JEAN ERIK BJÖRK

On extensions of holomorphic functions satisfying a polynomial growth condition on algebraic varieties in \mathbb{C}^n

Annales de l'institut Fourier, tome 24, nº 4 (1974), p. 157-165 http://www.numdam.org/item?id=AIF_1974__24_4_157_0

© Annales de l'institut Fourier, 1974, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble 24, 4 (1974), 157-165.

ON EXTENSIONS OF HOLOMORPHIC FUNCTIONS SATISFYING A POLYNOMIAL GROWTH CONDITION ON ALGEBRAIC VARIETIES IN Cⁿ

by Jan-Erik BJÖRK

Introduction.

Let C^n be the affine complex *n*-space with its coordinates z_1, \ldots, z_n . When $z = (z_1, \ldots, z_n)$ is a point in C^n we put $||z|| = (|z_1|^2 + \cdots + |z_n|^2)^{1/2}$. If V is an algebraic variety in C^n then V carries a complex analytic structure. A holomorphic function f on the analytic space V has a polynomial growth if there exists an integer N(f) and a constant A such that

 $|f(z)| \leq A(1 + ||z||)^{N(f)}$ for all z in V.

Using L²-estimates for the $\overline{\diamond}$ -equation very general results dealing with extensions of holomorphic functions from V into Cⁿ satisfying growth conditions defined by plurisubharmonic functions have been proved in [4, 8, 9]. See also [2, 3, 6]. A very special application of this theory proves that when V is an algebraic variety in Cⁿ then there exists an integer $\varepsilon(V)$ such that the following is valid:

« If f is a holomorphic function on V with a polynomial growth of size N(f) then there exists a polynomial $P(z_1, \ldots, z_n)$ in C^n such that P = f on V and the degree of P is at most $N(f) + \varepsilon(V)$ ».

In this note some further comments about this result are given. We obtain an estimate of $\epsilon(V)$ using certain properties

JAN-ERIK BJÖRK

of V based upon wellknown concepts in algebraic geometry which are recalled in the preliminary section below. The main result occurs in theorem 2.1.

Finally I wish to say that the material in this note is greatly inspired by the (far more advanced) work in [1]. See also [5] for another work closely related to this note.

1. Preliminaries.

The subsequent material is standard and essentially contained in [7]. Let P_n be the projective *n*-space over C. A point ξ in P_n is represented by a non-zero (n + 1)-tuple (z_0, \ldots, z_n) of complex scalars, called a coordinate representation of ξ . Here (z_0, \ldots, z_n) and $(\lambda z_0, \ldots, \lambda z_n)$ represent the same point in P_n if λ is a non-zero complex scalar. If $z = (z_1, \ldots, z_n)$ is a point in C^n we get the point $\mathscr{I}(z)$ in P_n whose coordinate representation is given by $(1, z_1, \ldots, z_n)$. Then \mathscr{I} gives an imbedding of C^n into an open subset of the compact metric space P_n and the complementary set $H_{\infty} = P_n \setminus \mathscr{I}(C^n)$ is called the hyperplane at infinity.

1.a. The projective closure of an algebraic variety. — If V is an algebraic variety in C^n then $\mathscr{I}(V)$ is a locally closed subset of P_n and its metric closure becomes a projective subvariety of P_n which is denoted by ∇ . The set

 $\delta V = H_m \cap \overline{V}$

is called the projective boundary of V.

A point w in H_{∞} has a coordinate representation of the form $(0, w_1, \ldots, w_n)$ and w gives rise to the complex line $L(w) = \{z \in C^n : z = (\lambda w_1, \ldots, \lambda w_n) \text{ for some complex scalar } \lambda \}$. In this way H^{∞} is identified with the set of complex lines in C^n .

Under this identification we know that ∂V is the projective variety corresponding to the Zariski cone

$$V_c = \{z \in C^n : P^x(z) = 0 \text{ for every } P \text{ in } I(V)\}.$$

Here $I(V) = \{P \in C[z] : P = 0 \text{ on } V\}$ and P^x denotes the leading form of a polynomial P. That is, if d = deg(P)

we have $P = P^x + p$ where deg (p) < d and P^x is homogenous of degree d. Finally a point w in H_{∞} belongs to ∂V if and only if the complex line L(w) is contained in the conic algebraic variety V_c .

1.b. The Vanishing Theorem. — Let \mathcal{O} be the sheaf of holomorphic functions on the compact complex analytic manifold P_n . Recall that P_n is covered by (n + 1) many open charts $U_i = \{\xi \in P_n : \xi \text{ has a coordinate representation of the form <math>(z_0, \ldots, z_{i-1}, 1, z_{i+1}, \ldots, z_n)\}$. Here $U_0 = \mathcal{I}(\mathbb{C}^n)$ and in each intersection $U_i \cap U_j$ we have the nowhere vanishing holomorphic function z_i/z_j .

Let \mathscr{G} be a coherent sheaf of \mathscr{O} -modules and m an integer. If U is an open subset of P_n then the sections over U of the « twisted sheaf $\mathscr{G}(m)$ », i.e. the H^o(U, \mathscr{O})-module H^o(U, $\mathscr{G}(m)$) are given as follows:

«An element a in H⁰(U, $\mathscr{S}(m)$) is presented by an (n + 1)tuple $\{a_0, \ldots, a_n\}$ where each $a_i \in H^0(U \cap U_i, \mathscr{S})$ and $a_i = (z_j/z_i)^m a_j$ holds in $U \cap U_i \cap U_j$.

Kodaira's Vanishing Theorem says that if \mathscr{S} is a coherent sheaf of \mathscr{O} -modules in P_n then there is an integer $\rho(S)$ such that the cohomology groups $H^q(P_n, \mathscr{S}(m)) = 0$ for all q > 0 and every $m > \rho(S)$.

Let now \overline{V} be the projective variety arising from V as in 1.1 and let $J(\overline{V})$ be its associated sheaf of ideals in \mathcal{O} . Then $J(\overline{V})$ is a coherent sheaf of \mathcal{O} -modules and \overline{V} is a complex analytic space with its structure sheaf $\mathcal{O}_{\overline{V}} = \mathcal{O}/J(\overline{V})$.

DEFINITION 1.b. — Let $\rho_1(V)$ be the smallest non-negative integer such that $H^1(P_n, J(\overline{V})(m)) = 0$ for every $m > \rho_1(V)$.

1.c. Normality of V at infinity. — Let again V be an algebraic variety in \mathbb{C}^n and \overline{V} its projective closure. Then \overline{V} is a compact analytic space and ∂V appears as a compact analytic subspace. Let Γ be the sheaf of continuous and complex-valued functions on \overline{V} which are holomorphic outside ∂V and vanish identically on ∂V . It is wellknown, that Γ is a coherent analytic sheaf on \overline{V} and Γ contains the subsheaf Γ_0 consisting of functions which are holomorphic in \overline{V} and vanish on ∂V .

In general Γ_0 is a proper subsheaf of Γ and we recall how these two sheaves are related to each other. First we consider a general case.

Let X be a reduced complex analytic space and let Y be a hypersurface in X. So if $y_0 \in Y$ then we can choose an open neighborhood U of y_0 in X and some

$$\varphi \in H^{o}(U, \mathscr{O}_{\mathbf{X}})$$

such that $Y \cap U = \{x \in U : \varphi(x) = 0\}$. Let now f be a continuous function on U which is holomorphic outside $Y \cap U$ and equal to zero on $Y \cap U$. We know that if Kis a compact subset of U then there exists an integer M, depending on K, X and Y only, such that the function $\varphi^{M}f$ is holomorphic in a neighborhood of K. We also know that f is a so called weakly holomorphic function on U and hence f is already holomorphic in U provided that the analytic space X is normal at each point in $Y \cap U$.

DEFINITION 1.c. — We say that the algebraic variety V is normal at infinity if each point on ∂V is a normal point for the projective variety \overline{V} .

The previous remarks show that if V is normal at infinity then $\Gamma = \Gamma_0$ holds. In general the following result holds, using the compactness of ∂V .

LEMMA 1.c. — Let V be an algebraic variety in Cⁿ. Then there exists an integer M(V) satisfying the following condition. If $\{f_0, \ldots, f_n\}$ is a global section of the sheaf $\Gamma(m)$, m an arbitrary integer, and if we put $\tilde{f}_0 = f_0$ and $\tilde{f}_i = (z_0/z_i)^{M(V)}f_i$ for every $i = 1, \ldots, n$, then $\{\tilde{f}_0, \ldots, \tilde{f}_n\}$ is a global section of the sheaf $\Gamma_0(m + M(V))$.

2. Estimates of $\varepsilon(V)$.

Let f be a holomorphic function on V with a polynomial growth of size N(f). Consider a point $\xi_0 \in \delta V$ and suppose for example that $\xi_0 \in U_1$. Hence ξ_0 has a coordinate representation $(0, 1, y_2, \ldots, y_n)$ and we put $\Omega = \{\xi \in P_n : \xi \}$ has the coordinate representation $(w_0, 1, y_2 + w_2, \ldots, y_n + w_n)$

where every $|w_v| < 1$ }. Then Ω is an open neighborhood of ξ_0 in P_n and Ω can be identified with the open unit polydisc in the (w_0, w_2, \ldots, w_n) -space. That is, a point $w = (w_0, w_2, \ldots, w_n)$ gives the point $\xi(w) = (w_0, 1, y_2 + w_2, \ldots, y_n + w_n)$ in Ω .

If $z \in V$ and $\mathscr{I}(z) \in \Omega$ we have $\mathscr{I}(z) = (1, z_1, \ldots, z_n) = (w_0(z), 1, y_2 + w_2(z), \ldots, y_n + w_n(z))$ and it follows that $w_0(z) = 1/z_1$ while $w_j(z) = z_j/z_1 - y_j$ for $j = 2, \ldots, n$.

We define $\tilde{f}(w_0, w_2, \ldots, w_n) = f(\mathcal{I}^{-1}(\xi(w)))$ over the set $\xi^{-1}(\mathcal{I}(V) \cap \Omega)$ and conclude that there exists a constant A' such that

(x)
$$|\tilde{f}(w_0, w_2, \ldots, w_n)| |w_0|^{N(f)} \leq A'$$
 holds in $\xi^{-1}(\mathcal{I}(V) \cap \Omega)$.

Now $\nabla \cap \Omega$ is an analytic subset of Ω and identifying Ω with the open unit polydisc in the (w_0, w_2, \ldots, w_n) -space via the mapping ξ as above we can deduce from (x) that the function $g(w) = (w_0)^{N(\mathcal{O}+1)} \tilde{f}(w)$ extends continuously from $\mathscr{I}(V) \cap \Omega$ to $\nabla \cap \Omega$ and that g vanishes on $\partial V \cap \Omega$.

This local consideration holds for every point on ∂V and we obtain the following global result.

LEMMA 2.1. — Let f be as above. If $1 \leq j \leq n$ and if we put $f_j(1, z_1, \ldots, z_n) = (z_0/z_j)^{N(f)+1}f(1, z_1, \ldots, z_n)$ on the set $U_j \cap \mathcal{I}(V)$, then f_j extends to a weakly holomorphic function on $U_j \cap V$ which vanishes on $U_j \cap \partial V$. Finally, if we put $f_0(1, z_1, \ldots, z_n) = f(z_1, \ldots, z_n)$ over

$$\mathbf{U}_{\mathbf{0}} \cap \overline{\mathbf{V}} = \mathscr{I}(\mathbf{V}),$$

then the collection $\{f_0, \ldots, f_n\}$ defines an element of

Ho(
$$\overline{\mathbf{V}}, \Gamma(\mathbf{N}(f) + 1)$$
).

At this stage we can easily estimate $\varepsilon(V)$.

THEOREM 2.1. — Let V be an algebraic variety in Cⁿ. Let f be a holomorphic function on V with a polynomial growth of size N(f). If $M(V) + N(f) \ge \rho_1(V)$ then there exists a

polynomial P, of degree M(V) + N(f) + 1 at most, such that P = f on V and $P^x = 0$ on V_c.

Proof. — Using lemma 2.1 we get the element $\{f_0, \ldots, f_n\}$ in H^o(\overline{V} , $\Gamma(N(f) + 1)$ and then lemma 1.c gives the element $\{\tilde{f}_0, \ldots, \tilde{f}_n\}$ in H^o(\overline{V} , $\Gamma_0(N(f) + M(V) + 1)$).

Since $m = M(V) + N(f) + 1 > \rho_1(V)$ it follows that the canonical mapping from $H^o(P_n, \mathcal{O}(m))$ into $H^o(\overline{V}, \mathcal{O}_{\overline{V}}(m))$ is surjective.

Since Γ_0 is a subsheaf of $\mathcal{O}_{\overline{V}}$ it follows that $\{\tilde{f}_0, \ldots, \tilde{f}_n\}$ belongs to the canonical image of $H^o(P_n, \mathcal{O}(m))$. Since $\tilde{f}_0(\mathscr{I}(z)) = f(z)$ for every z in V while each \tilde{f}_j vanishes over $U_j \cap \partial V$ when $j = 1, \ldots, n$, this means that there exists a polynomial $P(z_1, \ldots, z_n)$, of degree m at most, such that P = f on V and $P^x = 0$ on V_c . Here the last fact follows because ∂V is the projective variety corresponding to the Zariski cone V_c .

COROLLARY 2.1. — Let V be an algebraic variety which is normal at infinity. If f is a holomorphic function on V with a polynomial growth N(f), then there exists a polynomial P satisfying P = f on V while $P^x = 0$ on V_e and

 $\deg(\mathbf{P}) \leq \max(1 + N(f), 1 + \rho_1(\mathbf{V})).$

3. The asymptotic estimate of $\varepsilon(V)$.

Let again V be an algebraic variety in C^n where we assume that every irreducible component of V has a positive dimension. We have the following wellknown result.

LEMMA 3.1. — Let f be a non-zero holomorphic function on V with a polynomial growth. Then there exists a non-negative rational number Q(f) such that $\limsup \{ \|z\|^{-Q(f)} | f(z)| : z \in V \text{ and } \|z\| \to +\infty \}$ exists as a finite and positive real number.

DEFINITION 3.2. — When $k \ge 0$ is an integer we put hol $(V, k) = \{f: f \text{ is a holomorphic function on } V \text{ with a polynomial growth } Q(f) \text{ satisfying } Q(f) < k\}$. We also put Hol $(V, k) = \{f: Q(f) = k\}$.

In lemma 2.1 we proved that when $f \in \text{Hol}(V, k)$ then f determines an element of $\text{Ho}(\overline{V}, \Gamma(k+1))$. If $f \in \text{hol}(V, k)$ we can set

$$g_j(\mathscr{I}(z)) = (z_0/z_j)^k f(\mathscr{I}(z)) \text{ for all } z \text{ in } V \cap \mathscr{I}^{-1}(U_j).$$

The same argument as in the proof of lemma 2.1 shows that every g_j extends continuously to $\overline{V} \cap U_j$ and vanishes on $\partial V \cap U_j$. It follows that $\{g_0, \ldots, g_n\}$ defines an element of $H^0(\overline{V}, \Gamma(k))$.

Conversely, if $\{g_0, \ldots, g_n\} \in H^0(\overline{V}, \Gamma(k))$ and if we put $f(z) = g_0(\mathcal{I}(z))$ for all z in V then it is easily verified that $f \in hol(V, k)$. Finally the density of V in \overline{V} implies that the section $\{g_0, \ldots, g_n\}$ is uniquely determined by f.

Summing up, we get the following inclusions.

LEMMA 3.3. — If
$$k \ge 0$$
 is an integer then
 $H_{0}(\overline{M}, \mathbb{D}(k)) = h_{0}(M, k) = H_{0}(\overline{M}, \mathbb{D}(k))$

 $\mathrm{H}^{\mathbf{0}}(\mathrm{V}, \ \Gamma(k)) = \mathrm{hol} \ (\mathrm{V}, \ k) \subset \mathrm{Hol} \ (\mathrm{V}, \ k) \subset \mathrm{H}^{\mathbf{0}}(\mathrm{V}, \ \Gamma(k+1)).$

DEFINITION 3.4. — Let V be an algebraic variety in C^n . We let $\varepsilon_{\infty}(V)$, resp. $e_{\infty}(V)$, be the smallest non-negative integer such that for all sufficiently large integers k and every f in Hol (V, k), resp. every f in hol (V, k), there exists a polynomial P of degree $k + \varepsilon_{\infty}(V)$, resp. of degree $K + e_{\infty}(V)$, at most, such that P = f on V and $P^x = 0$ on V_c .

The following invariant of V is the asymptotic analogue of the integer M(V).

DEFINITION 3.5. — Let $M_{\infty}(V)$ be the smallest integer such that for all sufficiently large integers k and every f in

Ho(
$$\overline{\mathbf{V}}, \Gamma(k)$$
),

it follows that $\tilde{f} \in H^{0}(\overline{V}, \Gamma_{0}(k + M_{\infty}(V)))$, where

$$\tilde{f} = \{\tilde{f}_0, \ldots, \tilde{f}_n\}$$

and $\tilde{f}_j = (z_0/z_j)^{M_{\infty}(V)} f_j$ in $\overline{V} \cap U_j$.

Using lemma 3.3 and the same argument as in the proof of theorem 2.1 we get the result below.

JAN-ERIK BJÖ**RK**

THEOREM 3.1. $- M_{\infty}(V) = e_{\infty}(V) \leq \varepsilon_{\infty}(V) \leq M_{\infty}(V) + 1$. We finish this discussion with a remark about the invariant $M_{\infty}(V)$. Recall first that if $f = \{f_0, \ldots, f_n\} \in H^o(\overline{V}, \Gamma(k))$ for some integer k and if $P(z_0, \ldots, z_n)$ is a homogenous polynomial of degree ν , then we get the element $f \otimes P$ in $H^o(\overline{V}, \Gamma(k + \nu))$, where

$$(f \otimes P)_i = (P/z_i^v)f_i$$
 in $\overline{V} \cap U_i$.

This simply describes the structure of the graded

$$C[z_0, \ldots, z_n]$$
-module

 $G(\Gamma) = \bigoplus H^{0}(\overline{V}, \Gamma(k))$. Since Γ is a coherent analytic sheaf we know that $G(\Gamma)$ is a finitely generated $C[z_{0}, \ldots, z_{n}]$ module and hence there is an integer $\nu(\Gamma)$ such that when $k > \nu(\Gamma)$ then every element in $H^{0}(\overline{V}, \Gamma(k))$ is a linear combination of elements of the form $f \otimes P$, where

$$f \in \mathrm{H}^{\mathbf{0}}(\overline{\mathrm{V}}, \, \Gamma(\wp(\Gamma)))$$

and P is a homogenous polynomial of degree $k - \rho(\Gamma)$.

There is a similiar integer $\rho(\Gamma_0)$ for the graded module $G(\Gamma_0)$ arising from the coherent sheaf Γ_0 . When k is an integer we let $\gamma(k)$ be the smallest integer such that for every f in $H^0(\overline{V}, \Gamma(k))$ it follows that

$$\tilde{f} \in \mathrm{H}^{\mathbf{0}}(\overline{\mathrm{V}}, \ \Gamma_{\mathbf{0}}(k + \gamma(k)),$$

where $\tilde{f}_{j} = (z_{0}/z_{j})^{\gamma(k)} f_{j}$ and j = 0, ..., n.

It is easily seen that $\gamma(k)$ is a decreasing function of k, provided that $k \ge \sup \{ \nu(\Gamma), \nu(\Gamma_0) \}$. Finally

$$M_{\infty}(V) = \lim \gamma(k)$$
 as $k \to +\infty$

and we conclude that there exists an integer $\gamma(V)$ such that

$$M_{\infty}(V) = \gamma(k)$$
 for all $k \ge \gamma(V)$.

BIBLIOGRAPHY

- P. A. GRIFFITHS, Function theory of finite order on algebraic varieties, Journ. of Diff. Geom., 6 (1972), 285-306.
- [2] L. EHRENPREIS, A fundamental principle for systems of linear differen-

ON EXTENSIONS OF HOLOMORPHIC FUNCTIONS SATISFYING 165

tial equations with constant coefficients and some of its applications, Proc. International Symp. on Linear Spaces, Jerusalem (1960).

- [3] L. EHRENPREIS, Fourier analysis in several complex variables, Pure and Appl. Math., 17 (1970), Wiley-Intersci. Publ.
- [4] L. HÖRMANDER, L²-estimates and existence theorems for the δ-operator, Acta Math., 113 (1965), 89-152.
- [5] R. NARASIMHAN, Cohomology with bounds on complex spaces, Springer Lecture Notes, 155 (1970), 141-150.
- [6] V. P. PALAMODOV, Linear differential operators with constant coefficients, Springer-Verlag, 16 (1970).
- [7] J.-P. SERRE, Géométrie analytique et géométrie algébrique, Ann. Inst. Fourier, 6 (1955), 1-42.
- [8] H. SKODA, d"-cohomologie à croissance lente dans Cⁿ, Ann. Sci. de l'École Norm. Sup., 4 (1971), 97-121.
- [9] H. SKODA, Applications des techniques à L² à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids, Ann. Sci. de l'École Norm. Sup., 5 (1972), 545-579.

Manuscrit reçu le 5 octobre 1973, accepté par J. Dieudonné.

Jan-Erik BJORK, Department of Mathematics University of Stockholm Box 6701 11385 Stockholm (Sweden).