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SPECTRAL SYNTHESIS AND THE
POMPEIU PROBLEM

by Leon BROWN (*), Bertram M. SCHRE1BER (*)
and B. Alan TAYLOR

1. Introduction.

In 1929 D. Pompeiu posed the following problem, which later
became known in the literature as the Pompeiu problem. Let D be a
bounded region in the jc^-plane, and let 2 denote the group of all
rigid motions of the plane. Suppose that / is a continuous function
on the plane satisfying

[ [ f ( x ^ y ) d x d y = 0 , a E 2 . (1)
^(D) J

Does this imply f(x, y ) = 0 ? In his first paper on the subject [13],
Pompeiu claimed that the answer is yes when D is a disk. However,
this was later shown to be false ; in fact, the function f(x , y ) = sin ax,
for a suitable choice of a, provides a counter-example. (See also
Theorem 4.3 below.) Nevertheless, he did prove in [14] that the
answer is yes if D is a square, under the further assumption that /
tends to a limit at infinity. This restriction was later removed by
C. Christov, who also showed that the answer is yes if D is a triangle
or a parallelogram [2], [3]. Finally, a more abstract formulation of
the problem was considered by L. Brown, F. Schnitzer and A. Shields
in [1].

The Pompeiu problem may be phrased as follows. For which
regions D is it true that (1) implies /= 0 ? In this paper we present a
solution to this problem, in terms of the Fourier-Laplace transform
of the Lebesgue area measure on D (Theorem 4.1). Our results imply,

(*) Research supported in part by the National Science Foundation under grant
number GP-20150.
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in particular, that the answer to the Pompeiu problem is yes when D
is any polygonal region (Theorem 5.9) or any convex set with at
least one "comer" (Corollary 5.12).

Studying the Pompeiu problem leads to another problem of a
similar nature, whose solution also appears in Theorem 4.1. We shall
refer to this as the Morera problem because of its relationship to the
classical theorem of Morera. Let {F} denote a collection of rectifiable
closed curves in the plane, and let / be continuous on R2 . Suppose
that, setting ? = x + iy,

f / ( ? ) r f ? = o , a e 2 , r e { r } . (2)

Does this imply that / is an entire holomorphic function of ? ? Again,
this implication is valid for some choices of {F} and not for others.
In [19] L. Zaicman observed that when D is a plane region whose
boundary T is a rectifiable curve, then an affirmative answer to the
Pompeiu problem for D implies, via Green's Theorem, an affirmative
solution to the Morera problem for F. Our methods enable us to
show that the converse is also true (Theorem 4.2). In addition,
Zaicman gives, by methods similar to those of this paper, a solution
to the Morera problem in the following interesting case. Let r^ and
r^ be positive real numbers, and let {D consist of two circles of radius
r^ and r^, respectively. Then (2) implies/is entire if and only ifr^/r^
does not belong to a certain countable set (which may be identified).
"Two circle theorems" of this general type were first considered by
J. Delsarte [5], [6]. We refer the reader to [ 19] for an excellent account
of the history of the Pompeiu and Morera problems and the related
two circle theorems, as well as for further results along these lines.

The proof of our main result is based on the fundamental theorem
of L. Schwartz on mean periodic functions of one variable. This
seems to be a common ingredient in much of the work on these
problems, particularly in the two circle theorems of Delsarte and
Zaicman. In § 2 the necessary background material from the theory
of distributions and mean periodic functions is assembled. Although
all of these results are known, some of them do not seem to be
readily available in the literature. Our main theorem (Theorem 3.1)
is then proved in § 3 ; namely, it is shown that every closed, translation-
invariant and rotation-invariant subspace of the space of continuous
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functions on R2 is spanned by the polynomial-exponential functions
it contains. The proof is carried out by means of a sequence of re-
ductions which finally allow an application of the theorem of L.
Schwartz.

Theorem 4.1 follows easily from the results of § 3 ; the remainder
of § 4 consists primarily of applications of this theorem. In particular,
the two circle theorems of Delsarte and Zaicman are proved. § 5 is
devoted to finding explicit examples of regions and curves which give
affirmative answers to the Pompeiu and Morera problems, respectively.
The paper concludes with § 6, where we indicate how much simpler
it is to, solve the Pompeiu problem if in (1) it is assumed that/is
bounded.

2. Spectral synthesis in &(Rn) and C(R").

Let S(R") denote the space of all infinitely differentiable func-
tions on R" with its usual topology, and S'CR") its dual space, the
space of distributions with compact support in R" ([9], [18]). The
pairing between 8(R") and S'CR") is denoted by T(/) for/e &(R'1)
and T E S^R"), and for such / and T we denote by T * / the convo-
lution of T and / as an element of 8(R'1). The Borel measures ^ with
compact support in R" will be identified with a subspace of 8'(R")
via the formula ^(/) = f n f(t)d^(t).

We shall make extensive use of the theory of Fourier-Laplace
transforms of elements of 8'(R"), so we include here a brief sum-
mary of these results. For details, see [18] or [9, Chapter ,1, § 7].
For TES^R"), the Fourier-Laplace transform of T is defined by

^:(z)=^(eiztx) ,

where z= (z^ , . . . ̂ z^eC", x=(x^ ,. . . ,x^)GR" andz . x ^ z ^ x ^ +
• • • 4- z ^ x ^ . The Paley-Wiener-Schwartz Theorem [9, p. 21] identifies
the space 8'(R") = {t : Te8'(R")} as the space of all entire functions
F on C" such that

|F (z ) |<C( l + Iz^^^ , zee", . (3)
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for some constants A, C and N. Here (z |2 = |z^ |2 + • • • + |z^ |2

and 1m z = (1m z^ ,. :. , Iw z^) is the imaginary part of z. S^R")
is equipped with the topology which makes the mapping T -> T a
topological isomorphism when S^R") is given the strong topology as
the dual of SCR"). Convergent sequences in S^R") may be characte-
rized as follows.

PROPOSITION 2.1. - ([7, Lemma 5.17]) A sequence {F.}in 8'(R'1)
converges to Fe8'(R") if and only if

i) F. -> F uniformly on compact subsets of C", and
ii) The inequality ( 3 ) holds for all the F. "with constants A, C

and N independent of j.
For further details on the topology of8'(R'1) we refer the reader

to [7, Chapter 5, § V].
The main result we shall use concerning &' is the following one,

known as the "fundamental theorem of mean-periodic functions."

THEOREM 2.2. (L. Schwartz {17]). - Let 1 be an ideal in S'(R)
whose functions have no common zeros in C. Then there exists a
sequence of functions in I converging to the constant function 1.

Let C(R") denote the space of all continuous functions on R"
with the usual topology of uniform convergence on compact sets.
Although the Pompeiu and Morera problems were formulated in § 1
in terms of continuous functions, there is no difference, at least from
the point of view taken here, if these problems are phrased in terms
of infinitely differentiable functions. Similarly, the problem of spectral
synthesis, which we shall discuss presently, may be phrased equiva-
lently in either C(R^) or S(R71). This is all a consequence of the
following well-known proposition, which is proved by the standard
smoothing procedure.

PROPOSITION 2,3. — Let V be a closed, translation-invariant sub-
space of C(R"), and let V^ = V 0 8(R71). Then V^ is dense in V in
the topology of C(R'1).

Let us now consider the problem of spectral synthesis in ^(R"),
following [17]. By a polynomial-exponential function we mean a
function of the form f(x) = p ( x ) e i z ' x , xER", where p is a poly-
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nomial and z € C". For V a closed, translation-invariant subspace of
§(R'1), let VQ denote the closed linear space spanned by the polynomial-
exponential functions in V. Thus VQ C V. The problem of spectral
synthesis is the question, "Must V^ = V ?"

The problem may be translated to a question about closed ideals
in the ring ^(R") as follows. Given V and V^ as above, let

V^resp.V^^TESW : T(/) = 0, /GV (resp., /eV^)}
and

I(resp.Io)={t : TEV^resp.TEV^)} .

The following proposition, then, represents a rephrasing of the
problem of spectral synthesis.

PROPOSITION 2.4. — I and IQ are closed ideals in 8'(R"). Moreover,
I = Io if and only ifV = V^.

Proof. — Clearly I is a closed subspace of S1 (R"). To prove I is
an ideal, it suffices to show that, for every x G R" and T G I, the
function f(z) = e12^ T(z) belongs to I, since the exponential functions
have dense linear span infi^R"). However,/is the Fourier transform
of T_^ , the translate of T by (— x). Since V is translation invariant,
so is V1, whence /^=I . Similarly, Ig is a closed ideal in S^R").

The last part of the proposition is a standard application of the
Hahn-Banach Theorem. For I = IQ it and only if V1 = V^, which
happens precisely when V = VQ , since V and VQ are closed.

The ideal IQ can be given a more precise description. For I an
ideal in §'(R"), let 1̂  denote the ideal of all functions in §'(R'1)
which belong to I locally. That is, FGI^, if and only if for each
ZQ GC'1 there is a neighborhood U o f Z o , functions F^ ,. . . , F^ in I,
and functions G^ , . . . , G^ holomorphic on U, such that

F(z) = G^z)Fi(z) + . • • + G^(z)F^(z), z € U .

PROPOSITION 2.5. - lo == I/oc-
This proposition is well known, although we have been unable

to find an exact statement of it in the literature. The inclusion 1̂ . C 1̂
is not hard to verify. The other inclusion is more difficult, but the
argument given in [10, pp. 199-200 (Steps 1 and 2)] or [12, pp. 282-



130 L. BROWN, B. SCHREIBER AND B.A. TAYLOR

284] can be carried over with only minor changes. For the sake of
completeness we include a proof.

Proof. - (1) 1̂  c !„ . Let t € 1̂  and let f(x) = p (x) e^ • x
belong to V,,. We must show T(/) = Q. There exist a neighborhood
U of ZQ , functions T, ,. . . , T^ in I, and functions G, , . . G
holomorphic on U, such that on U we have

J! ' • • • ' ̂ m

t=G,t,+...+G^. (4)

As usual, for any multi-order a = (a, ,. .. ,<^) let D" denote the
differential operator

(o,,+...^) a^---^"
0°=, v"1 •""J

^... 9x^
a« a_

let Xs' - x^ .. . x ^ " , and for a polynomial p(x) = 2 a x0' let

^D)^^**.
Then if / is as above we have

T(/) = p(D,) [T(<"-)],^ = p(D) [t(z)]^ ; (5)

hence we must prove that

p(D,)[t(z)]^=0. (6)

Now, for every y € R" fy e v^ , where

fy (x) = f(x + y) = <"° - y p ( x + y ) <"0 •Jc , ^ e R» .

Since every derivative of p is a limit in 8(R") of linear combinations
of translates ofp, it follows that p^x) e120-' belongs to V. for every
a, where

p W ( x ) = i Q ^ • • • + a ' ' D a p ( x ) , x € R " .

From the general Leibnitz formula [9, p. 10] we have for 1 < i < m,

PW [G,(z)t,(z)],^ =/S - DaG,(^)p(«)(D) [t,(z)]\ . (7)
v <« "•• / 2=ZO

But since T, € V1 C V^ , (5) with T replaced by T, and p by /^ gives
for all a,
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p^(D)[i,(z)]^^=0 , Ki<m .

Hence the left-hand side of (7) is zero for all i. Since (4) holds on U,
we obtain (6).

(2)loclloc' Let T ^ I O and Jix z^EC". We must find a
neighborhood U of ZQ , functions t^ ,. .. , 1̂  in I and functions
GI , . . . , G^ holom orphic on U such that (4) holds on U. By [10,
Corollary 63.6, p. 153] it suffices to find formal power series G ^ , . . . , G^
in z - ZQ such that (4) holds for some T^ , . . ., t^ E I.

Consider the ideal 1̂  generated by I in the ring \ of germs of
functions holomorphic near ZQ . 1̂  is finitely generated, since A^ is
Noetherian, say be the germs at ZQ of the functions T\ ,. . . , t^ in I.
We shall find formal power series Gi ,. . ., G^ about ZQ such that (4)
holds for this choice of the t, .

Equation (4) in formal power series may be written as the system
of equations in G^ , . . . , G^ given by

D^tL^D^ G,t,1 for all a .
[l=l ] 2 = Z Q

By [10, Lemma 6.3.7, p. 153) this system has a solution in formal
power series G^ , . . ., G^ if it is compatible. The compatibility means
that if q is any polynomial, then

[ w ]
q(D) ^ G,T, = 0 for all choices of the

z=zo G, ^ q(D) [t(z)]^ == 0 . (8)

Now, the hypothesis of (8) implies that q(D) [S(z)]^ = 0 for all
S E I, since T\ ,. .. , t^ generate I, . Thus (5) and the definition of
I imply that the function q^e10^ belongs toV, whence to V^ . But
T E V ^ , so (5) gives the conclusion of (8), as asserted.

Thus the problem of spectral synthesis in S(R") may be refor-
mulated as the problem of determining for which closed ideals I in
S'(R'1) it is true that I = 1 .̂ In this framework the fundamental
theorem of L. Schwartz cited earlier may be stated as follows.

THEOREM 2.2'. - For every closed ideal I in 8'(R), I = 1 ,̂.
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3. Ideals invariant under rotations.

By Theorem 2.2' and Proposition 2.3 every closed, translation-
invariant subspace of C(R) or S(R) is spanned by the polynomial-
exponential functions it contains. The analogue of Theorem 2.2' is
not known for n > 1. However, in this section we prove that I = 1̂
when n > 1 and I is rotation invariant.

Notation. — Let T denote the group of all rotations of R2 or C2,
i.e., all transformations of the form

r = TQ : z\ = ^i cos Q 4- z^ sin 6
z\ == — z^ sin 0 + z ^ cos 6 , — TT < 9 < TT .

Thus T is a subgroup of 2, the group of rigid motions of R2.

THEOREM 3.1. — Let I be a closed ideal in &'(R2) such that
f o T G I whenever f G I anrf r G T. 77^ I = 1 .̂

Remark. - The same theorem is true for &'(R"), n > 0, if the
group of rotations T is replaced by the group SO (71) of orthogonal
transformations of R71 with determinant + 1. The applications of
Theorem 3.1 in § 4 can also be modified accordingly.

The theorem will be proved by reducing it to Theorem 2.2. We
first make some preliminary reductions.

Let
J^/Eg^R2):/!^!}.

It is routine to check that J is an ideal in ^(R2), and J is closed
since I is closed. Since I is invariant under the rotations r, it follows
that 1̂  and J are also invariant under rotations.

LEMMA 3.2. — Iffis an entire function on C2 such thatf(T(w)) = 0
for all r € T and some fixed w ̂  (v^ , H^) G C2, with \^\ 4- w^ ̂  0,
then

/(z)=(z^+z|-v^-^)ir(z) , z€C 2 , (9)

where g is an entire function on C2. Furthermore, iffG&^R2) then
so is g.
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Proof. - The entire function of 6

h(Q) = f(w^ cos 0 -h w^ sin 0, - v^ sin 6 + u^ cos 0)

vanishes for all real 0 by hypothesis. Hence A (0) = 0 for all complex 0,
so /(z) = 0 on the set

{(vi^ cos 0 + vi/2 sin 0, - vi^ sin 0 + cos 0) : 0 E C} =
={(z^z^) :z2 +z| =w 2 +w|}.

Now, if w2 + w| =^= 0 then the function p(z) = z2 4- z| - w2 - w| is
an irreductible entire function on C2 , whence p(z)~1 /(z) is an entire
function. Thus (9) must hold.

It is easy to check that when /E &'(R2) an estimate of the form
(3) also holds for g.

LEMMA 3.3. — The functions in J have no common zeros.

Proof. - Let w E C2. We shall find a function g E J such that
g(\v) + 0. Suppose first that w2 + wj =^ 0. Let p(z) be as in the proof
of Lemma 3.2 and let n > 0 be the largest integer such that /?(z)"
divides every /El. Then p(z)" also divides every h E 1 .̂ That is, for
all h E 1̂  there exists 7i Eg'(R2) such that h (z) =p(z)n 7i(z). Choose
/E l such that p^zf^ does not divide /, and write /(z) = p(z)" ^(z)
where ^ E 8'(R2). Then for A E l^ ,

gh = / ^ E I ;

hence g E J. Also, g(r(w)) ̂  0 for some T E T, for if not then p ( z )
would divide g by Lemma 3.2. But then p W ^ ' 1 would divide /(z),
contradicting the choice of/. If r is chosen so that g(r(\v)) ^ 0,
then g o r is a function in J not vanishing at w.

Now assume w2 4- wj = 0 but w ^ 0. If vi^ = w^ , analogs of
Lemma 3.2 and the argument above, withp(z) replaced by the function
z^ - iz^, imply that w is not a common zero of J. Similarly, if
^ = — w^ one obtains the same result by replacing p ( z ) by z^ + /z^ .

Finally, we consider the case w = 0. Let 7 and k be the greatest
integers such that (z^ + iz^f and (z^ - iz^f divide every function in
I, and set

q ( z ) = ( z , + i z ^ ' ( z , -iz^ .
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Let
lo = ^ - l I = { < r l / : / e I } .

It is a routine matter to check that 1̂  is a closed ideal in ^'(R2)
invariant under rotations and that qdo)^ = ^loc-

We claim that if (0,0) is a common zero ofl^ it is an isolated com-
mon zero. Indeed, if w is a common zero ofl^ with w2 4- wj = a2 ^= 0,
then (a, 0) is also a common zero of IQ by Lemma 3.2. Hence, since
the set of such numbers a clearly cannot have 0 as a limit point, it
follows that if (0,0) is not aft isolated common zero of 4 there must
exist a nonzero common zero w of I^ such that w2 + vv| = 0. But
since neither z^ + iz^ nor z^ - iz^ divides every function in I^ , by
the analogs of Lemma 3.2 mentioned earlier, such a w cannot exist.
Thus (0,0) is at worst an isolated common zero of IQ .

The proof of [11, Theorem 4.5], applied to the case of Ig as an
ideal in S'(R2), asserts that if (0,0) is an isolated common zero of Ip ,
then there exists g G g'(R2) such that g(0,0) ̂  0 and g(\o\^ C 1̂  .
In fact, g G J. For if h G 1 ,̂ then h = qh for some 7i E (1 ,̂ so

gh = gqh C q\Q = I .

Thus g E J, and the proof is complete.

Proof of Theorem 3J. - We shall show that 1 G J, which will
complete the proof.

For/e&'(R2) define

7(z)=— y/or^z)^, zEC 2 ,
Zf 7T —w

and
7 = { 7 : / e j } .

Since J is rotation invariant and closed, we have J C J. And / ° r = 7f^/ /"^/ /^/ -
for all / E J and r E T, so / is a function ofz2 + z2 . More precisely,
there is an even entire function F..(^) of one complex variable such that

7(z^z^=F^yz^T^) ;
namely,

F/?) = 7(?, 0) = 7(0, ?), ?ec . (10)
Since 7 C&'(R2), (10) shows that F^Eg'(R).
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Let
l , ={F^ : /ej}.

Then, as one^may easily check, J^ is an ideal in the space of even
functions in 8'(R). The functions in J^ have no common zeros, as
may be seen as follows. Since the functions in J have no common
zeros, it follows that for every R > 0 and every £ > 0 there exists
/€ J such that |/(z) - 1 | < £ if |z | < R. Indeed, let A denote the
uniform closure of the polynomials over the set A = = { z : |z | < R}.
A is a commutative Banach algebra with identity, and it is well known
that since A is convex, whence polynomially convex, the maximal ideal
space of A may be identified with A in the canonical way [8, p. 67].
It is easy to see that the closure 7 o f { / | A : /Gj}in A is an ideal
in A contained in no maximal ideal. Thus 7 = A ; in particular, there
is^a function / G J such that |/(z)- l | < c , z G A . Then also
|/(z) - 1 | <£ , z G A , so IF/?)- 1 |<£ if |?| < R. In particular,
£< 1 gives F^.(?)^0if |? | < R.

Finally we may apply Theorem 2.2 to the ideal generated by J^
in & (R) to obtain a sequence {F^} in the ideal generated by J^ converg-
ing to 1 in 8'(R). Each F^ must be of the form

S ^(r)G,(?) ,

where each hy G g'(R) and G, G J^ . But then
m m m
1: A,(?) G,(?) + s .̂(- n G,(- n = s (̂ .(D + /L(- H) G,(n
f~1 /=1 /^l / /

belongs to J^ , since each G, is even and J^ is an ideal in the space of

even functions inS'(R). In other words, H^(?) = - (F^(?) + F (- ?))

belongs to J^ , and clearly H^ -> 1 in ^(R)^Thu^ referring to Propo-
sition 2.1, we^ee that there are functions ̂  G? converging to 1 in
8'(R2). Since J C J and J is closed, we have 1GJ, which completes
the proof.

Combining Theorem 3.1 with the discussion in § 2 we obtain

THEOREM 3.4. - Every translation-invariant and rotation-invariant
closed subspace of either C(R2) or S(R2) is spanned by the polynomial-
exponential functions it contains.
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4. The Pompeiu, Morera, and mean-value properties.

Let us say that a family ^ C S'(R2) has the Pompeiu property if
for / E 8(R2), T(/ o a) = 0 for all T C g and a G 2 implies / = 0.
Thus the results of Pompeiu and Christov cited in § 1 state that area
measure on a triangle or parallelogram has the Pompeiu property. We
shall say ^ has the Morera property if for/ E S(R2), T(/ o a) = 0 for
all T G^ and or G 2 if and only if/is an entire holomorphic function
of ? = x + iy. We shall apply Theorem 3.4 to characterize those
families ^ C &'(R2) which have the Pompeiu and Morera properties
and those whose annihilators in the above sense consist only of har-
monic functions. As was pointed out in § 1, verification of the Pompeiu
and Morera properties are related in some cases.

For TGg^R2) and r G T , let T^ be the distribution defined by
T^(/) = T(/o T~1), /€ §(R2). A subset g of S'(R2) will be called
rotation invariant if T^ G ̂  for all T G ̂  and r G T.

Notation. - For a€C, let

M^ = { z = (z^z^C2 : z2 + z j =a} ,

and write MQ = M^ U M^, where

M^ = { z : z^ = ± fz^} .

Remark. — M^ , M^ and the M^ are all invariant under T, and it
follows as in the proof of Lemma 3.2 that if/is an entire function on
C2 such that / o r(Zo) = 0 for all T E T and some element z^ of, say,
M^ , then / = 0 on M^.

THEOREM 4.1. - Let 3 be a subset of &'(R2) and set

Z == nd'^O): Teg}.
Suppose M^ <? Z /or a// a ̂  0.

i) 3 has the Pompeiu property if and only if 0 ̂  Z.
ii) 3 /za^ rAe Morera property if and only if MQ C Z a^

[(z2-^z,)- lT(z)]„o^O

/or .some T € c}.
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iii) The following conditions on 9 are equivalent.
a) For /G§(R2), T(/o a) = 0 for all T^^and aGS if and

only if f is harmonic on R2.
b) Mo C Z and [(z2 + z2)-1 t(z)]^o =^= 0 /or ^om^ TE g.
//, o^ //ze or/z^r hand, M^ C Z /or ^owe a =^ 0, r/z^ r/z^re ^cwr5

a nonharmonic exponential function f such that T(/o a) = 0 for all
T(E^ and aGS.

Proo/ - Let y be the rotation-invariant subset of§'(R2) gene-
rated by 3, and set Z* = r^t-^O) : TE 9*}. Since Z* is rotation
invariant, it follows from the preceding remark that Z* is a union of
sets M^ for certain nonzero values of a, perhaps along with {(0,0)},
MQ and/or MQ. By Theorem 3.4 the space

V = { / E @ ( R 2 ) : T(/o a ) = 0 for all T € = g and a G 2}

is spanned by the polynomial-exponential functions it contains.
Since the exponential functions in V are those of the form
/z (x , y ) = exp i(z^x + z^y) with z = (z^ , z^) G Z*, i) now follows
from the fact that if a polynomial-exponential function is in V, then
the corresponding exponential function is also in V.

To prove ii) and iii) first notice that /^ is harmonic if and only
if z E MQ and holomorphic in ? = x + iy if and only if z G M^. Thus
Z = MQ if ̂  has the Morera property and Z = MQ if 3 satisfies condition
a) of iii). Hence in the first case each element of ^ is divisible in
&'(R ) by z^ — i z ^ , while in the second case each element of °} is
divisible by z2 + z2 (cf. Lemma 3.2).

Suppose ^ has the Morera property and

[(z, -/z,)-1 t(z)]^ = 0

for all T E g, whence for all TG 9*. Then writing t(z) = (z^ - i z ^ ) S(z),
Tey, we obtain

^- [t(z)]^ = ^- [(^2 - ̂ i)S(z)]^ =0 , Teg* .

But in view of (5) this says the function p(x , y ) = x is in V, contra-
dicting the assumption that ^ has the Morera property. Similarly,
assuming that M^ C Z and
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[(z^+ z2)-1 t(z)]^o = 0 , Teg .

We conclude that pQc, y ) = x2 is in V. Thus in iii), b) implies a).
Let H be the subspace of S(R2) of all entire holomorphic func-

tions of?. By Theorem 3.4 H is spanned by the polynomial-exponential
functions it contains. But if pf^ GH for some polynomial p and
z G MQ , then p G H. Moreover, setting z^ = ̂  and differentiating/^
with respect to z ^ , one obtains the function ? exp iz^, and it is easy
to see that this differentiation converges in §(R2). It follows that H
is generated by the functions f^ with z E MQ .

Suppose M^ C Z and [(z^ - ̂ )~1 t(z)]^o =^= 0 for some Teg.
Then Z = Mg and V D { / ^ : zCM^}, so by the previous remarks
H C V. On the other hand, if pf^ E V for some polynomial p and
z^Mo, then by (5) p(D) [t(z)]^ = 0, Teg*. Applying the
general Leibnitz formula (cf. (7)), we obtain

P(D) [t(z)]^ = p(D) [(z^ - ̂ )S(z)],^ =

"(^^^(""^'-o'0-
Since by i)

{SGS'(R2) : t(z) = (z^ - <z^)S(z) for some Te^}

has the Pompeiu property, we conclude that p satisfies the Cauchy-
Riemann equations

9p bp
— + ^ — = 0 .
ox oy

Hence V C H, so 3 has the Morera property.
Finally, assume that b) of iii) holds. As shown above the space H

is generated b y { / ^ : zGM^}, hence also the space of conjugates of
functions in H is generated by {/^ : zGM^}. Thus the space of
harmonic functions on R2 is generated by { /^ : z EMg}, so that
assumption that MQ C Z implies V contains all harmonic functions.
For Teg*, let R, UEg'(R 2) such that

t ( z ) = ( z , + / Z i ) R ( z ) = ( z 2 +z^ )U(z ) , z E C 2 .

Then by i) and ii) { R } has the Morera property and {U} has the
Pompeiu property. If pf^ E V for some polynomial p and z G MQ ,
then the Leibnitz formula gives
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P(D) [t(z)]^ = i (^ - i^)(D) [R(z)L^ = o .

3p 3p
Thus — — i —— is analytic, so the Cauchy-Riemann equations imply

9x 9y
V2? = 0. If ZQ ^ 0, then

p(D) [t(z)],^ = (2z, j^ + 2z, ̂  + V2^) (D) [U(z)],^ = 0 ,

so since p is harmonic
9p , 3p „^i — -^ z^—= 0 .ox oy

Thus p, whence p/^ , is analytic or conjugate-analytic, according as
ZQ €MQ or M Q . Hence V consists entirely of harmonic functions, so
b) implies a). This completes the proof.

As a first application of Theorem 4.1 we arrive at an interesting
equivalence of the Pompeiu problem for domains in C whose boun-
daries are rectifiable closed curves and the Morera problem for such
curves.

Notation, — Let D be a domain in the complex plane and let F
be a rectifiable curve. We denote by ̂  area measure on D and by
i/r and a? the measure d^ and normalized linear measure on F, respec-
tively. If D is the disk and F the circle of radius r about the origin,
we denote jn^, v^ and Op by ^, V y , and Gy, respectively.

THEOREM 4.2. — Let CD be a collection of domains in the complex
plane whose boundaries are rectifiable closed curves. Then {^ : D GO)}
has the Pompeiu property if and only if{v^ : F = 3D, DGCD} has
the Morera property.

Proof. — By Green's Theorem we have for DG 6&with boundary
r,

/ 8 . 3 \
v^=^~l^VD9

the derivatives being taken in the sense of distributions. Thus
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v^z^z^) == i(iz^ - z^){ji^(z^z^\ (z^z^)EC 2 . ( 1 1 )

One completes the proof by applying i), ii) and the last assertion of
Theorem 4.1, since /x^ > 0.

Remark. — This theorem also follows from Green's Theorem and
the fact that given /CC(R2) there exists uCC(R2) such that
Qu . 3^ _
9x 9y

Note that area measure on a disk does not have the Pompeiu
property, and thus d^ on a circle cannot have the Morera property.
Indeed, the reason for this, as we shall now show, is that since the
disk is rotation invariant all rigid motions of the disk are obtained by
translations.

THEOREM 4.3. - For every T€ g'(R2) such that the support ofT
contains at least t^o points there exists a nonharmonic exponential
function f such that T * / = 0.

Proof. - The assertion is that t(z) = 0 for some z C C^M^.
Since every T€S'(R2) is of finite order it suffices to consider the
case when T is given by a measure fi. By the Hadamard Factorization
Theorem and the growth conditions (3) on {I, for any real m

AO^n^^PC?), ?^C ,

where P is of the form

^^nO"^)^^:)'
If P(?) ^ 1, then ii(a^ , ma^) = 0 and c^ ^ 0. Thus z = (c^ , ma^) is
the desired point not in My. We can deal similarly with the function
jji(0 , ?). On the other hand, if P(?) = 1, then since jl is bounded for
real z^ and z^ , we must have k = 0 and a real. Thus suppose that for
each m € R U{oo} there is a real number a^ such that

^(S.m^^e1^ , ? e C , m € R

^(0,?)=^^ , ?eC .
(12)
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Differentiating (12) with respect to ?, we find that a^ = a^ + ma^,
m G R. If we now fix ? and consider ̂ , w?) as a function of w we
have by analytic continuation that (12) holds for all m GC, whence

M^,^)^0^"^, (^,z,)ec2,
contradicting the assumption concerning the support of ^.

Althouth, as noted above, area measure on a disk does not have
the Pompeiu property, we have the following "two circle theorem",
which was refferred to in § 1.

Notation. - For n = 0 , 1 , . . . let J^(?) be the n-th Bessel func-
tion of the first kind (see [4, Chapter 8]), and for each n and each
?o^Cle t

QJ?o) =Ki/r2 '' J.(?i) = V?2) == ?o>-

Remark, - Note that the set Qi (0) of exceptional values which
appears in the following theorem is a countable dense subset of R.
This follows from the well-known fact that the zeroes of J^ are all
real and are distributed in a regular fashion over R.

THEOREM 4.4. — Given positive numbers r^ and r^, the following
are equivalent.

i){^. , {jiy } has the Pompeiu property.

ii) {Vy , Vy } has the Morera property.

iii)^/r^Qi(0).

Proof. - For ^ , ̂  E R and r > 0,

^^,^)=/^I('lx+^)rf^^)=

= r p , lp^cos0+^sm0)pd0rfp
"o ^o

Setting Si = R cos<^ and {3 = R sin<^, the inner integral becomes

/2W ^RCOS(0 -^)rf0 = 27r Jo(pR) . (13)
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Thus
/»r 27T7'

j^i, ̂  = ̂  Jo pJo(pR)^P = -^- JiW =

27rrJ,QV^ +^)

v/irnr
Since J^ is an odd function, the last expression above is a real entire
function of ^ and ^2 • Thus upon complexification we have

2717-JiOVz2 + z2) .
^ ( Z i , ^ ) - — — — l v ! 2 ' (z^z^CC2 . (14)

V^ + ̂

By Theorem 4.1, i) holds if and only if fly and /iy. have no common
zeros, which by (14) means r^jr^ ^Q^(O). Since i) and ii) are equi-
valent by Theorem 4.2, this completes the proof.

Similarly we can obtain a recent result of S.P. Ponomarev [15]
on the Morera problem.

THEOREM 4.5. — If {r^} is a convergent sequence of distinct
positive numbers, then {^ : n ̂  1} has the Pompeiu property andn
{v '. n > 1} has the Morera property.

n

Proof. — If fly vanishes on M^, then by (14) J ^ ( r ^ / a ) = 0. Since
the r^ are all distinct and the zeros of J^ have no finite limit point,
the result follows from Theorems 4.1 and 4.2.

In [5] J. Delsarte characterized harmonic functions by the follow-
ing strengthened converse of the mean-value property.

THEOREM 4.6. — Given positive real numbers r^ and r^, the
following are equivalent,

i) A function /GC(R2) is harmonic if and only if

f(x ^ y ) = / * o^ (x , jQ = / * o^(x , y\ (x ^ y ) e R2 .

nW^QoO).

Proof. — If SQ denotes the unit point mass at the origin, then
we have from equation (13)
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(0, - 6o)'(Zi , Z^) = ^(T^Z\ +Z|) - 1 .

The proof is completed as before by applying Theorem 4.1.

Remark. — Using asymptotic properties of J^ Delsarte has shown
that the exceptional set in Theorem 4.6 is finite.

The following version of Delsarte's theorem using area measure
appears in the paper [19] of Zaicman.

THEOREM 4.7. - Let Q = j^/r, : Ji(^)/?, == Ji(^)/?2 = ^-j •

Then given positive numbers r^ and r^, the following are equivalent.
i) A function /GC(R2) is harmonic if and only if

^ r ^ f ( x , y ) = f * ^ ( x ^ y \ ( x ^ y ) ^ R 2 , ; = 1 , 2 .

ii) r^/r^Q.

Proof. — Equation (14) gives

1 , \ ^ , 2J,(r^T7T)
^^-80) ( ^ i ^ ) - — — —
/ 1 \ ZJ i^V 2 ! ^ Z2^

( ^ ^ - 8 ^ ( Z 1 - Z 2 ) = — — — — — r - Z — — — — T " 1 ? ( Z 1^2)^C 2 .VTT^ / r. /y2 4- y2

5. Some examples.

In this section we shall make some specific calculations which,
together with Theorems 4.1 and 4.2, show that various measures have
the Pompeiu or Morera property. As a first example we consider an
elliptical region. We preserve the notation established in § 4.

THEOREM 5.1. — Let D denote the elliptical region

x2 v2

— + — < 1, 0<b <a
a2 b

and F its boundary. Then ̂  has the Pompeiu property and v^ has
the Morera property.
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Proof. — By a linear change of variables, equation (13) yields

27rab], (^^^TfTTi2) .
AD^I - ^2) = ———7===f=^ 9 <2! - Z2)ec •^/crz\ + & z;

It is then easy to see that pi(0) ̂  0 and JJL cannot vanish identically
on any M^, a ^= 0, so the theorem follows.

The remainder of this section is devoted to exhibiting a class of
measures which have the Pompeiu property and which includes the
measure jLip if D is, for example, any polygonal region. The proof will
be based on some estimates of the growth of Fourier transforms on
certain curves in the manifolds M^. Namely, we let z = (z^ , z^) vary
on the manifold M^ in such a way that

z! = t

O v 2

z2 = z 2 ( r ) = - / r ( l - ^ - ) t>0 (15)

= —— It + O(-), t -> + 00 .

Observe that the square root is chosen so that the last equation holds
and that for all t, (z^ , z^)E M^ if a ^= 0 and (z^ , z^) E M^ for a = 0.

LEMMA 5.2. —/ / JLI and v are measures on R2 with compact
support, and if

|/i(r,z,(r))| =o(|?(r.z,(r)|), t -^ + oo ,

^AZ /i 4- v does not vanish identically on M^ if a ^= 0 or OAZ M^ z/
a = 0. The same result holds on M^ if we set z^ = it.

LEMMA 5.3. — Let fibe a measure with compact support contained
in {(x, y) : y < a} and v a measure with compact support such that

^=o(|i)(r,z2(r))|) , t -^ +00 .

Then jj. 4- v does not vanish identically on M^ if a ̂  0 or on MQ if
a = 0 .

Proof. — Under the assumption on the support of I J L , a direct
estimation shows that
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|^(r,Z^))l == O(^), t -^ +00 , (16)

so Lemma 5.2 applies.

LEMMA 5.4. - Let a < b and let T denote the sum of the
(oriented) line segments from the point (XQ , a) to (0 , b) and from
(0,6) to the point ( x ^ , a). Then for all a G C and for ( z ^ z ^ a s in
(15) we have

e^
| ?p( r ,Z2(r ) ) | > const.—. t -» + oo . (17)

The same result holds if i/p is replaced by a?. Moreover, in the case
of a? the same estimate holds when z^ = lt. t> 0'

Proof. — We shall give the proof for i/p ; the other case may be
carried out analogously. A direct calculation shows that

?p(z, , z,) = a(z, , z,)^2 + ̂ (z, , z,)^121'0^ -

-^z^021^, (18)

- XQ + /(fe - a) _ ^ 4- i(a - b)
where

^/^ z ) = _ _ _ — — — — — • ' ^ " f
l f 2 I ( - X Q Z , + (b - a ) z ^ ) i(x,z^ + (a - b)z^)

x! + '̂̂  - &)^(z! - ̂ )=";—~r,—rr—^? <19)Z ( X ^ Z ^ + (fl - &)Z2)

- XQ + t(^ - fl)
7(^i , z^)

j ( -XoZ^ + ( & - f l ) Z 2 )

1
Setting Zi = r, z^ == — ^ + 0 (—) in (18) and (19), we obtain

\a(t ,z^(t))\ > const. — »

and hence
e^ / e a t \

I ?p(r , z^ (r)) I > const. —— — 0 [— ) '
t v t

which implies (17) since a < b.
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COROLLARY 5.5. — Let fJi be a measure with compact support
contained in {(x , y) : y < a}. Let a < b and let F be as in Lemma 5.4.
Then p. + or? has the Pompeiu property if and only if(jji + 6p) (0,0) ^= 0.

Proof. — By Lemmas 5.3 and 5.4 fl + a? does not vanish iden-
tically on M^ for all a 1=- 0 and on M^. And when z^ = t, z^ = it,
t > 0, then (z^ , z^) G M^ , and the estimate (16) also holds here. Thus,
by Lemmas 5.2 and 5.4 ft + a does not vanish identically on MQ also.
By Theorem 4.1 ^ + a has the Pompeiu property.

COROLLARY 5.6. — Let yi be as in Corollary 5.5 with p. > 0. Let
a < b, and denote by A the triangle determined by the points (XQ , a),
( x ^ , a) and (0,6). Then ^ + ̂  tos rt^ Pompeiu property.

Proof. - Since ^ + ̂  > 0, we have (^ 4- p^) (0,0) =^ 0. Thus
we need only consider the manifolds M^ for a ̂  0. Since the estimate
(16) holds for the measure d^ on the line segment from (x^ , a) to
(xQ,a), we may apply Lemma 5.4 to conclude that (17) holds for
F = 3A. But then (11) gives

e^
\^(t,z^t))\ > const. —r» t -^ + oo .

Our corollary now follows from Lemma 5.2.

COROLLARY 5.7. — Let 11 be as in Corollary 5.5 and let Y denote
the (oriented) line segment from the point (XQ , a) to (0,6). Then
p. + i/p and fji 4- Op Aai^ ^ze Pompeiu property if and only if

(M + ?p) (0.°) ̂  ° ^d (A + &r) (°»0) ̂  ° .
respectively.

Proof. — A calculation yields estimates like (17) for Vp and Op.
One then proceeds as in Corollary 5.5.

COROLLARY 5.8. — Let ^ be as in Corollary 5.5 and v^ as in
Lemma 5.4. Then {i + i)p does not vanish identically on any M^ for
a ̂  0 or on MQ.

As a consequence of these corollaries we can settle the Pompeiu
and Morera problems for polygonal regions and their boundaries.
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THEOREM 5.9. - Let D be a polygonal region in R2 with boundary
r. Then ̂  and a? have the Pompeiu property and v^ has the Morera
property.

Proof. — After possibly rotating and translating D we can bring
it to a position such that for some real number a v^ = ^ 4- v, where ^
has support in {(x. y) : y < a} and v denotes the measure d? on the
sum of two line segments as in Lemma 5.4. Cauchy's theorem implies
that ?p vanishes identically on M^, so applying Corollary 5.8 and
Theorem 4.1 we see that ̂  ̂ s the Morera property. By Theorem 4.2
^D has the Pompeiu property. Similarly, Corollary 5.5 gives the
Pompeiu property for Op.

We shall now give a "perturbation" of Lemma 5.4, replacing the
line segments by suitably smooth curves. This will allow us to deal
with a much larger class of regions.

LEMMA 5.10. - Let r\ denote the line segment from (XQ , a) to
(0,6), where a < b, and let 1̂  be a curve terminating at (0, b) and
tangent to I\ at that point. Suppose r\ is given by

F^ : x = f(y) , ^ < y < b ,
where

i) / is of Lipschitz type, and
•y

ii) lim f ' ( y ) = — —°— . (Recall that f\y) exists a.e.)
y->b 0 — a

Then for all a EC and (z^ , z^) as in (15) we have

/^&r \
1^0,z^O)) -^(r^O))! = o^——), t -^ +00 . (20)

The same conclusion holds with v replaced by a.

Proof. — To simplify the notation, let us assume that b = 1 and
a = Yo = 0. Then I\ is given by x = \(y - 1), 0 < y < 1, where
^-1 = — X o 1 is the slope of I\ , and ii) becomes lim f\y) = X.

y ->b
Since /' is bounded near y = 6 by ii), let us assume it is bounded on
[0,1]. Write
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^ , ̂ ) - ̂ i . ̂ ) = / e^0'-1^^ (X + i)dy -

-f^e1^^ (rw + o ^
, ̂  ̂  (^-^ _ ̂ (^)^ ̂ ^

^/^"^^^(X-/^)).,

= Ii + I, .

(The second equality follows from the first by adding and subtracting

r ^o î̂ i ̂ y
"o

and collecting terms.) We shall estimate each of the integrals I, and
l2 on the points ( z ^ , z,) as in (15).

We begin with I^. Define

e(6)= sup |X - f ' ( y ) | , 0 < 5 < 1 ,
S < y < 1

so that £(5) ->• 0 as 5 -> 1~. Set

M = e(O) = sup |X-/'00| .
0<j'<l

Note that when z^(t) = — it + 0(t~1) we have

\ e i y z ' t \ ^ C e y t , 0<y< \, 1 < / < oo .

Thus for (^^ , z^) as in (15) we have for t > 1,

^ \ < c f e y ^ \ - f l ( y ) \ d y = c ( r 6 + r 1 }
' ~ 0 ^8 /

r e^ ^1 et

<C M — + c ( 6 ) — =C- [Me-^-^+eW] .

It follows that 11^ | = o (-^) as t -> + oo.
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To estimate I^ , let A be an arbitrary positive number, and set
6 = 1 — Aft. Then as in the estimate above, for t > 1 we have

l ^ l <c (/6+ f1)^ \eits(y) - 1 I I X + i\dy , (21)

where g ( y ) = \(y - 1) - f(y), 0<y < 1. When 5 < y < 1 we have

1^001 = 1^)-^(1)1 < (1-6) £(6)

since ^ is absolutely continuous, whence

l^oo- l | < r | ^ 0 0 1 < r ( l - 6 ) £ ( 6 ) = A e ( l -A) •

Substituting this in (21), we obtain

e^ et / A \
| L | < 2 C — + C A — £ ( 1 - - - )1 t t \ t I

=^ \lCe-^ + C A £(1^)1 , t> 1 .

/ A\
Consequently, since £ ( l — — J - ^ O a s ^ - ^ ^ . w e have

lim sup^ |IJ < ICe^.r->+oo

Since A was arbitrarily chosen, we have lim sup te~t | I^ | = 0, or
/e^

I Ii I = o [— j, and the proof for v is complete. The a case is handled

similarly.

Remark. — Lemmas 5.4 and 5.10 may be applied to yield results
which generalize Corollaries 5.5-5.8. We leave the formulation of
these results to the reader and proceed directly to the main result of
this section.

DEFINITION. — Let r = r(r), - 1 < t < 1, be a Lipschitz curve
with well-defined (a.e.) unit tangent vectors T(r) = r'(r)/| r'(r) | . The
point p = F(0) is a corner o/F if the right-hand and left-hand limits
of T(0 as t -> 0 exist and are not collinear.
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THEOREM 5.11. — Let D be a compact region in R2. Suppose
that there is a half-plane H in R2 and a unique point p G D 0 H of
maximal distance from 3H such that near p the boundary of D is
given by a Lipschitz curve with p as a corner. Then jn^ has the Pompeiu
property. / /3D is a rectifiable curve r, then v^ has the Morera
property and a? has the Pompeiu property.

Proof. - After rotating and translating D, we may assume that
p = (0 , b) and H = {(x , y ) : y > a} for some a < b. Then, by a
minor modification in the choice of H it may be assumed that (3D)H H
consists of a Lipschitz curve F = F(t), — 1 < t < 1, with unit tangent
vectors T(r) = (x(r), y(t)), such that F has a comer at p = F(0)
and lim y(t) ̂  0 ̂  Urn y(t) .

t->o~ r-^o'

This means that F is given by two curves x = f(y) and x = ^(^),
a < y < &, each of Lipschitz type, such that f(b) = g(b) = 0 and
the limits

lim f ' ( y ) and lim g ' ( y )
y —>b y->b

exist and are unequal.
Let r^ denote the curve x = f(y), a < y < b, and let F\ be the

line segment from (0,6) to a point (XQ , a) such that

lim /^)=--^—'y ->& b — a

so that F^ is tangent to Fi at (0 , b). By Lemma 5.10, (20) holds for
all a G C and (z^ , z^) as in (15). We may proceed similarly to obtain
(20) for the curve x = g(y), a < y < &. Combining these results with
Lemma 5.4, we obtain (17) for the curve F above. The proof now
proceeds like those of Corollaries 5.5 and 5.6 and Theorem 5.9.

COROLLARY 5.12. — Let D be a compact convex set in R2 mth
non-empty interior such that for some point p € F = 3D there is no
unique line of support for D through p. Then ̂  and a? have the
Pompeiu property and v^ has the Morera property.

Proof. — It is well known that F is a Lipschitz curve and that p
is a corner of F in the sense defined above if there is no unique line
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of support for D through p . Thus the corollary follows easily from
Theorem 5.11.

6. Bounded functions.

We shall conclude by pointing out how much simpler the Pompeiu
problem becomes if the functions/under consideration in the formula-
tion of the problem are assumed to be bounded. In particular, one
needs only to consider the Fourier-Stieltjes transforms of measures in
the usual sense, and the rotations enter in only a superficial way.
Moreover, the measures need not have compact support, and the
problem may be considered in a much more general context, as follows.

Let G be a locally compact abelian group with character group F.
The Fourier-Stieltjes transform jl of a measure ^ in the measure algebra
M(G) of G is the bounded, uniformly-continuous function on F given
by

^(7)= [ TO^Oc), 7^r .
^G

For a full discussion of the concepts discussed here we refer the reader
to [16]. I f /€ U°(G) the spectrum a(f) of/is the set of all characters
7 on G contained in the weak*-closed, translation-invariant subspace
of U°(G) generated by /, and we say / admits spectral synthesis if/is
in the weak*-closed subspace of L°°(G) generated by a(/). It follows
immediately from the Wiener Tauberian Theorem that every nonzero
function in L°°(G) has a nonvoid spectrum (see [16, Chapter 7]).

If I is a closed ideal in L1 (G) and E a closed subset of F, define

Z(I) = { 7 G r :/(7) = 0 for all /GI}
and

I(E) ^/CL^G) :/(7)= 0 for all jOE} .

The following easy proposition has as an immediate consequence the
solution of the Pompeiu problem for bounded functions. Though the
result is well known, we shall include the proof in the interest of
completeness.
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PROPOSITION 6.1. — Let f be a bounded continuous function on
G and ^EM(G). / / /* JLI = 0 then a(f) C JLI-^O). Conversely, iff
admits spectral synthesis and a(f) C A'^O), then f * jn = 0.

Proof. - If / * JLI = 0, then (^ * jn) * / = 0 for all g E L1 (G), so

L^G)* j ixCI [ / ] ={^0^(0 : ̂ * / = 0}.

I f7^o( / ) , then 7 annihilates ![/], so

^ * JLI * 7 =i(7)A(7)7 = 0

for all ^G L^G), giving A(7) = 0. Thus a(f) C ^-^O).
Suppose a(/)Cpl- l(0). Let I be the closure in L^G) ofL^G)*^.

Then I is a closed ideal in l}(G) with Z(I)=JLl- l(0). Since a(/)C Z(I),
we have

I (a( / ) )DI(Z(I ) )DI .

If / admits spectral synthesis, then I(a(/)) = ![/]. Hence ![/] D I,
so JLI * / annihilates all of L/(G), giving jn * / = 0.

COROLLARY 6.2. — Z.6?r OH^ a subset of M(G) ^c/2 r^ar

n{A- l(0): fiewL}= 0
/// ^ a bounded continuous function on G such that f * ^ = 0/or
a// jn e ore, r/z^^ / = o.

Proof, — If f satisfies the hypotheses, then by the Proposition
o(f) == 0, which as mentioned above implies / = 0.

COROLLARY 6.3. - For each a> 0, let C^ be the circle x2 +y2 = a.
Given jLiGM(R2) , the following are equivalent,

i) // / is a bounded continuous function on R2 such that
f ̂ f° odfji = 0 for all a G 2 , then /= 0.

Iv

ii) C^ <? A~1 (0) for all a > 0.
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