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ON EXTENSIONS
OF HOLOMORPHIC FUNCTIONS SATISFYING
A POLYNOMIAL GROWTH CONDITION
ON ALGEBRAIC VARIETIES IN C

by Jan-Erik BJORK

Introduction.

Let C* be the affine complex n-space with its coordinates
Zyy +v-y Z. When z=(z, ..., z,) 1s a point in C* we put
lzl = (|z)2 + -+ + lzl M2, If V 1is an algebraic variety
in C* then V carries a complex analytic structure. A holo-
morphic function f on the analytlc space V has a polyno-
mial growth if there ex1sts an integer N(f) and a constant A
such that

If(z)] < AL + |2])*? forall z in V.

Using L2-estimates for the d-equation very general results
dealing with extensions of holomorphic functions from V
into C" satisfying growth conditions defined by plurisub-
harmonic functions have been proved in [4, 8, 9]. See also
[2, 3, 6]. A very special application of this theory proves that
when V 1is an algebraic variety in - C* then there exists an
integer (V) such that the following 1s valid:

« If f is a holomorphic function on V with a polynomial
growth of size N(f) then there exists a polynomial
P(z, ..., 2z,) 1n C* such that P=f on V and the degree
of P 1s at most N(f) + (V) »

In this note some further comments about this result are
given. We obtain an estimate of ¢(V) using certain properties
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of V based upon wellknown concepts in algebraic geometry
which are recalled in the preliminary section below. The main
result occurs in theorem 2.1.

Finally I wish to say that the material in this note is
greatly inspired by the (far more advanced) work in [1].
See also [5] for another work closely related to this note.

1. Preliminaries.

The subsequent material is standard and essentially contai-
ned in [7]. Let P, be the projective n-space over C. A
point & in P, is represented by a non-zero (n 4 1)-tuple
(%, --.5 3,) of complex scalars, called a coordinate represen-
tation of &. Here (3, ..., z,) and (A%, ..., Az,) represent
the same point in P, if A 1is a non-zero complex scalar.
If z=(z, ..., 2,) 1s a point in G* we get the point ¥ (z)
in P, whose coordinate representation is given by (1, z,
...y %,). Then ¥ gives an imbedding of C* into an open
subset of the compact metric space P, and the complemen-
tary set H, = P,\7(C") is called the hyperplane at infinity.

1.a. The projective closure of an algebraic variety. — If V
is an algebraic variety in C" then (V) 1is a locally closed
subset of P, and its metric closure becomes a projective

subvariety of P, which is denoted by V. The set
oV=H,nV

is called the projective boundary of V.

A point w in H_ has a coordinate representation of the
form (0, wy, ..., w,) and w gives rise to the complex line
Liw) = {zeC": z=(Awy, ..., Aw,) for some complex
scalar A }. In this way H” is identified with the set of complex
lines in C"

Under this identification we know that dV is the projective
variety corresponding to the Zariski cone

V.= {zeC": P*(z) =0 forevery P in I(V)}.

Here I(V) = {Pe€C[z]: P=0 on V} and P® denotes the
leading form of a polynomial P. That is, if d = deg (P)
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we have P = P? 4 p where deg(p) < d and P* 1is homo-
genous of degree d. Finally a point .w in H_ belongs to 2V
if and only if the complex line L( ) 1is contained in the conic
algebraic varnety V..

1.b. The Vanishing Theorem. — Let 0 be the sheaf of
holomorphic functions on the compact complex analytic
manifold P,. Recall that P, is covered by (n 4 1) many
open charts U; = {£ € P,: £ has a coordinate representation
of the form (zo, ooy By 1 Zit1, - -+ %) ). Here Uy = J(C")
and in each intersection U; N U we have the nowhere
vanishing holomorphic function z/z

Let & be a coherent sheaf of 0-modules and m  an
integer. If U 1is an open subset of P, then the sections over
U of the « twisted sheaf %(m)», i.e. the HO(U, 0)-module
Ho(U, &(m)) are given as follows:

« An element a in HO(U, #(m)) is presented by an (n + 1)-
tuple {ay, ..., a,} where each q,e H(U N U,, &) and
a; = (z;/%)"a; holds in U n U, n U,

Kodaira’s Vanishing Theorem says that if & is a coherent
sheaf of 0-modules in P, then there is an integer p(S) such
that the cohomology groups H¢P,, £(m)) =0 for allqg > 0
and every m > p(S).

Let now V be the projective variety arising from V as
in 1.1 and let J(V) be its associated sheaf of ideals in ©.
Then J(V) is a coherent sheaf of ¢#-modules and V is a

complex analytic space with its structure sheaf 0y = 0/J(V)

Derinition 1.b. — Let p,(V) be the smallest non-negative
integer such that HYP,, J(V)(m)) =0 for every m > p,(V).

1.c. Normality of V at infinity. — Let again V be an alge-
braic variety in C* and V its projective closure. Then V

1s a compact analytic space and dV appears as a compact
analytic subspace. Let T' be the sheaf of continuous and

complex-valued functions on V which are holomorphic
outside 3V and vanish identically on dV. It is wellknown,

that T is a coherent analytic sheaf on V and I' contains
the subsheaf Ty consisting of functions which are holo-

morphic in V and vanish on V.
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In general T, 1s a proper subsheaf of I' and we recall
how these two sheaves are related to each other. First. we
consider a general case.

Let . X be a reduced complex analytic space and let Y
be a hypersurface i X. So if Yo € Y then we can choose
an open neighborhood U of y, in X and some

P € HO(U', 0;)
such that YNU={zeU: ¢(x) =0}. Let now [ be

a continuous function on U which is holomorphic outside
Y nU and equal to zero on- Y N'U. We know that if K
1s a compact subset of U then there exists an integer M,
depending on K, X and Y only, such that the function cp“f
is holomorph1c in a neighborhood of K. We also know that
f is a so called weakly holomorphlc function on. U and
hence f is already holomorphic in U prov1ded that the
analytic space X 1is normal at each pointin Y n U.

~ Derinition 1.c. — We say that the algebraic variety V s
normal at infinity if each point on dV. is a normal point for the
projective va,nety V.

The previous remarks show that if V is normal at infinity
then I' =T, holds. In general the following result holds,
using the compactness of dV.

Lemma 1.c. — Let V be an algebraic variety in C*. Then
there exists an mteger M(V) sattsfymg the following condltwn
If {fo, --., f.} is a global section of the sheaf T'(m), m an
arbitrary integer, and if we put f, = fo and f; = (z/z)"Vf;
for every i =1, ..., n, then {f,, ..., f,} is a global section
of the sheaf Ty(m 4+ M(V)).

2. Estimates of (V).

Let f be a holomorphic function on V with a polynomial
growth of size N(f). Consider a point &, €dV and suppose
for example that &, € U;. ‘Hence &, has a-coordinate repre-
sentation (0, 1, ¥, ...; y,) and-we put' Q = {£ € P,: £ has
the coordinate representation: (wo, 1, ya + W, ..., yo + W)
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where every {w,| < 1}. Then €. 1is:an open neighborhood of
& in P, and Q can be identified with the open unit polydise
in the (wo, Way o vy w) space. That 1s, a point ‘w = (w,, w;,
Ceey W) glves the pomt E(w) = (w0, 1, ya + Way « ooy Y + W)
in Q AT '

If zeV and J(z)eQ wehave' T ORTIN A
j(z) = (1’ 21y o0y z) (Wo(z) 1 Y + Wz(z)’ ceey Yn + W,,( ))
and it follows that w,(z) = 1/z1 while w)(z) = z;/7 —yj
for j=2, ..., n. A

We. deﬁne f(wo, Wi, ..y wn) = f(I71(E(w)) over the set
E((V) N Q) and conclude that there exists a constant A’
such that , : . : _

2) [0y 90y o )| [ < A holds in E-1(7(V) N Q).

' 'Now VNnQ isan analytlc subset of Q and identifying Q
with the open unit polydisc in the (wy, w,, ...w,)-space via
the mapping £ as above we can deduce from (x) that the

function = g(w) = (w,) YO+ f(w)  extends continuously : from

V) nQ to. VNQ and .that g vanishes on 2V n Q.
This local consideration holds for every point on 2V and
we obtain. the following global result.

Lemma 2.1. — Let f be as above. If 1 <j < n and if

we put (1, z, ..., z,) = (%[z)"*f(1, 2, ..., z,) on the
et U; N J(V), then f; extends to a weakly holomorphic

function on U; NV which vanishes on U; N dV. Finally,
if we put fo(1, z, ..., 2) =f(2, ..., 3,) over

Uy n'V.=x(V),
then the collection {f,, ..., f,} defines an element of
He(V, T(N(f) + 1)).

At this stage we can easily estimate (V).

Taeorem 2.4, — Let V be an ‘algeb’raic variety in C". Let
f be a holomorphic function on -V with a polynomial growth
of size N(f). If M(V) + N(f). = p1(V) then there exists a
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polyromial. P, of degree M(V) + N(f) + 1 at _most, such
that P = fonVand P=0 on V

e

Proof. — Using lemma 2.1 we get the element {f,, ..., f,,}
in HO(V, T(N(f) + 1) and then lemma 1.c gives the element
{fo, -5 £} in HO(V, To(N(f) + M(V) + 1)). o

Since m = M(V) 4+ N(f) + 1 > p,(V) it follows that the
canonical mapping from HO(P,, 0(m)) into HO(V, 03(m))
1s surjective.

Since Ty is a subsheaf of 0y it follows that {f,, ..., f,}
belongs to the canonical image of HO(P,, 0(m)). Since
fo(7(z) = f(z) for every z in V while each f, vanishes
over U; NndV when j=1, ..., n, this means that there
exists a polynomial P(z, ..., z,), of degree m at most,
such that P=f on V and P*=0 on V. Here the last
fact follows because dV is the projective variety corres-
ponding to the Zariski cone V.. '

CororrLary 2.1. — Let V be an algebraic variety which
is. normal at infinity. If [ s a holomorphic function on. V
with a polynomial growth N(f), then there exists a polynomial P
satisfying P =f on V while P*=0 on V, and

deg (P) < max (1 + N(f), 1+ &x(V)).

3. The asymptotic estimate of (V).

" Let again V be an algebraic variety in C® where we
assume that every irreducible component of V has a positive
dimension. We have the following wellknown result.

Lemma 3.1. — Let f be a non-zero holomorphic function on
V with a polynomial growth. Then there exists a non-negative
rational number Q(f) such that lm sup {|z]~%|f(z)|: z€ V
and |z] = + o} exists as a finite and positive real number.

Derinition 3.2. — When k > 0 s an integer we put
hol (V, k) = {f: f is a holomorphic function on V with a
polynomial growth  Q(f) satwfyzng Q(f) < k}. We also
put Hol (V, k) = {f: Q(f) =
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In lemma 2.1 we proved that when fe Hol (V, k) then f
determines an element of HO(V, I'(k 4 1)). If f € hol (V, k)

we can set .
g(7(2) = (a/2)* f(7(2) forall z in V ns3(U).

The same argument as in the proof of lemma 2.1 shows
that every g; extends continuously to V N U; and vanishes
on dV n U, It follows that {g,, ..., g.} defines an element
of Ho(V, I'(k)).

Conversely, if {g, ..., g.} € H(V, I'(k)) and if we put
f(z) = 8(7(3)) for all z "in V then it is easily verified that
fehol (V, k). Finally the density of V in V implies that
the section {g, ..., g} 1s uniquely determined by f.

Summing up, we get.the following inclusions.

Lemma 3.3. — If k > 0 s an integer then
Ho(V, T'(k)) = hol (V, k) = Hol (V, k) = Ho(V, T'(k + 1)).

DerinttioN 3.4 — Let V be an algebraic variety in Cn.
We let ¢,(V), resp. e, (V), be the smallest non-negative integer
such that for all sufficiently large integers k and every f in
Hol (V, k), resp. every f in hol (V, k), there exists a poly-
nomial P of degree k -+ ¢,(V), resp. of degree K 4+ e,(V),
at most, such that P=f on V and P> =0 on V..

The followmg invariant of V 1s the asymptotlc analogue
of the integer M(V).

Derinttion 3.5. — Let M_(V) be the smallest integer such
that for all sufficiently large integers k and every f in

Ho(V, I'(k)),
it follows that fe HO(V, To(k + M_(V)), where
f={fo ..., i}

and f; = (z/z)"="f; in V n U,
Using lemma 3.3 and the same argument as in the proof
of theorem 2.1 we get the result below.
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Treorem 3.1. — M_(V) = e,(V) < &, (V) < M_(V) 4+ 1.
We finish this discussion with a remark about the invariant
M.(V). Recall first that if f={f, ..., f.} € HY(V, T(k))

for some integer k and if P(z, ..., z,) is a homogenous
polynomial of degree ¢, then we get the element f® P
in Ho(V, T'(k + ¢)), where

(f@P);=(P/z)f; in VU,
This simply describes the structure of the graded
Clzo, ..., %,]-module

G(T) = @ Ho(V, I'(k)). Since T is a coherent analytic sheaf
we know that G(T') is a finitely generated C[z, ..., z,]-
module and hence there is an integer ¢(I') such that when

k > ¢(T') then every element in HO(V, I'(k)) is a linear
combination of elements of the form f® P, where

f e Ho(V, T'(¢(T)))

and P is a homogenous polynomial of degree k — ¢(T).

- There is a similiar integer ¢(I';) for the graded module
G(T,y) arising from the coherent sheaf I'y, When k is an
integer we let +y(k) be the smallest integer such that for

every f in HO(V, I'(k)) it follows that

f e Ho(V, To(k + v(k)),

where f; = (z/2)'® f; and j=0, ..., n.
It is easily seen that +y(k) 1is a decreasing function of k,
provided that k > sup {¢(T'), ¢(T'y)). Finally

M.(V) =lm y(k) as k—> + o
and we conclude that there exists an integer y(V) such that

M. (V) = y(k) forall k > y(V).
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