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SUBDUALS AND TENSOR PRODUCTS
OF SPACES OF HARMONIC FUNCTIONS

by lan REAY

Introduction.

In this paper we shall be working in the axiomatic potential
theory of M. Brelot. For the fundamentals of this theory the reader
is referred to Brelot [7] and Herve [18]. We shall also assume a
knowledge of convexity theory that is to be found in, for example,
Alfsen [1] and, in summary, in Effros and Kasdan [14]. Let ^ be
a topological space to which Brelofs theory applies and let a? be
an open, relatively compact subset. The set X = {h : h is harmonic,
> 0 and h(Xo) = 1}, for a fixed arbitrary XQ, is well known to be
a compact Choquet simplex in the topology of uniform convergence
on compacta. As such it is the state space of the linear function
space, A(X), of continuous affine functionals on X. The question
arises, and was first proposed by D.A. Edwards, as to an intrinsic
description of the space A(X) in the context of potential theory.
Such a description is to be found in the statement of Theorem 1.
In the case that ^2 satisfies the hypothesis of proportionality it is
seen to related to the Martin boundary of the space considered.
Some ancillary results are also given.

In the second part of the paper Theorem 1 is applied in proving
that the space of differences of positive separately harmonic functions
(Gowrisankaran [16]) is a tensor product of two spaces of harmonic
functions. Also in this part it is demonstrated that by using tensor
product techniques whenever possible many proofs of results in
the subject of separately harmonic functions can be simplified. For
example, Corollary 18, which was originally proved by Gowrisankaran.
Some ancillary results are also given in the second part. The readers
attention is drawn to Theorems 1, 11 and 14 which are the three
central results of the paper.
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This work is a summary of the author's doctoral dissertation
at the University of Oxford, under the supervision of Dr. G.F. Vincent-
Smith, to whom I am indebted for his comprehensive help. I also
owe a debt of thanks to K. Gowrisankaran for pointing out that
Theorems 1 and 14 are valid without the necessity of assuming the
hypothesis of proportionality and for the proof of Proposition 5.

Part 1. — A function space with state space X.

1. We consider the topological space ^, with the presheaf of
harmonic functions 96(^2) satisfying Brelot's axioms I, II, III. We
also assume that ^ has a countable base of open sets. Let FT (^2)
be the cone of positive harmonic functions on ^2. It is well known
that X = {h E I-T (T2) : h (x^) = 1} is a compact metrizable Choquet
simplex in the topology of uniform convergence on compacta £ Sl.
We denote the set of extreme points of X, by Ai , such points are
called the minimal harmonic functions in X. It can be shown by
an application of Choquet's Theorem that to every harmonic function,
h, in X there exists a unique probability measure, JL^, concentrated
on A ^ , such that

h(x) = f^ u(x) d^(u) for all x E ^2 .

This integral is referred to as Martin's Integral Representation.

Martin's Integral Representation defines a map m : X -^ OT^(Ai)
the simplex of probability measures on Ap This map is not a bijection
but we will construct a subspace L^ C(Ai) such that the composition
of the map m with the dual map : OT<^ (Ai) -> S(L), where S(L) is
the state space of L, is a bijection.

Let 3T^(^2) be the space of all real measures on ^ of compact
support. Define the subspace L£ C(A^) as follows ;

L = { /GC(Ai ) : f(h) = v(h) for all h G Ai and some ^C ^(^2)}.

THEOREM 1. - L is a linear function space which contains the
constants and separates the points of Ap and its state space S(L)
is affinely homeomorphic to X. Symbolically, A(X) ^ L , S(L) ^X.
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Proof. - L is a linear subspace of C(Ai) trivially. Also (a) it
contains the constants, because 5^ (h) = h (x^) = 1 for all / z E X ,
and §^ is in OT^(^2), (b) it separates the points o f A ^ since ifh^ ^ h^
both being in A^ there exists an x G Sl such that /^Cc) ^= h^(x), so
that 8^1) =^ §^(^2) hence there exists an/E L such that f(h ̂ ^f(h^).

Define a map F : S(L) -> X in the following way ; If p G S(L)
then p is a positive linear function on L and p ( l ) = 1. By the
Hahn-Banach Theorem p extends, non-uniquely, to a positive linear
functional on C(A^) which by the Riesz Representation Theorem
can be regarded as a probability measure, jn, on A^ This measure
defines a harmonic function, h, in X by the Martin Representation.
Now, although F is not uniquely defined by p, h is, since if jLii , ̂
are both extensions of p, then JL^(/) = JLI^/) for an fm L, in other
words,

ffh(x)dv(x)d^(h) =ffh(x)dv(x)d^W.

By Fubini's Theorem, since the map X x Sl -> R given by (h , x) -> h(x)
is continuous,

ff h (x) d^, (h) dv(x) = ffh (x) d^(h) dv(x),

which can be written v(h^) = v(h^) where h, corresponds to ^
(i = 1, 2) in the Martin Representation. This holds for all v G 011^(^2),
which clearly implies that h^ = h^, by taking v == 5^ for instance.
So the map F is well defined.

r is injective, since for the harmonic function, /z, the family
of measures representing h on A^ all have the same value for

ff_ u(x)dfji(u)dv(x) for ^G^(S2),

and thus for J- v(u) d^(u), in other words, when restricted to L
the measures all coincide, so that they all collapse to the same element
of S(L), which is the only one that can map into h under r.

r is also_a surjection, since if u E X, take one of its representing
measures on A^ and restrict to L, to obtain pGS(L), then clearly
F(p) == u. So r is a bijection between S(L) and X.
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F is affine, since if a E (0, 1), p , e S(L) and r(p,) = h,, where
/ z , e x , a = i, 2),
aF(^) 4- (1 - a) r(p^) = ah^ + (1 - a) h^

=afu(.)d^^u) + ( 1 -a)fu(.)d^(u)

=fu(.)d{afJi^ + (1 -a)^}(u)

=F(ap, + (1 -a)p^

since the map h -> ^ is affine.
Finally, F is a homeomorphism for X endowed with the topology

of uniform convergence on compacta and S(L), the weak* topology.
Both X and S(L) are metrizable so it is enough to consider sequences.
Now, p ^ - ^ p in S(L) if and only if ?„(/)-»?(/) for all /GL,
if and only if v(h^) ->• v(h) for all ^GOT^(n) where h^= r(p^) ,
h = r(p), using the definition of L and Fubinfs Theorem, and
v(h^) -> v(h) for all such v if and only if h^ -> h, because one can
take v = 5^, and by the result of Herve, (Brelot [7], Lemme on
page 23), pointwise convergence in H+ is equivalent to uniform
convergence on compacta. This completes the proof.

COROLLARY 2. — The Choquet boundary of A^ with respect to
L is the set of minimal harmonic functions A^ = exX. Symbolically,
ajA,)=A,.

Proof — There is a canonical injection A^ -> X and the extreme
points of X are just the minimal harmonic functions, the Choquet
boundary is just the inverse image of Ai under this map.

COROLLARY 3. - // A^ is closed, L is a lattice and L = C(A^).
Proof. — This follows immediately from Theorem 2.6 of Effros

and Kazdan [14].

_ COROLLARY 4. - L has the weak Riesz separation property and
L has the strong Riesz separation property.

Proof. — Since L is a simplex space, the result follows from
Proposition 9 of Edwards and Vincent-Smith [13].
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Remark. - We emphasise that if ^ , ̂  are two measures in
OT^,(?2) they correspond to the same function /E L if and only if
^h) = ^(h) for all h G X.

Proof. - Clearly, _if jLii (h) = ^(h) for all h G X then in particular
they do so for all h E A^ and so correspond to the same element of L.

) Conversely, if ^(h) = ^(h) = f(h) for h G A i , by Martin's Repre-
sentation every ^ G X can be represented by a probability measure,
^, on A^ but

f^ ^Wd^(h)=f_ ^(h)d^(h),

and using Fubini again we obtain ^^(.u) = p,^(,u).
In the case that ^2 satisfies the hypothesis of proportionality,

ie. to every point x G ^l there exists a potential ̂  of support {x},
unique up to scalar multiple. Then Theorem 1 and its corollaries can
be phrased in terms of the Martin Boundary. Under this new hypo-
thesis the Martin Boundary is a compact, metric space, 3 '̂ such
that

A, ^.A^ B^M ^ X ,

and since A^ can clearly be replaced by any closed set, C, such
that A ^ — C — X, in the statements of Theorem 1 and its corollaries,
they will remain valid, in these circumstances, if at every point at
which "A/' occurs "3^" is substituted.

2. In this paragraph we study the relationship between the spaces
JlZ^(n) and L. It will be seen in the definition of L given in Theorem 1
that we have a positive, linear map T : OT .̂ (S2) -^ L c C(A^) defined
by TO) (h) = v(h) =j hdv for h G A ^ . For a compact K c^ this
map, T, restricts in the obvious way to T^ : 31I(K)-> C(A^. We
give 01t(K) the weak* topology and C(A^) the supnorm topology.
The proof of the following proposition is due to K. Gowrisankaran.

PROPOSITION 5. - TK : OTI^K) -> C^A^) is continuous.
Proof. — Since OTL^K) is metrizable in the weak* topology we

may consider sequences. To prove the proposition we have to show that
whenever ̂  -> v in the weak* topology, in ^(K), T(^) (h) -^ TO) (h)
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uniformly for all /z G A p Without loss of generality we may assume
that Ml < 1, 11^11 = 1 ior_n > 1. We can find a finite number of
points /^, h^, . . . , h^ in Ap and open neighbourhoods V\, . . . , V^,
of the form

V .̂ = {h € A^ ; 1/zOc) - h^x)\ < e/4 for all x E K} ,

such that UV. = Ap Then, given any h G Ap 3 a V. containing /z and

i/'Arf^ - f/u^ | < [ fhdv^ -fh^.dv^ \ + [ fhj dv^ - fh^ dv 4-

+ | fhjdv - fhdv | < e/2 + | fh^d^ - f h^dvV

Hence there exists an N such that for all n > N, and for all h G Ap

fhd^-fhdv\<e.

This completes the proof.
Let L^ c L+ be defined, for each compact K ~ ^2, as L^ = {/G 1^ :
there exists a measure, ^, supported by K with T(^) = /}.

COROLLARY 6. — ^4^ /lorm bounded subset of L^ is equicon-
tinuous.

Proof. - The set<)1c^(K) - { ^ E Olc^K) : 0 < ^(1) < a}is weak*
compact. Since T^ is continuous on OTI^K), T^01Z.^(K)) is a compact
subset of C(A^) and so is equicontinuous by Ascoli. But if N c L^
is bounded in norm by a, N c L^ H T^OIZ^K)), and so N is equi-
continuous.

' + f f/- \ _ r -. /— < '̂Y»' ̂  ̂

-+ /

3. In this paragraph we give a function space whose state space
is the simplex B, to be defined later, which is a base of the cone S'̂
of positive superharmonic functions on ^2. In this paragraph we assume
the hypothesis of proportionality of Herve ie. to every x G ̂  there
corresponds, up to scalar multiple, a unique potential, p, such that
p is harmonic in Q{x}.

It is well known that S+ is a lattice cone and has as base the
set B defined as follows :

B = { V E S + : V/^)+V^_/^)= 1 }
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where /E C(ft) (ft is the one point compactification of ft) takes the
value 1 at the point at infinity, °° ; XQ and x^ are fixed points in
ft, and the map f^ V.. is the kernel operator. It is left as a puzzle
to show that B may be taken to contain X with no loss of generality.
In the T-topology (Herve [18]) B is compact and thus is a Choquet
simplex. Since the T-topology induces the topology of uniform conver-
gence on compacta on I-T, B contains X as a closed face.

We can thus write ; : X -> B for the canonical injection, from
this we can construct the restriction map i^ : A(B) -^ A(X). It is
a simple corollary of the Edward's Separation Theorem, [12], that
i^ is surjective and it is clearly continuous. Theorem 1 tells us that
A(X) ^ L c CCSft^). F10111 this it appears natural to look for a
subspace J ~ C(^2^), where ftj^ = ft,j3ft^ is the Martin Compac-
tification, such that 4 becomes the restriction map C(ft^) -^ C^ft^),
and such that J ^ A(B).

We define J c C(3ft^) to be maximal with respect to the pro-
perty :

J|a"M c L .
In other words,

j = {/e c(ft^) : f\ aftM G u.
Note that J contains the constants, trivially, since L does, and that
J separates the points of ^2^. This is true because L separates the
points of 3^M anc^ ^or ^y f m J an(^ ^y compact set K ^^2 one
can alter / on K in an arbitrary manner provided the function obtained
remains continuous on S2j^. Now it is well known that one can visualise
ft as sitting inside exB, by means of the canonical homeomorphism,
0, which sends x ^ p ^ , the potential of support {x}.

We need the following lemma, the proof of which we do not
give as it is almost a standard corollary of the Edward's Separation
Theorem, [12].

LEMMA 7. — // X is a closed face of a simplex B, such that
X D exB \exB ; in other words X,jexB is closed, then any /G C(X,jexB)
such that f\^ is affine has a norm preserving extension to an element
of A(B). The extension is unique.
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This lemma can be reformulated in the following way ;

LEMMA 7a. - With the notation of Lemma 7, if

C^(X^exB) = {/G C(X^exB) : /l^ eA(X)>

then A(B) ^ C^(X,jexB), anrf the correspondance is an order isometry.
We can now state and prove the proposition central to this

paragraph.

PROPOSITION 8. — If 3 is the function system defined above then J
is isometrically order isomorphic to A(B), hence B is af finely homeo-
morphic to the state space of J . Symbolically, J ^ A(B), S(J) ^ B.

Proof. — It is well known that X D e^B\exB, in other words
0(ft)^X is a closed subset of B containing exB. X is also well known
to be a closed face of B so by Lemma 7a.

A(B) ^ CJX^exB) ^ J.

COROLLARY 9. — // A^ is the set of minimal harmonic functions
in X then the Choquet boundary ofJ is ft^ A i .

Proof. - The extreme boundary of B is just the set 0(ft),jA^
and the Choquet boundary is the inverse image of this under the
map ft^ -> B.

PROPOSITION 10. — / / Jo ={/GC(^) : f is the restriction of an
element in J}, then ?2^ is the JQ-compactification of ft.

Proof. - Let ftj^ be the Jo-compactification of ft. Then
(a) ft is homeomorphic to a dense subset of ftj".
(b) Every element of J^ extends to an element of C(ftj*).
(c) The extensions separate the points of 3ft j = ft^\ft, and

ftj" is uniquely defined by the properties (a), (b) and (c), up to
homeomorphism. But ftj^ satisfies all three properties and so ft^ ^ ftj^.
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Part 2. — Separately harmonic functions and
tensor products of simplexes.

1. In this paragraph, unless otherwise indicated, we shall assume
that each harmonic space satisfies the axioms I, II, III of Brelot.
Separately harmonic functions, as their name suggests, are functions
of two variables in harmonic spaces S^,^, which are harmonic
in each variable. More formally,

DEFINITION. — Let ^ZQ,^ , be two harmonic spaces, then a
function, h, on S^Q x ̂  ;>s' separately harmonic if it is harmonic
in each variable for each fixed value of the other variable. I.e. for
each x G ^ Q , y ^ h ( x , y ) lies in H(S2i) and for each y^Sl^
x ^ h(x , y ) lies in H^).

In a similar way a function h can be defined to be separately
harmonic on each open subset a? ~ ^IQ x S2^. Let MH^^ , Sl^) be
the convex cone of positive separately harmonic functions on ̂  x ̂ ,
let MH(^2o , ̂ ) be the vector space of separately harmonic functions
on ^IQ x ̂  and let MHp^o , ̂ i) be the vector space of differences
of positive separately harmonic functions. Also the symbols MIT^o?) ,
MH(o?) and MHo(o;) will denote the same objects corresponding to
the open set co c ^IQ x ^.

The above definition has been taken from Gowrisankaran [16].
In fact, Gowrisankaran talked about multiply harmonic functions
which are separately harmonic functions that are also continuous,
but because any positive separately harmonic function is necessarily
continuous and, in this paper we shall only be interested in positive
functions or differences of such functions we do not need to impose
this extra condition. In [16], Gowrisankaran showed that the sepa-
rately harmonic functions satisfy three axioms, the first, IM, and
the third, HIM, corresponding exactly to axioms I and HI of Brelofs
system ; the second, IIM, to a somewhat weaker form of the axiom II
of Bjelot. Then, among other things, Gowrisankaran develops the
theory along similar lines to the development of axiomatic potential
theory and proves an integral representation theorem analogous to
Martin's Integral Representation. We propose, in the next paragraph,
to deduce this theorem by different methods and in this paragraph
we will cite the axioms IM, IIM, HIM, and give a new proof of IIM,
based on tensor product ideas.



1^8 ^N REAY

AXIOM IM. — Let co^^o x X^i 6^ c^w2. // u E MH(o?) ^^
u GMH(§) for all § ̂  GJ. Ifu is separately harmonic in a neighbourhood
of each point in a; then u CE MH(oj).

Proof. - See [16].
Call the presheaf of separately harmonic functions on the directed

system of open subsets of ̂  x S^, MS€(S^Q , S^i).

AXIOM HIM. — Let 8 ^^IQ x ^l^ be a domain and let{u^^ be
an increasing, filtering family of functions in MH(§). Then the upper
envelope u of this family is either 4- °° on 8 or lies in MH(§).

Proof. - See [16].
One can immediately deduce the

LEMMA. -// u^UH+(8), for a domain 5, then either u>0
everywhere in 6 or == 0 everywhere in 5.

Proof. - See [16].
An immediate corollary of this is that the set

XM ^CMH^o ,^2 i ) : h(x^ ,^o) =

= 1 for fixed (x^ ^(^G^X ^J

is a base for MHT^^o ? ^i)- ^e ^all discuss the topology on
MH^BQ , ^i) in the next paragraph.

In order to prove the validity of Axiom IIM, we need to set
up some terminology. Let (^Q c fto » <A;! c ̂ i be open and rela-
tively compact. Define MA(o?o , o?i) == {h : h is continuous and sepa-
rately harmonic in o?o x ^i and has a continuous extension to
cJo x a?i such that / z ( x , . ) is harmonic in c*;i for ^ G (^Q and
similarly for x and y reversed}. MA is clearly a uniformly closed
subspace of C(o?o x o?^). Since we are assuming throughout that
the constants are harmonic then MA is a closed function space that
contains the constants and separates the points of o?o x c^, let
S(MA) be its state space.

AXIOM IIM. — Let o?o c ^IQ , o^ c ̂  be regular domains. Let
6(a?o x co^) = 3a;Q x 3c^. For fln>' /EC(5(a;Q x a^)) ^/z^r^ exists
a function 3^ on C^Q x cj^ with the following properties :
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(a) J ^ > 0 if f>0.
(b) ]^. = f on §(o?o x o?^) ^fi? lies in MA.
(c) Jy is uniquely determined by (a) and (b).

Proof. — Let the symbol 'V refer to completion with respect
to the weak tensor product norm. Then there is a positive isometry

I : Ao « AI -^ MA,

where AQ == A(a)o) = { / z G H ( o ? o ) : /z has a continuous extension to
CJQ}, AI = A(c<^i). This map is defined on the dense subspace, A^ «• A^ ,
by the rule

n n
I : ^ U, ^ V, ̂  ̂  l̂ . ,

i= 1 /=!

for u^ G Ao, î . ̂  A^ , and it is enough to show that it is an isometry
on .this set since one can then extend by continuity. Let I I . I I ^ be
the weak tensor product norm, then

n H i \\ n II
V Uf « v^ = sup ] ^ < Uf , p > Vf : p lies in
î ||̂  ( L-=i 11

the unit ball of A^ .

Now, by a direct calculation based on the triangle inequality for the

I n 11
norm, the map p ^ ^ < ^ . , ^ > ^ J is seen to be convex. It is

î II
also continuous since it is the composition of the maps

P ^ t , <u,,p>v, ̂  I ^ < ^ - , P > ^
i=l II ^=1 II

each of which is continuous. Hence, by the Bauer Maximum Principle
(see e.g. [1]), it is sufficient to take the supremum over the extreme
boundary of the unit ball of A^. But this is precisely the set

exS(Ao)u - exS(Ao),

where S(A()) is the state space of AQ, and by a well known result
(see e.g. Effros and Kazdan [14]) it is contained in

{ 5 - x G oJJu {- §, : x G GJ). },
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where 6^ is the evaluation at x, so

I f ^ ® ̂ | = sup j I Y u,(x) J| : x E^ ( ,
l l^ i h ( lh=i || )

( ^ - _= sup 1 ̂ .(x) ^.(jQ : x E ̂  , ^ G cji
( /=!

I " IIV II° £"•°•1
So I is an isometry, it is clearly positive. Because MA is closed
in C(c;o x G^) and therefore complete in the supnorm topology
I extends to the completion, A() & Ai , and remains an isometry
there. Now, §(GJo x c^) = Bc^ x 80^ is a closed set and is the
extreme boundary of the simplex

orc^a^ x 3coi) ^ oT^(3o^) » or^(aa;i).
So OT^(8o?o x 3a?i) is the state space of

C(3a;o) «COo;i) ^ Ao ® Ai .

So by the extension theorem of Bauer (see e.g. [1]) every continuous
function /eC(5(c<jo x o^)) extends continuously to an element of
MA. (a) follows immediately from the positivity of I and Bauer's
Maximum Principle. This completes the proof.

This proof essentially uses the fact that there exists a positive
isometry AQ & Ai -> MA. This leads one to ask the questions :
(a) Can we say that Ao ® A^ ^ MA in a sense which preserves the
order structures ? In other words, is I : Ao ^ Ai -^ MA(G;o , c^i)
bipositive and surjective ? (b) If so, does (a) still remain true for
o^o and o^ no longer regular ?

The answer to question (b), and hence also to (a), is affirmative
provided that we assume that I"̂  and ^ both have a countable
base of open sets, that both spaces satisfy the axiom of propor-
tionality of Herve and Axiom D (see e.g. [7]). These assumptions
ensure, firstly, that ^o and ^ are metrizable and, secondly, that
Ao and Ai are simplex spaces (the latter being ensured by Axiom D).
One can however avoid the use of Axiom D by assuming instead
that the two sets o?o and c^ are weakly determining domains as



SUBDUALS AND TENSOR PRODUCTS 1 3 1

this also ensures that Ao and Ai are simplex spaces (see Boboc and
Cornea [2]).

The reader who is not acquainted with the theory of tensor
products of simplexes and simplex spaces is referred to the papers
[ I I ] , [19] and [21].

THEOREM 11. — Under the hypotheses mentioned above on they
two spaces ^ and ^, AQ ^ A^ is isometrically order isomorphic
to MA(cx;o , c^), where AQ = A(o?o) , Ai = A(c^) and a?o c S^Q ,
o?i c ^2^ are open relatively compact sets. Symbolically,

Ao ^ Ai ^ MA.

Proof. — Let So , S^ be the state spaces of Ao , Ai respectively.
We recall that by the results of Davies and Vincent-Smith [ I I ] ,
SQ ^ S^ is the state space of Ag ^ Ai and is a simplex. Moreover,
AQ ^ A^ is isometrically order isomorphic to BA(SQ , Si), the
Banach space of jointly continuous biaffine functionals on So x S^
Since each function in BA(SQ , S^) achieves its maximum at a point
in the product of the extreme boundaries of SQ and Si and this is
just the product of the two sets of regular boundary points, 3,.c^o ,
9^i, the restriction map combined with the inverse of the natural
injection o^o x c^ -> So x Si provides an isometry

G : BA(So , Si) ^ MA(G,o , c^i)

which is bipositive. Hence, we also have an isometric order isomorphism

Ao ^ Ai ^MA(o;o , c^i).

We will identify Ao ^ A^ with its image under this map.
v

Now, as we have just remarked, the state space of Ao ^ Ai
is a simplex and AQ ^ A^ is a function space containing the constants
and separating the points of cJo x ^i, such that

Ao « Ai c MA(c^o , ^i) c C(cJo x c3i)
y

and if we can show that the Choquet boundaries of AQ ^ A^ and
MA(o?o,c^) are equal then the density theorem of Edwards and
Vincent-Smith [13] will give us that the former subspace is dense
in the latter, and, since they are both closed, they will be equal.
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To show that the Choquet boundaries are equal we remark
firstly that the Choquet boundary ofA^A, is just the set 8^o?o x 3^
as this is the extreme boundary of the simplex SQ « Si. To prove
that this set is also the Choquet boundary of MA(o?o , c^) we use
the characterisation of the Choquet boundary as the set of points
in €JQ x o?i which do not possess a representing measure over MA
larger than 6^y in the ordering defined by the min-stable wedge
W(MA) generated by MA (see e.g. Effros and Kazdan [14]).

Let (x , y ) lie in the Choquet boundary of MA, and let AI (- 5^
in the ordering defined by W^ - the min-stable wedge generated by
Ao - then form the measure JLI «> 6 y . It is not hard to see that this
measure is greater than 6^ y in the ordering defined by W(MA),
e.g. i f /= h^ ^h^ A . . . A h^ lies in W(MA), where

/ z . E M A 0 = 1 , . . . , n)
then

ffdp. « 6y =^ h, A/^ A . . . A /^ ( . , ; ; )^ ,

and the function x »-> h^ A /^ A . . . i\h^(x , y ) lies in W^, by defi-
nition of MA(O?Q , o?^),so

f fd^ji ^ 8y < f ( x , y ) .

This shows that ^ ^ 6y ^ 8 ^ y and it is clear that this implies
^ ^ 8y = 6^ y since (x , y ) lies in the Choquet boundary and it is
immediate from this that JLI = 6^, hence x lies in the Choquet boundary
of CL?Q with respect to A(), i.e. in 3^o?o. By exactly the same reasoning
y G 3^co^ and so (x , y ) G 3^o?o x 9^^.

The converse inequality, that the Choquet boundary of MA
contains 8^o?o x 3^a?i, follows immediately from the fact that
MA D AQ «' AI . This completes the proof.

COROLLARY 12. - S(MA) = So » S^ 77^2C67

(a) S(MA) is a simplex.
(b) exS(MA) = 3^<A;o x 3^0)^.
(c) The Shilov boundary of MA = 3^o?o x 3^o?^.


