orbits of T which has a rotation number X^,
satisfying the Liouville inequality (1.1). This follows from the
proof of^theorem 1, which is used to conjugate 9 to a linear
action Y. Let r^, ..., r^^ in R^-1 be a basis for the
return constants for (1_ The bundle over C is isomorphic
to the trivial bundle C X T^. Let the points of (J X T^
be denoted by (j^, 6) for^ ( in R/Z, and 6 in T\ Consider
the automorphisms of C X T^ given by

(P(, 6) ̂  T(( .̂, 0), (p,, 6)), 1 ^ ̂  n - k - 1.

Since ^V{r^ pt) = pt+^, and since Y commutes with
translation along the fibers, we have

^((^, 0), (p,,6)) = (p ,̂ 6 + p(^)),

where p is a differentiable function from C to T\ The
mapping p is homotppic to a constant. This can be seen
from the homotopy C X T^ X [0, 1]-> ̂ k given by

(^e^)->^(Y((^^,0),(p,,6))),

where jig is the projection of T"^ X T^ onto the ^ic factor.
Thus p comes from a map p : S1 -> R^, or in other words,
Jg iP ' ^0 - K h: S1-^ R^ is a differentiable function, we
denote by ~h the corresponding function from S1 to T\
Given such a function h we can define a section C of C X ^
by

C = { ( p , , h(t))\teRIZ}.

We would like to find such a section C so that, for each i,
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l ^ i ^ n — k — 1, there is a 6^ in T^, with

T((r^, 60, C) = C.

We have that Y((r^ 6,), (p,, %(())) = (p,-^, 6^+ p(^+ %(<)),
and so we need an h such that /i(( + \) = ̂ ) + p(^) + 8r
By lemma 1.3, the equation h'(t + ^i) = h\t) + P'^) can
be solved for an R^-valued function h since X^ satisfies (1.1)
and I < p' ==0. Thus for i == 1, there is a 61 such that

*/ s
^((r^? ^i)? C) = C. Since any two points in the fiber differ
by a translation of T\ we can choose a 6^ for each i,
2 < i ^ n — k — 1, such that ^((r^, 6^, C) intersects C.
It then follows by an argument similar to the proof of
lemma 1.2 that Y((r^, 6,), C) == C for all i,

l ^ i ^ n — k — 1.

We take G to be the linear subgroup of R^-^-i x Tp spanned
by the elements (r^, 6;), 1 ̂  i ^ n — k — 1; i.e. G is covered
by a linear subspace of R" with a basis which projects to
{(r^, 6;)}. The union of the orbits through all points of C
by the action of ^V restricted to G forms a submanifold
which intersects each fiber once and only once. This submani-
fold defines a section a : rTn-k —> T""^ X T^ and cr clearly
conjugates the action of G by T to the action of R/1-^-1

by T. Thus the proof of case a) is complete.
In case b} where n — k == 2, we have that V" is a princi-

pal T^ bundle over T2, but not necessarily a trivial bundle,
and that 9 is topologically conjugate to Y which projects
to a linear action Y of R1 on T2. We will simply indicate
how to modify the proof of part a) to take into account the
fact that the bundle may not be trivial. Again let C be a
linear circle in T2 with associated rotation number X and
return constant r\ in R1. The bundle over C is again iso-
morphic to C X T\ The automorphism of C X T^ given by

(^6)^Y((r,,0),(^6))

is no longer homotopic to the identity. Hence, the n-tuple of
integers 73 = f p' is not necessarily zero as in case a).
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However, we can find an h: S1 —> R^ which solves the equa-
tion ^(t 4- X) — h'(t} == p'(() — •/]. As above we define a
section over C by C === {(pt? h'{t))\t e R/Z}. Then there is
a 61 in T^ such that

^((rx, 61), (p,, 7^))) == (p ,̂ h{t + X) + T] .^

where T].( denotes scalar multiplication of T] by ^. We
can again define a subgroup G of R1 X T^ as in the proof
of part a); i.e., in this case G is spanned by (r^, 61). The
orbits through C by Y restricted to G do not form a
section in general, so we must modify the results of part a).
We lift Y to an action T on R1 X Tk X S1 which is a
covering space of V" by the covering projection

TT : R1 X T^ X S1 -^ V",
given by

7.(r, 6, f) == Y((r, 6 + 6i.r/rx), (p^(f))).

The action Y is simply translation by R1 X T^ in the first
two factors of R1 X ^lc X S1. This is so because

^ + r, 6 + e , < ) = ̂ ((r, 6 + e^.r/^), 7r(r, 6, ()),

where we can use (r, 6 + 81 -^y^) i11 the right hand expression
instead of (r, 6) since we are able to make a linear isomor-
phism of R1 X T^ to G X T^ without loss of generality.
The cyclic group of covering transformations of

R1 X T" X S1,
relative to w, is generated by the homeomorphism

(r, 6, () ^—— (r + r^ 6 - T) .(( - X), t - X),

since this homeomorphism commutes with TT and r\ gene-
rates the return constants. (We are using X as both a real
number and as an element of R/Z as in the propf of
theorem 1.) This homeomorphism is clearly covered by an
affine mapping of R\ Thus we see that V" is the quotient
space of R" by affine transformations and Y lifted to R"
is clearly a linear action. This completes the proof of case b)
of theorem 2.
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