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SUFFICIENT CONDITIONS FOR
THE CONTINUITY OF STATIONARY

GAUSSIAN PROCESSES AND APPLICATIONS
TO RANDOM SERIES OF FUNCTIONS

by Naresh C. JAIN (1. 2).
and M. B. MARCUS (1).

1. Introduction.

Let X(t), t e [0, 1]", be a stochastically continuous sepa-
rable Gaussian process with the property that

E(X(<+^)-X(^=o2( |A| ) .

In this case Dudley's sufficient condition, involving metric
entropy, for the a.s. continuity of the sample paths of this
process, can be given in terms of the familiar integral

T/~\ r a{u) j"'''Ldogw''"-
I (a) < oo is sufficient for X(() to have continuous sample
paths a.s. The function a is the non-decreasing rearrange-
ment of a for h e [0, 1]. A useful corollary of this result
is that I(o) < oo is also a sufficient condition for the a.s.
continuity of the sample paths of X((). These results are
presented in section 2.

In Section 3 our results are generalized to processes with
subgaussian increments. These results are used in Section 4

(1) This research was supported in part by National Science Foundation grants.
(2) On sabbatical leave at the University of Illinois, Urbana, Illinois, when

this research was carried out.
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to obtain sufficient conditions for the continuity of a certain
class of weakly stationary processes with discrete spectral
distributions. We introduce the concept of a strongly symme-
tric sequence of random variables to describe this class. In
section 5 we show that the results of Section 4, applied to
random Fourier series, imply a theorem of Kahane on a suffi-
cient condition for the a.s. uniform convergence of these
series. Some other results on random Fourier series are also
given in Section 5. Finally, in Section 6, we comment on the
a.s. uniform convergence of some other random series of
functions.

2. Sufficient conditions for the continuity
of stationary Gaussian processes.

Let {X(^), (e [0, 1]71} be a stochastically continuous
separable stationary Gaussian process on the measure space
(Q, SS, P) with EX(<) == 0, EX(()2 < oo. Let T be the
map T(() == X(() from [0, 1]" into L^Q). Stochastic con-
tinuity of X(^) implies that T is a continuous map; the
topology on L^Q) is given by the norm

RX(() - X{s)[\ = {E(X(f) - X(^}^.

The process {X(f), ( e [0, 1]"} is said to have continuous
sample paths almost surely if on a set of <o with P measure
1 the function X((, o) is continuous in (.

Let C == {X{t) : t f= [0, 1]"}. Clearly C is a subset of
L2^). Let N(s) be the minimal number of balls (deter-
mined by the norm) of radius < s necessary to cover C.
The function H(s) == log N(e) is called the metric entropy of
C. Dudley has shown [2] (see also [3]) that

J(H) === ^H^de < oo

is a sufficient condition for a stochastically continuous sepa-
rable Gaussian process {X(<), t e [0, 1]71} to have continuous
sample paths almost surely.

Let X(() have stationary increments and let

E(X(t+h)^XW==^W)
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for some non-negative continuous function a. If a is stric-
tly increasing for \h\ e [0,8] then for e < <r(8), H(s) is
comparable to log|<Ti(e) | where cr^ is the inverse function
of cr. This is not difficult to check; we shall show it for
( e [0, 1] (i.e. n = 1). Suppose e < ^(8); let h == o'i(e);
then if u ^ h, ||X(0) — X(u)|| ^ e. By stationarity and
symmetry [I/A] + 1 balls of radius e cover X(() but
[l//i]/4 balls do not ([ ] denotes integral part). Therefore

^
N(e) is comparable to ifh = —— and the result follows
by taking logarithms, ^i^/

In the case of strictly increasing cr we see that J(H) < oo
if and only if ! (<?)< oo where

T/ \ r ^w jI(^ = v / du
Jo u (log l/u)^2

(see Lemma 2.2).
Of course the metric entropy is determined by cr whether

or not or is strictly increasing; however, since cr need not
even be of bounded variation it is quite difficult to see the
relationship between them. Nevertheless, we can compare
the convergence or divergence of J(H) with that of I(or),
where cr is the non-decreasing rearrangement of cr. In
other words when a is not increasing o- substitutes as a
smoothed version of <?. We proceed to develop this result.

Let g : [0, a] —> [0, 8] be a continuous non-negative func-
tion. Define

^{y)=\{he[Q,a]: g{h) < y }

where X is Lebesgue measure; ^{y) is a left continuous
strictly increasing function. Let g{h) be the generalized
inverse of |i(y) given by

(2.0) g( fc)=sup{i / : (x(y) < A}.

The function g{h) is a continuous non-decreasing function
called the non-decreasing rearrangement of g{h) for h e [0, a],
(Note that if g{h) is strictly increasing, (JL is the ordinary
inverse of g and g(h) = g[h)).

Our main result is a relationship between the metric entropy
and the metric of a metric space with a very special property.
Suppose that there exists a continuous map Q from [0, 1]"



120 NARESH C. JAIN AND M. B. MARCUS

onto a subset S of a metric space y with metric d(x^ y),
x, y e y. Let x^ e S be the image of ( e [0, Ip (XQ the
image of 0) under Q and assume that on S the metric
has the property that d{x^ x^) = f{\t—s\), ([ | denotes
ordinary distance in R/1). Consider the balls in the metric
space generated by the metric and having centers in S.
Let N(e) be the minimal number of such balls with radius
less than or equal to e that cover S. Such a number exists
since S is compact. Define

(2.1) m{y) = \{h e [0, 1]-: d{x,, x,) < y } .

The following lemma is obtained :

LEMMA 2.1. — Let S be the subspace of the metric space
given above and let the metric d, the covering number N(e),
and the measure m also be as defined above. Then for all integers
k ^ 1 we have ^"N^ '• ̂ n-

Proof. — We have defined S = {Xt: t e [0, 1]"} and
N(2^) as the minimal number of balls of radius 2~k that
cover S. Denote these balls by Si, i = 1, ..., N, and let
their centers be given by x^ i = 1, ..., N. Let

A, ={^[0,1]":^,^,) < 2-^}.
By hypothesis d is radially symmetric; it follows that

X(A,) ^ 2nm{2-k).
N

Note that U A, => [0, 1]"$ therefore •
1=1

/ N \

1 ^ xdJA.) < N2nm(2-;c).
\ 1=1 /

Since N = N(2-^), we haveK^»^
To obtain the other inequality let k ^ 1 be fixed and let

So={^:d(a;,,^) < 2-''}.



SUFFICIENT CONDITIONS FOR THE CONTINUITY 121

Let Ac be the pre-image of So in [0, 1]". By definition

X(Ao) == m^}.

If there exists Xy such that d{x^ So) ^ 2"^, then pick
x^ so that d{x^ So) = 2^, equality is possible since
Q: [0, 1Y -> S is continuous, and define

S^{^:^,^) < 2-^}.

Proceeding as before, pick x^ such that d(x^ So u S^) == 2"""\
if such exists, and define

S,={^:^,^) < 2^}.

Continue this process as long as it is possible and let N be
the maximal number of sets obtained. Denote these sets by
SJ, i = 0, ..., N — 1, and their pre-images in [0, 1]" by
AJ, i === 0, ..., N — 1. These sets are disjoint; therefore

if^A.') ^ i.
i==o

Clearly S^, i = 0, ..., N —• 1, need not be a cover of S but
N sets having the same centers as S,' and having radius
3-fc+i ^§ ^ cover for S. Therefore

(2.2) N(2-^) ^ N.

We will show that
(2.3) x(AQ > (^l)-1^-^-1);

then we will have

1 > S\(AO ^ N(2» + l)-1^-^1). •
i==o

Using (2.2) we see that
On 1 4

• N^-^-^ < ' .i•l(2 ) ^ m(2-k-l)' .,

We now obtain (2.3). It follows from the radial symmetry
of d that

(2.4) X(A.') ^ X[u 6 [0,1/2]": d(xo, x,) < 2-"].
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Observe that

(2.5) m(2-^) = X{u e [0, 1]-: d{x^ )̂ < 2-^}
= X { ^ e [0,1/2]" :^o,^) < 2-^}
+ X [ u e ([0,1/2]")-^^) < 2^}

where ([0, 1/2]")° denotes the set [0, 1]" — [0, 1/2]".
If the set in the last term of (2.5) is empty then (2.3) holds,

otherwise there exists a UQ e ([0,1/2]")° for which

Since
d{x^ x^) < 2-^1.

d(x^ x^} < d{x^ Xo) + d[x^ Xo),

it follows that

^ue([Q,i|2]nY:d{x„x,) < 2-^}
< X{ue ([0, 1/2]^:^,^) < 2^}
^ 2nX{u e [0, 1/2]": ̂ , x,) < 2^}.

By (2.5)

m(2-^1) ^ (2" + l)X{u e [0, 1/2]": rf(^, x,) < 2-^}.

Combining this with (2.4) we obtain (2.3).
In our applications of Lemma 2.1 we will be concerned

with a generalized inverse of the function m(y) defined in
(2.1). The following technical lemma says that for our pur-
poses we can treat a generalized inverse as though it is an
ordinary inverse. See [1] for further details.

LEMMA 2.2. — Let f be a non-increasing function and
f~~1 a generalized inverse of f (i.e. a function f~1 satisfying
sup {x: f{x) > y} ^ f^{y) ^ inf {x: f{x) < y}). Then

^f(u) du < oo <==̂  f f^^u) du < oo.

We now return to the stationary separable stochastically
continuous Gaussian process X((), t e [0, 1]", with

E(X(<+A)-X(( ) ) 2 -a 2 ( |A | ) .

The hypotheses of Lemma 2.1 are satisfied by this process;
the metric is the norm on L^D) and d(x^^ ^t) == °'(|^1)-
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As in (2.0) define

(2.6) a{h)=sup{y:m{y) < h},

so that a is the non-decreasing rearrangement of <r. We
prove

THEOREM 2.3. — Let X((), te [0,1]", be a separable sto-
chastically continuous Gaussian process with stationary incre-
ments such that EX(() == 0 and E(X(( + h) — X{t})2 == o2^)).
Let (T be the non-decreasing rearrangement of a given in
(2.6). Then a sufficient condition for X(t) to have continuous
sample paths almost surely is that

r\ F ^u) j(<y) = I —T.—v / ^» du < oo.(2.7) I(o) = f „ a{u), ,,. du <v / v / Jo u (log 1/u)^2

Proof. — We show that under these hypotheses

(2.8) J(H) < oo if and only if I(<r) < oo.

To see this first note that the convergence or divergence
of J(H) is not affected if s is replaced by k&. Therefore
by Lemma (2.1) applied to f{c) = (log l/m(s))1/2, J(H) < oo
if and only if

r { l \112
I (l°g—7-r) ^s < oo.

Jo\ 0^)/
Since o is a generalized inverse of m it follows from Lemma
2.2 that J(H) < oo if and only if

J <r(e~^) dy < oo.

Statement (2.8) follows by a change of variables.
For applications of Theorem 2.3 we will use a stronger

condition than (2.7). To obtain this we need another lemma.

LEMMA 2.4. — Let h(u) be a non-negative^ non increasing
function on (0, 1] and o^(rc), i = 1, 2, be distribution func-
tions with o^(O) ==0, i == 1, 2, and ^i(x) ^ ai^x). Then

j x h{u) dtai(u) < oo implies

ff^ h{u) d^{u} < ^x h(u) dai(u).
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Proof. — By integration by parts

(2.9) f; h{u) d^(u} = h[x}^{x) - f; ai(u) dh(u),

where we use the fact that j x h{u) dcn^u) < oo and h
and a monotone imply that HmA(u)ai(u) ==0. The proof

u->0
follows immediately from (2.9) taking into account the fact
that h is non-increasing.

We can now show that I(o-) < oo is also a sufficient condi-
tion for sample path continuity.

COROLLARY 2.5. — Let <y, o- be defined as in Theorem 2.3;
then for 0 < x ^ 1,

r qr(u) j . r ^w j
Jo u (log 1/ur 'Jo ^(loglW2^-

Jn particular I(o-) < oo i$ CT sufficient condition for the conti-
nuity of the sample paths of X(() considered in Theorem 2.3.

Proof. — Write I(<r) and Ho) as

^ h^ d (Jo0 ;^) ̂ ) and ^ ̂ (^ J (/o" ̂  ds)
_j_

/ 1 \ 2
respectively, where h(u) === u~1 (log — ) .

It follows, as in Hardy, Littlewood and Polya [5], page 277,
that for 0 ^ x < 1

j x a[u) du < j x c{u) du.

The proof now follows from Lemma 2.4.
It was shown in [12] that there are continuous stationary

Gaussian processes for which I(cr) is infinite. In [10] it was
shown that for some of these processes J(H) and consequen-
tly I(or) is finite. Also, as discussed in [10], there are no known
examples to contradict the claim that I{a) < oo is a neces-
sary and sufficient condition for the continuity of stationary
Gaussian processes satisfying E(X(^ + h) — X(t))2 = ̂ ( [Aj).
So far we have not been able to use the new results of this
section to obtain further information on the problem of
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finding necessary and sufficient conditions for the continuity
of stationary Gaussian processes (*).

The monotone rearrangement cr of a is a kind of smoo-
thing of cr. In [11] one of us commented on a different
attempt to smooth G. Let X((), ( e [0, I], be a stationary
Gaussian process with E(X(( + h) — X(())2 = o-2^). Consi-
der the function

(2.10) ^(/i) = i F a^u) du.
11 Jo

There is a stationary Gaussian process Y(^) such that
E(Y(t + h) — Y(^))2 == ^(A). In [11] it was shown that it
is possible to have a continuous process X(() for which the
associated process Y((), corresponding to the increments
variance ^{h) given by (2.10), is discontinuous. We add
to this the following:

THEOREM 2.6. — Let X((), Y(^), ( e [0, I], be stationary
Gaussian processes with E(X(( + h) — X(())2 = a2 (A),

E(Y(( + h) - Y(())2 = ̂ {h)
with a and ^ related as in (2.10). Then if Y^() has conti-
nuous sample paths, so does X((). The converse is false.

Proof. — If a stationary Gaussian process Y(() has its
increments variance ^(fc) given by (2.10) then it follows
from ([9], Theorem 4.5.1) that the spectral distribution F
of Y(() is concave. It was shown in ([II], Theorem 1) that
tor stationary Gaussian processes with concave spectral
distribution F

(2.11) I(F)= F (i ~n ̂ T ̂  < -v / J x{logx)112

is a necessary and sufficient condition for a.s. continuity
of the sample paths.

In [10], Theorem 1, as well as in [6], it was seen
that I(F) < oo implies I(^) < oo (this result holds tor all
F, not just for concave F). On the other hand 1(40 < °o

(*) Added in proof : Professor Fernique has now shown that I(<r) < oo is a
necessary and sufficient condition fur the sample continuity of a stationary Gaussian
process.
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is a sufficient condition for continuity by Corollary 2.5. There-
fore for stationary Gaussian processes with increments
variance ^(h) given by (2.10)

(2.12) I(^) < oo

is also a necessary and sufficient condition for the a.s. conti-
nuity of the sample paths. Therefore if Yf() is continuous
I(^) < oo. We complete the proof by showing that 1(^) < oo
implies I(a) < oo. This follows from the following inequa-
lities :

(2.13) I((T) < 0) ̂  I (^- F a(s) ds\ < oo,
\u JQ )

andw I (^ £a(s) ds) ̂ l ((-̂  r02(s) ̂ )l/2)= lw-
We get (2.14) by Schwarz's inequality; (2.13) is obtained
by observing that

XuoogW^r^^)'00
/»/ /*" \ / /i \

<=^ ( ( ( a(s}ds}d(———1———^ < oo
JoVo / \u(logl/u)1/2/ '

This proves the first assertion of the theorem. The second
assertion is proved in [11] by a counter-example.

3. Processes with subgaussian increments.

The results of Section 2 are not restricted to Gaussian
processes. They apply to stochastic processes with increments
which have a probability distribution with tail estimate
similar to that of a normal random variable. We proceed to
make this precise.

A random variable is called subgaussian if for any real ^

(3.1) E(^) ^ ̂ ,
where a2 == EX2. A subgaussian random variable must have
zero mean. The random variable X taking values ± 1
each with probability 1/2, is called a Rademacher random
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variable and is subgaussian. For later use we define a sequence
of independent Rademacher random variables as a Radema-
cher sequence.

It follows from the exponential Chebychev inequality that
if X is subgaussian (which implies that — X is subgaussian)
then

. ^
(3.2) P{|X| > X} ^ 2e 2CTt.

We will now display stochastic processes X(<), ( e [0, I],
such that EX(^) == 0 and X(t) — X(^) are subgaussian for
all s, t e [0, 1]. Let Dpn^)} he a sequence of continuous

• • . ' 0 0

functions, ( e [0, I], such that ^ ?W converges unifor-
n==o

mly. Let {s,} be a sequence of independent subgaussian
random variables, E[sS] = 1. Consider

(3.3) X(() == S <p.(̂
n=o

(the sequence converges a.s. for fixed t). Since

E[ex(x(()-XW)] == JJ Ef̂ ^0-?"^5"]
n=o

^ S (?n(()-<PnW
^ ^ 2 n=0 ,

X(() has the required properties. The following theorem
provides a sufficient condition for the continuity of (3.3).

THEOREM 3.1. — Let X((), ( e [0, I], be given by (3.3)
and suppose

E(X(t)-X{^ < ^(It-*•!),
where ^ is non-decreasing and 1{^) < oo. Then X(() has
continuous sample paths a.s.

Proof. — If {e^} were normal random variables this
would be a consequence of Fernique's theorem [4]. Dudley's
theorem implies Fernique's theorem (see [2], Theorem 7.1
and [10]) and the proof of Dudley's theorem (as well as the
proof of Fernique's theorem) depends only on the increments
of X(() satisfying (3.2) rather than on the somewhat finer
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estimate available for Gaussian random variables. Therefore
the theorem is proved.

Suppose that X(() also satisfies

(3.4) E(X(() - X(^ = 1 ^(t) - y^))2 = ̂ {\t ~ s\)
n==o

for some continuous function o. Applying the results of
Section 2 and by the .same reasoning used in the proof of
Theorem 3.1 we obtain.

THEOREM 3.2. — Let X(<), ^e[0,l], be giwn by (3.3)
and suppose that it also satisfies (3.4); then l[a) < oo is
sufficient for X^) to haw continuous sample paths a.s.

Remark. — In this case using Corollary 2.5 we see that
I(<y) < oo is also sufficient for X(^) to have continuous
sample paths a.s.

4. Weakly stationary processes
with discrete spectral distribution.

We will show that I(o) < oo is a sufficient condition for
the a.s. continuity of the sample paths of a large class of
weakly stationary processes with discrete spectral distribu-
tion.

Let R( . , . ) be a real valued continuous stationary cova-
riance on [0, 1] X [0, 1] with discrete spectral distribution
F. (Since R is real we take it as a cosine transform of F
concentrated on the right half line). Let F have weights

00

^ at X,, \ ^ 0, S ̂  == 1- Then
n==0

30

(4.1) R[s,t) = S a^cos\(s — t) = p{\s — t\).
71=0

Let

(4.2) a^h) = 2(1 - p{h)) = 4 1 a^ sin2 ̂
n==0 ^

Every second order, zero mean, weakly stationary pro-
cess with discrete spectral distribution and covariance given
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by (4.1) has a representation (in the mean-square sense) in
the form

(4.3) X(() = 1 a^n cos \t + ̂  sin \t}
n==o

where {Sn}? {Sn} ^re two mutually orthogonal sequences of
orthogonal random variables with E(E^) == E(^2) == 1 and

E(^) == E(Sn) == 0 for all n and with S a^ == 1. (See
Doob [13] Chapter XI, Theorem 4.1.). ^

We impose one important condition on the process (4.3)
that {^} and {Sn} be strongly symmetric. We will call a
sequence of real or complex valued random variables {^}
strongly symmetric if the finite dimensional distributions of
{^} are the same as the finite dimensional distributions
of {snSn}? where {s^} is a Rademacher sequence indepen-
dent of {^n}. (Note that {Sn} ls symmetric if the finite
dimensional distributions of {Sn} are the same as the finite
dimensional distributions of {s^n} where s is a Rademacher
random variable independent of {^}.)

If {^} is any arbitrary sequence of random variables
and {£„} is a Rademacher sequence independent of {SnL
then clearly {s^} is strongly symmetric. It is also clear
that if {^} is strongly symmetric then E(^^) == 0 for
n 7^ m, i.e. they are orthogonal.

If {^} is a sequence of symmetric independent random
variables then it is strongly symmetric. However, the class
of strongly symmetric random variables is larger than this.
We were led to define strongly symmetric random variables by
recognizing that in some previous studies of random Fourier
series (i.e. X^ == yz), {^} was taken to be a sequence of sym-
metric and independent random variables only to insure that
they were strongly symmetric.

We need the following lemmas :

LEMMA 4.1. — Let {X,(()}, {X^(()}, n ^ 0, t e [0, I], be
independent sequences of continuous symmetric stochastic pro-
cesses on some probability space (Q, ^, P). If

(4.4) S [X^f) + X^)]
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ao

converges uniformly a.s., then each of the series ^ X^) and
00 n==o
S X^) converges uniformly a.s. (Note that a stochastic pro-

n=o
cess is symmetric if all of its finite dimensional distributions
are symmetric.)

Proof. — Since the sequences are symmetric and indepen-
dent, the a.s. uniform convergence of (4.4) implies the a.s.

00

uniform convergence of ^ [Xn(<) — X;»(()]. Adding these
n=0 QO

two series gives the a.s. uniform convergence of ^ XJt).
°o ra=o

The same method gives the result for ^ X,(().
n==o

LEMMA 4.2. — Let {cj} and {ej} be two sequences of
real-valued continuous functions on a compact metric space T
such that ^ '[^{t) + ^{t)] converges uniformly on T. Let

j
{^j}? {y^} be mutually independent sequences of independent
symmetric random variables with E(-y^) == E(-^2) === 1 for
all j. If the stochastic process represented by

(4.5) X(() = S [e^ + e',[t}^}

(in the sense of a.s. convergence for each t by Kolmogoro^s
theorem) has a version with almost all paths continuous^ then
the series in (4.5) converges uniformly a.s.

Proof. — The proof is a slight modification of arguments
given in [7].

In the next theorem a sufficient condition for continuity
obtained originally for subgaussian processes is extended to
a large class of random trigonometric functions.

THEOREM 4.3. — Let {X^, n ^ 1} and {<&„, n ^ 1} be
two sequences of real-Valued random variables on some proba-
bility space (i2, ̂ , P) such that the complex sequence {X^e1^}
is strongly symmetric. Let

(4.6) E(X;0 == a^ S a\ = 1
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and
^{h)=^J, alsin2^

n=o A

where X^ ^ 0. Then I(cr) < oo implies the a.s. uniform
convergence of the series

(4.7) 1 X^ cos (V + OJ,
n==o

( e [0, 1].

Proof. — We construct a product probability space
(a, y , P) such that 0. = Oi X ^2, ^ == -̂1 X ^2 and
P == PI X ?2 where {XJ and {OJ are defined on (Qi,
^i? Pi) B^ two independent Rademacher sequences {e^}
and {£„} are defined on (Qa? •^'2? P2)- E^ will denote the
expectation operator relative to P^ i'' = 1, 2, and E rela-
tive to P. Let

(4.8) Zit) = 1 X,{s, cos (V + ^J + ̂  sin (X,( + <I>n)}.
n==o

From (4.6) we see that

• (4.9) 1 X^ < oo a.s. (P).
n==o

For a fixed 0)1 e Q^, we denote the process in (4.8) by Z^(<),
i.e.

(4.10) Z,/t) = S X,(o)i)K cos (X,( + <D,((Oi))

+^sin(V+ (^l))}.
Note that Z^(() is a stochastic process on ^2- Define

- <(/z) == E2(Z,/( + h) - Z^(())2 = 4 S X;S(^) sin^ ̂
n==o z

Note that I(<r) < oo implies I(cToJ < °° a•s• (Pi) since
Ex{I(aj} = I{E,(oj} ^ I(o).

The last step follows by Schwarz's inequality since
E,(oJ ^ {Ei«)}^ = a.

The process Z^(() is a process of the type given in (3.3);



132 NARESH C. JAIN AND M. B. MARCUS

therefore by Theorem 3.2 there is a set Qi c: Q^ such that
P(Qi) === 1, and (*>i e ̂  implies that Z^ (() has conti-
nuous sample paths a.s. (P2)- It follows from Lemma 4.2
that the series for Z^(^) converges uniformly a.s. (Pa)
for o)i e i^i. We now apply Lemma 4.1 to the two sequences
of independent {w.r.t. Pg) symmetric stochastic processes

{X^co^cos^+^i))} and {X^)£,sin (\t+ 0,(o>i))}

and obtain that

S X,((0i)s, cos (V + < î))

and

S X,((Oi)^sin(V+^(^i))

both converge uniformly a.s. (P2)- It follows by Fubini's
theorem that

(4.11) 1 X^ cos (V +<!>.)
n=o

converges uniformly a.s. (P). The hypothesis that {X^e1^"}
is strongly symmetric is equivalent to both {X^ cos ®^}
and {X^ sin 0^} being strongly symmetric. Consequently,
the finite dimensional joint distributions of (4.7) and (4.11) are
the same. Therefore (4.7) converges uniformly a.s. (P).

00

Note that the condition (4.6) that ^ d^ = 1 is only a
n==o

convenient normalization. Any finite value suffices.
We can now state our result for weakly stationary processes

with discrete spectral distribution.

THEOREM 4.4. — Let X(t) be gwen by (4.3). Suppose
{^} and {^} are strongly symmetric sequences. Then
I(cr) < oo is a sufficient condition for the a.s. uniform conver-
gence of the series in (4.3).

Proof. — By taking X^ == a^Sn and 0^ == 0 in Theorem
00

4.3 we conclude that ^ a^Sn cos \^t converges uniformly
n==o

a.s. With X^ == a^n and <1\ = 7r/2 we get the uniform
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00

convergence a.s. of ^ ^n sin \,f. The theorem follows.
n==o

It was convenient for us to prove Theorem 4.3 before
Theorem 4.4 but Theorem 4.3 can be obtained as a corollary
of Theorem 4.4, even though the uniform convergence of (4.7)
seems like a more general result than the uniform conver-
gence of (4.10). In other words our results apply essentially
to weakly stationary processes. The apparently more general
Theorem 4.3 is a consequence of Theorem 4.4 and Lemma 4.1.

Theorem 4.4 can be restated in an interesting manner.
We do this as a corollary.

COROLLARY 4.5. — Let X(() be given by (4.3) except that
{^} and {^n} ^re only required to have uniformly bounded
second moments. Let {6J = {s^J and {Q'n} = {enSn} where
{c^} and {e'n} are independent Rademacher sequences inde-
pendent of {SnL {^n}* Then I(<r) < oo implies the a.s. uni-
form convergence of

S aJ6,cosV+ 6,smV}
n==o

where a is given by 4.2.
Finally we take up the question of how essential is the pro-

perty of strong symmetry. It turns out that some such restric-
tion is essential. Let X^ == 2nn in (4.3), i.e.

(4.12) X(() == 1 aJSn cos 2nnt + ̂  sin 2nnt}.
71=0

We give an example of bounded orthogonal sequences {Sn}
and {Q, with E^ == ESn == 0 (in fact each Sn, ^ is
symmetric) and E^ = ESn2 = Const., for which Z{t) in
(4.12) has all of its sample paths discontinuous whenever
a^ ^ 0 and {a^} ^ I1. Simply let Sn == ^s 27mco and
^ = — sin 27Tmo, o e [0, 1]. Then

00

X(() == S ^ cos 27cn(( + to)
n==0

and this is unbounded at ( == (1 — o>) whenever {a^} ^ I1.
One can check that {^} and {^} are not strongly symme-
tric.
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Note that in (4.12) the process X(t) is continuous if {a^} e P.
Therefore as soon as this condition is violated (and a^ ^ 0)
we can find weakly stationary processes with discrete spec-
tral distributions that are discontinuous. Hence restricting
{Sn}? {Sn} to the strongly symmetric class seems a reaso-
nable way to get any further classification of these weakly
stationary processes with respect to sample path continuity.

/ 1 \112
(Note that if a^=[—————-} for a > 2, thenv \n{\QgnY)

I(or) < oo; see [10] Theorem 1.)

5. Random Fourier series.

For A^ = 2nn the series in (4.7) are random Fourier series.
Applying the results of Section 4, Kahane's result for the a.s.
uniform convergence of these series is obtained ([8], Theorem
1, page 64). We also add to a different result of Kahane ([8],
page 77) on necessary conditions for the a.s. uniform conver-
gence of random Fourier series. Finally, we apply some of
our results to obtain a property of Sidon sets.

The following theorem is simply a restatement of theorem
4.3 in the case ^ = 2nn.

THEOREM 5.1. — Consider the series

(5.1) 1 X, cos {2nnt + OJ
n==o

where {X^} and {0/J are sequences of real valued random
variables such that {X^e1^"} is strongly symmetric, t e [0, 1J.
Let

(5.2) E(X^) - < 1 a^ < a),
n=o

(5.3) o2^) = 4 S a^ sin2 n-nh.
71=0

Then l{c) < oo is sufficient for the a.s. uniform convergence
of (5.1).

Define

(5.4) ^ S î-
2•/^n<2J+l
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Kahane has shown that if {X^1^} are independent and
symmetric then

oo /^-l M/2

(5.5) ^2^( S ^-) < oo
fc=l \ J^ /

implies the a.s. uniform convergence of (5.1). It has been
shown in [II], and independently in [6], that (5.5) implies
I((T) < oo. Therefore Theorem 5.1 implies this result of
Kahane.

For future use we note that if ^\ and S .̂ < oo then
(5.5) holds.

We have a few remarks to make concerning the relationship
of our work to Kahane9 s. Although he requires {X^1^}
to be independent and symmetric all he uses in Theorem 1,
page 64 [8], is that they are strongly symmetric. The techni-
que of replacing {X^"} by {s^X^e1^"} where {s^} is a
Rademacher sequence independent of {X^1^"} is due to
Kahane; it is of major importance in our Section 4. A condi-
tion such as (5.5), which involves the coefficients of the ran-
dom series (5.1), is all right when ^ == 2nn, but is meaningless
when the 7^ are arbitrary. A condition involving a clearly
depends upon X^ as well as the coefficients of the series.
Finally, Kahane's method in proving his Theorem 1, page 64
[8], which incorporates earlier work of Paley, Zygmund and
Salem, uses properties of trigonometric polynomials and does
not extend to the case where 2-^n is replaced by X^ (as far
as we can see).

The following theorem is a necessary condition for the a.s.
uniform convergence of random Fourier series.

THEOREM 5.2. — Consider the series (5.1) where {Xj and
{0^} are sequences of real valued random variables such that
X^1^" are symmetric and independent. Let a^ be gi^en by
(5.2) and s2' by (5.4). Suppose one of the following conditions
holds:

a) There is a positive constant c such that
(5.7) E(X^) ^ cE2(X;) - ca^

b} |aJ and there is a constant Ci such that

(5.8) ai-E(X;) ^ c^lXJ.
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Then S^ = oo implies that (5.1) represents an unboun-
ded function on [0, 1] a.s.

Proof. — Under hypothesis a) this is Kahane's Theorem 1,
page 77, [8]. We use it to prove the theorem under hypothe-
sis 6). Let Q = ̂  x Q,, ^ = ̂  x ^2, P = P, x Pa be
a product probability space such that {XJ and {<&„} are
defined on Q^ and a Rademacher sequence {sj is defined

oo

on 4s. Consider the series 2 e,X, cos (27cn( + OJ. We
n==o _

will show that for each fixed ^e^cQ.^ Pi(Qi) =1,
the series

00

(5.9) ^ e,X,(<oi) cos (27tn( + a»,(<»i))
î̂ o

represents an unbounded function on [0, 1] a.s. (Pa). Using
this theorem under hypothesis a) with e^,(<0i) replacing
X, and 0,(<0i) replacing 0,, (5.9) represents an unbounded
function on [0, 1] a.s. (Pg) if Ss,(o>i) == oo, where

^Kl-^x^).
n=2J

Therefore we need to show that

(5.10) K2^1^)2" 00 ^ (pl)-

By Schwarz's inequality,

oo /2-74"1-! \i/2 oo 2J+1-1

(5.11) S 2 X^ ^ 2 2-^ S |XJ.
j=l \ n=2J ) j=i n^J ' ftl

Since the |XJ are independent, by Chebychev's inequality,

(5.12) P r^"1 (EjXJ - |XJ) ^ .2 ,̂; < 2^
( n=27 ) S2

where ^ is given in (5.4). By the Borel-Cantelli lemma only
finitely many of the events in (5.12) occur and we conclude
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that a.s. (Pi) for all /' sufficiently large
2^-1 a^-i

(5.13) S |XJ > S E|XJ -s2^
»=2' ^ j_ 2^i_i

^ Ci3 5. a,-e2^,
n==27

by (5.8). Choose 0 < s < (Sci)^2; since a^\ we have
2^-1 J. _J.

S a, ^ 2 î = 2^[2^i]2 ^ 2^2 2 ̂ i.
n=2-7

Hence, substituting in (5.13), we get

(5.14) ^SIXJ ^ 2^S(2c,^ i l~eL, for / e l ,
n=2-/ ( z 5

where I == {/ : ^4.1 ^ 2'~15y}. Since S^ = oo we have
^ ,?,== oo. Hence by using (5.14) in (5.11) we get (5.10).
ye i
The remainder of the proof follows by Fubini's theorem.

Properties of random Fourier series can be used to obtain
results in harmonic analysis. For example let A == {X^},
n = 0, 1, . . ., where X^ are integers, be a Sidon set. We will
not define a Sidon set here (see [8], page 57), but observe
that if {X^} is a lacunary sequence, i.e. inf (^+i/^n) > q > 1,

n
then A is a Sidon set. For A a Sidon set, {Sn}, {^n} two
independent sequences of independent random variables with
E^ = E^ = 0, E^2 = ESn2 = 1, the series

00

(5.15) S a^n cos 1-K\t + Sn sin 2-n\t'},
n=o

converges uniformly a.s. if and only if {a^} e P. (This is
equivalent to the statement that S|aJ|E;J < oo if and only
if {a^} e P). We obtain the following property of Sidon sets.

THEOREM 5.3. — Let A = {^}, n === 0, 1, ..., be a
Sidon set and consider

00

a^(h) = 5 ̂  sin2 n\h.
n==o

Then I(<T) < oo if and only if {a^} G I1.
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Proof. — Let the { U - { Q in (5.15) be subgaussian. If
I((r) < oo then by Theorem 3.2 and Lemma 4.2, (5.15)
converges uniformly a.s.; hence {aj e I1. If {aj e P,
then (5.15) is a subset of a block in a Hilbert space as defined
m ([10], (1.12)). By Theorem 2 of [10] J(H) < oo where H
is the metric entropy of the block. Since (5.15) is weakly
stationary it follows from (2.8) that I(<j) < oo.

6. Other random series of functions.

L61 [y^)]? t e [^? 1]? ^)e a sequence of continuous functions
00

such that ^ <p^(() converges uniformly and
71=0

^ ^n(t) - ̂ nW = ̂ (\t - S\)

for some continuous function a. If {e^} is a sequence of
independent subgaussian random variables, then I(a) < oo
is a sufficient condition for the a.s. uniform convergence of

00

S ^nW^n- This result was the starting point in Section 4 in
n==o

which we specialized to the case where the 9^) were sine
and cosine functions. The methods of Section 4 do not carry
over for more general <pJ^). Recall that when we wished to

00

study ^ ?n(OS« for some strongly symmetric sequence
n==o

{SJ with E^ = 1, defined on a probability space (^, e^i,
Pi), we introduced a Rademacher sequence {sj on (^3,

00

^25 ?2) and considered the series ^ (p^s^n on (Q, e^, P)
n=0

where Q = ̂  X ̂  ^ -== ^\ X ^2 and P = P^ X Pa.
Then for fixed o)i e jQi we studied

(6.1) Z^(t) = $ U^n(^n
7l=s0

which is a subgaussian sequence if Ez(Z^(t) — z^{s))2 exists.
Notice, however, that if the y^) are not uniformly bounded
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we don^t even know if

(6.2) WW = 1 ̂ Mt)
n=0

converges uniformly. Even if the (p^() are taken to be uni-
formly bounded it is not clear whether

(6.3) E,(Z^(() - Z^ = S ^)((p.(() - cp^))2

n=o

is a continuous function of \t — s|.
We can apply our methods only if we take {Sn} t° be

uniformly bounded and then we obtain a weaker result anala-
gous to Theorem 3.1.

THEOREM 6.1. — Let {9n(t)}, te [0, I], be a sequence of
00

continuous functions such that ^ cp^(() converges uniformly,
oo 71=0

let S (^n^) — ^n^))2 ^ ^2{\t — ^ 1 ) for (t non-decreasing func-

tion 4' an(^ {^n} ^ a uniformly hounded strongly symmetric
sequence. Then I(^) < 06 is a sufficient condition for

X(( )=J9^ )^

to converge uniformly a.s,

Proof. — Consider Z^(() in (6.1). This function satisfies
the hypothesis of Theorem 3.1 since

E,(Z^t) - Z,/^ = S ^(<oi)(9.(<) - 9.^))2 ^ M^2^ - ^|)
n=o

where M is the uniform bound for {Sn}. Therefore Z^(()
has continuous sample paths a.s. (Pg) on Og- By Lemma 4.2
the series for Z^(() converges a.s. The rest of the proof
follows the proof of Theorem 4.3.

Example. — Let X((), t e [0, I], be a real valued, sto-
chastically continuous, second order weakly stationary pro-
cess, i.e. EX2^) < oo (assume EX(() = 0). All processes
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of this kind can be given as

(6-4) xf() = i \/wt)^
ft==0

where X, and 6,(() are the eigenvalues and eigenfunctions
of R(s, t) = EX(()X(s). It is known that

E (X(<) - x^))2 = i x^e^) - e,(^))2
n==o

converges uniformly to R{s, s) + R(^ () — 2R(^, <). If
{Sn} is uniformly bounded and strongly symmetric and if
E(X(() — X{s)}2 < ^{\t — s\) where ^ is non-decreasing
and I(ip) < oo then the series (6.4) converges uniformly a.s.

We have seen that it is necessary to impose some property
like strong symmetry on the {^}. The major open problem
is to investigate the continuity of the series (6.4) when the
{^nW} are not sine or cosine functions and the {Sn} are
not uniformly bounded.
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