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ON EXTENSIONS
OF HOLOMORPHIC FUNCTIONS SATISFYING

A POLYNOMIAL GROWTH CONDITION
ON ALGEBRAIC VARIETIES IN C"

by Jan-Erik BJORK

Introduction.

Let C" be the affine complex n-space with its coordinates
Zi, ..., Zn. When z == (zi, .. ., z^) is a point in C" we put
[\z\\ == (|zi|2 + ... + l^l2)^2. If V is an algebraic variety
in C" then V carries a complex analytic structure. A holo-
morphic function f on the analytic space V has a polyno-
mial growth if there exists an integer N(/*) and a constant A
such that

\f{z)\ ^ A(l+ INI ̂  tor all z in V.

Using L^estimates for the E-equation very general results
dealing with extensions of holomorphic functions from V
into C" satisfying growth conditions defined by plurisub-
harmonic functions have been proved in [4, 8, 9]. See also
[2, 3, 6]. A very special application of this theory proves that
when V is an algebraic variety in C" then there exists an
integer s(V) such that the following is valid :

« If / is a holomorphic function on V with a polynomial
growth of size N(/1) then there exists a polynomial
P(zi, . . ., zj in C71 such that P = f on V and the degree
of P is at most N(/') + e(V) ».

In this note some further comments ahout this result are
given. We obtain an estimate of e(V) using certain properties
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158 JAN-ERIK BJORK .

of V based upon wellknown concepts in algebraic geometry
which are recalled in the preliminary section below. The main
result occurs in theorem 2.1.

Finally I wish to say that the material in this note is
greatly inspired by the (far more advanced) work in [I],
See also [5] for another work closely related to this note.

1. Preliminaries.

The subsequent material is standard and essentially contai-
ned in [7]. Let P^ be the projective n-space over C. A
point ^ in P^ is represented by a non-zero (n + 1) -tuple
(zo? • • • ? ^n) of complex scalars, called a coordinate represen-
tation of S. Here (zo, .. ., zj and (Xzo, . .., XzJ represent
the same point in P^ if X is a non-zero complex scalar.
If z == (zi, . . ., Zn) is a point in C" we get the point ./(z)
in P^ whose coordinate representation is given by (1, ^i,
..., Zn). Then Y gives an imbedding of C" into an open
subset of the compact metric space P^ and the complemen-
tary set H<^ == P^J^C") is called the hyperplane at infinity.

l.a. The projectile closure of an algebraic variety. — If V
is an algebraic variety in C" then ^(V) is a locally closed
subset of Pn and its metric closure becomes a projective
subvariety of Pn which is denoted by V. The set

Z ) V = H ^ n V

is called the projective boundary of V.
A point w in H^ has a coordinate representation of the

form (0, Wi, ..., w^) and w gives rise to the complex line
L(w) == {z e C": z = (Xwi, ..., XWn) for some complex
scalar X }. In this way H00 is identified with the set of complex
lines in C".

Under this identification we know that ?)V is the projective
variety corresponding to the Zariski cone

V, == {z e C": P^z) = 0 for every P in I(V)}.

Here I(V) == {P e C[z]: P = 0 on V} and P^ denotes the
leading form of a polynomial P. That is, if d = deg (P)
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we have P = P^ + p where deg (p) < d and P^ is homo-
genous of degree d. Finally a point w in H^ belongs to bV
if and only if the complex line L(w) is contained in the conic
algebraic variety Vc.

i.b. The Vanishing Theorem. — Let 0 be the sheaf of
holomorphic functions on the compact complex analytic
manifold P^. Recall that P, is covered by (n + 1) many
open charts U; === { ^ e P^: ^ has a coordinate representation
of the form (zo, .. .,Zi-i, 1, ^i+i, . . .,^n)}- Here Uo == ^(C")
and in each intersection V, n U, we have the nowhere
vanishing holomorphic function z^Zj.

Let y be a coherent sheaf of ^-modules and m an
integer. If U is an open subset of P^ then the sections Over
U of the « twisted sheaf y{m} », i.e. the H°(U, ^-module
H°(U, y(m}) are given as follows:

« An element a in H°(U, Vim)) is presented by an (n + 1)-
tuple {ao, ..., aj where each a, e H°(U n U, y} and
^ = {Zjizi^aj holds in U n Ui n Vj.

Kodaira's Vanishing Theorem says that if V is a coherent
sheaf of (P-modules in ?„ then there is an integer p(S) such
that the cohomology groups H^(P^, ^(m)) == 0 for all q > 0
and every m > p(S).

Let now V be the projective variety arising from V as
in 1.1 and let J(V) be its associated sheaf of ideals in 0.
Then J(V) is a coherent sheaf of ^-modules and V is a
complex analytic space with its structure sheaf ffy == (P/J(V).

DEFINITION 1.&. — Let pi(V) he the smallest non-negative
integer such that H^P^, JfV)(m)) = 0 for every m > pi(V).

I.e. Normality of V at infinity. — Let again V be an alge-
braic variety in C" and V its projective closure. Then V
is a compact analytic space and bV appears as a compact
analytic subspace. Let F be the sheaf of continuous and
complex-valued functions on V which are holomorphic
outside ^V and vanish identically on ?)V. It is wellknown,
that r is a coherent analytic sheaf on V and F contains
the subsheaf Fo consisting of functions which are holo-
morphic in V and vanish on ^V.
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la general Fo is a proper subsheaf oi F and "we recall
how these two sheaves are related to each other. First we
consider a general case.

Let X be a reduced complex analytic space and^ let Y
be a hypersurface in X. So if yo e Y then we can choose
an open neighborhood U of y^ in X and some

y e H°(U, (Px).

such that Y n U = {x e U : 9(0;) = 0}. Let now f be
a continuous function on U which is holomorpMc outside
Y n U and equal to zero on Y rvU. We kno^y that if K
is a compact subset of U then there exists an integer M,
depending on K, X and Y only, such that the function ^f
is holomorphic in a neighborhood of K. We also know that
f is a so called weakly holomorphic function on U and
hence f is already holomorphic in U provided that the
analytic space X is normal at each point in Y n U.

DEFINITION I.e. — Wesay that the algebraic variety V is
normal at infinity if each point on bV is a normal point for the
projectile variety V.

The previous remarks show that if V is normal at infinity
then r = FQ holds. In general the following result holds,
using the compactness of bV.

LEMMA I.e.— Let V be an algebraic variety in C". Then
there exists an integer M(V) satisfying the following condition.
If {/o? • • • ? fn} ts ^ global section of the sheaf r(m), m an
arbitrary integer, and if we put fo = f^ and f^ = {zol^^fi
for every i = 1, . . ., n, then {fo, . . 1, fn} is a global section
of the sheaf F^m + M(V)).

2. Estimates of &{V).

Let f be a holomorphic function on V with a polynomial
growth of size N(/*). Consider a point ^ e &V and suppose
for example that ^ o ^ U r Hence So has a coordinate repre-
sentation (0, 1, y^ . . . , y ^ ) and we put Q == { ^ 6 P^: S has
the coordinate representation (^>o, 1, y^ + ^2? • • • ? Vn + ^n)
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Where ievery ^ w^ < 1}. Then 0 is^an, open neighborhood of
^ in ?„ and 12 can be identified with the open unit; ptdydise
in the (wo, w^ ..., wj-space. That is,^ point ^ =;= (^, qpg,
..., ̂ ) ^ivesthe point S(w) === (wo, 1,1/3 4- Wg, ..., y, + wj
in..-Q. . • : . . . ; • . - • • : . . , : : , . . .;• , • . , • / . .. ..... •• .• •_ ;. .•:

If z e V and ./(z) e ft we have
./(Z) = (1, Zi, . . ., ^) =/(Wo(?), 1, ^ + W2(^), . . ., !/„ + ^(Z))

and it follows that Wo(z) == t/^i while w^(z) == Zy/Zi — t/^
for / == 2, . . . , n. .-

We define /^Wo, ^2, ./.ywj^/^1^^)) over the set
^(^(V) n Q) and conclude that there exists a constant A'
such that

W l/t^o. ̂  .. ̂  ^)1; l^ol^ ^ A' holds'in ^(^(V) n .0).

Now V n Q is an analytic subset of Q and identifying Q
with the open unit polydisc in the (wo, ^2? • ..^n^P^e via
the mapping ^ as above we can deduce from {x) that the
function g(w\ === {w^^f^w) extends continuously from
y(V) 0 Q to V n n and that g vanishes on oV nQ.

This local consideration holds for every point on bV and
we obtain the following global result.

LEMMA 2.1. — Let f be as above. If 1 ^ / < n and if
we put /)(!, ̂  . .., ^) = {z,lz^Wf{l, z^ ..., zj on the
set \Jj r\ ^(V), then fj extends to a weakly holomorphic
function on Vj n V which vanishes on Uj? n bV. Finally,
ifweputfQ{i,^...,z^)=f{^...,z^ over

'Uo nV==j<(V),

t/ien (/ie collection {/o, . . ., jfn} defines an element of

HO(V, r(.N(y)+l)).
At this stage we can easily estimate e(V).

THEOREM 2.1.— Let V be an algebraic variety in C". Let
/' 6e a /î omorpAic /unc&on on V^^^ ^ w a polynomial growth
of size N(/7. 7^ M(V) + N )̂ ,̂  pi(V) then there exists a
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polynomialP, of degree M(V) -p N(f) + 1 at mo^, ,?^di
tAat P=f on V anrf P-" = 0 <m V,.

Proof. — Using lemma 2.1 we get the element {/o, ..., f^}
in H°(V, r(N(/') + 1) and then lemma l.c gives the element
{/o, . . . , ^} in HO(V, ro(N(/*) + M(V) + 1)).

Since m == M(V) + N(/') + 1 > pi(V) it follows that the
canonical mapping from H°(P^ (P(m)) into H°(V, ffv(m))
is surjective.

Since To is a subsheaf of 0^ it follows that {^o, • . . , fn}
belongs to the canonical image of H°(P^ ^(m)). Since
fo(^{z)) = f(z) for every z in V while each fj vanishes
over U, n ^V when / = 1, ..., n, this means that there
exists a polynomial P(JSi, ..., zj, of degree m at most,
such that P =f on V and P^ = 0 on V,. Here the last
fact follows because &V is the projective variety corres-
ponding to the Zariski cone Vc.

COROLLARY 2 . 1 . — L e t V be an algebraic variety which
is normal at infinity. If f is a holomorphic function on V
with a polynomial growth N(/*), then there exists a polynomial P
satisfying P == /* on V wA^e P-^ = 0 on V<; and

deg (P) ^ max (1 + N(/1), 1 + p,(V)).

3. The asymptotic estimate of s(V).

Let again V be an algebraic variety in C" where we
assume that every irreducible component of V has a positive
dimension. We have the following wellknown result.

LEMMA 3.1. —- Let f he a non-zero holomorphic function on
V with a polynomial growth. Then there exists a non-negative
rational number Q(/*) such that lim sup {IMJ"'000!/^)! : z e V
and \\z\\ -> + 00} exists as a finite and positive real number.

DEFINITION 3.2. — When k ^ 0 is an integer we put
hoi (V, /c) = {f: f is a holomorphic function on V with a
polynomial growth Q(/1) satisfying Q(/*) < k}. We also
put Hoi (V, k) ={/• : Q(f) = k}.
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In lemma 2.1 we proved that when /e Hoi ( V , k ) then f
determines an element of H°(Y, r(/c + 1)). If fe hoi (V, k)
we can set

g^W^W'f^W ^ all z in V n^(U,).

The same argument as in the proof of lemma 2.1 shows
that every gj extends continuously to V n Uy and vanishes
on oV n Uy. It follows that {go? • • • ? g n } defines an element
of H°(V, r(/c)).

Conversely, if {go, ..., gn} e H°(V, r(A')) and if we put
A2) = go^2)) f01* all ^ in V then it is easily verified that
f e hoi (V, k}. Finally the density of V in V implies that
the section { g o ? - - . ? g n } is uniquely determined by /*•

Summing up, we get the following inclusions.

LEMMA 3.3. — If k ^ 0 is an integer then

HO(V, r(/c)) = hoi (V, k) ^ Hoi (V, k) c= HO(V, F(/c + 1)).

DEFINITION 3.4. — Let V be an algebraic variety in C".
We let £oo(V), resp. ^oo(V), be the smallest non-negative integer
such that for all sufficiently large integers k and every f in
Hoi (V, A-), resp. every f in hoi (V, A), thereexists a poly^
nomial P of degree k + £oo(V), resp. of degree K + ^oo(V),
at most, such that P == f on V and P^ == 0 on Vc.

The following invariant of V is the asymptotic analogue
of the integer M(V).

DEFINITION 3.5. — Let M^(V) be the smallest integer such
that for all sufficiently large integers k and every f in

Ho(V,r(/c)),
it follows that f eHo(V, ro( /c+M^(V)) , where

f=z{f^ . . . p f n }

and fj = (zo/^^/;. in Y n U^.
Using lemma S.3 and the same argument as in the proof

of theorem 2.1 we get the result below.



164 JAN-ERIK BJOBK

THEOREM 3.1. - M,(V) ==^(V) ^ e,(V) < M,(V) + 1.
We finish this discussion with a remark about the invariant

M,(V). Recall first that if f= {f^ ..., /,} e HO(V, r(/c))
for some integer k and if P(zo, ..., ^) is a homogenous
polynomial of degree P, then we get the element / ® P
in HO(V, r( /c+^)) , where

(/•0P),^(P/^. in V nU,.

This simply describes the structure of the graded

C[zo, • • • ? zj-module

G(T) == © H°(V, r(/c)). Since F is a coherent analytic sheaf
we know that G(F) is a finitely generated C[zo, ..., ^]-
module and hence there is an integer ^(F) such that when
k > ^(F) then every element in H°(V, F(/c)) is a linear
combination of elements of the form f 0 P, where

/-eHo^r^r)))
and P is a homogenous polynomial of degree k — ^(F).

There is a similiar integer ^(I^) for the graded module
G(Fo) arising from the coherent sheaf F^. When k is an
integer we let y(^) be the smallest integer such that for
every f in H°(V, F{k)) it follows that

f6Ho(V, ro ( / c+Y( /c ) ) ,
where fj = {zol^)^ fj and / = 0, . . . ,n .

It is easily seen that y(^) ls a decreasing function of A*,
provided that k ^ sup {p(F), ^(Fo)). Finally

M^(V) == lim y(/c) as k -> + o°

and we conclude that there exists an integer y(V) such that

M,(V) == Y(/c) for all k ^ y(V).
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