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PARAMETRIZED fc-COBORDISM THEORY
by A. E. HATCHER

1. Introduction.

The /i-cobordism theorem is concerned with the following
question: Let (W, M, M') be a smooth, compact, connected
A-cobordism (i.e. ^)W is the disjoint union of the closed mani-
folds M and M' which are each deformation retracts of W).
Is W diffeomorphic to M X I? This is equivalent to asking
if there exists a smooth map (W, M, M') ~> (I, 0, 1) having no
critical points, or in fact whether an arbitrary smooth map
(W, M, M') —> (I, 0, 1) can be deformed so as to eliminate all
its critical points. If the answer is affirmative, one can then
ask the parametrized question : Let /<: M X (1,0,1) -> (I, 0,1),
t e P, be a /c-parameter family of smooth maps such that ft
for ( e b P has no critical points. Can the family /< be
deformed, staying fixed over bP, to a ^-parameter family of
functions without critical points? In other words one seeks to
compute TCfc(^, <?), where ^ is the space of smooth maps
M X (I, 0, 1) —> (I, 0, 1) and S is the subspace of maps
without critical points (C00 topologies throughout). With no
extra trouble we can allow M to have a boundary, provided
that functions in ^ are required to restrict on ^M X I to
the projection bM X I -> I.

The beauty of this problem, it seems to me, is that it links
in a highly non-trivial way certain rather deep questions in
topology, analysis, and algebra :

(1) Computing w^^", S} gives information about the
global homotopy properties of various spaces of diffeomor-
phisms, via the isomorphism ^(J^, <?) w T^-^(M, &M),
where ^(M, bM) == {diffeomorphisms F : M X I -> M X I
such that F[M X {0} u bM X I = id.} is the space of
(relative) pseudo-isotopies of id: M ~> M. (In fact
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TCfc(^, <^) w 7r^_i<^ since ^ is convex; and one has a fibration
y —> 8P —> S whose fiber, the space of isotopies of id : M —> M,
is contractible so that i^k-i^ w ^k-i^M, ^M).) Computing
7r^_i^(M, ^M) can be thought of as answering uniqueness
questions about product stmctunes on an /i-cobordism.

In two special cases ^(M, ^M) has an immediate interest:
(a) Diff (D") splits homotopically as 0(n) X ^(S"-1). Is

^(S""1) contractible? If n ^ 2 the answer is yes, but for n
large the answer is presumably no. According to a lemma of
[17], ^(S71-1) is homotopy equivalent to ^(D71-1, ^D"-1).
Thus the remarks in (b) show indirectly that for some TZ,
(̂S""1) is not contractible. We shall describe below some

candidates for non-zero elements of ^.^^(S71"1), k <^ n, for
example when k ==2.

(6) Diff (S")« 0(n + 1) X Diff (D", bD"), and one has a
fibration

Diff (D71, bD^) -̂  ^(D"-1, bD'1-1) -> Diff (D"-1, bD"-1).
The boundary homomorphism

TT, Diff (D"-1, ^D"-1) ̂  ^_i Diff (D", OD")
is the Gromoll homomorphism. All known exotic elements of
Try Diff (S") have been detected by their images in

TTo Diff (D"^, ̂ +-0 » r^,+i
under iteration of ^ (see [1]). Clearly, not all the b's can be
isomorphisms, else one would have

I\̂ i w TCO Diff (D^', OD^') « 7c .̂ Diff (D°) w 0.

As in (a) above we shall give candidates for non-trivial elements
of ^^(D""1, ^D71"1), i.e., for Grromoll homomorphisms which
are not isomorphisms, / <^ n.

For more general manifolds M one can study Diff (M) by
means of a certain space of block diffeomorphisms Diff (M)
which is more accessible, using surgery theory to compare
with the corresponding space of block homotopy equivalences
for example [2, 12, 16]. In computing Diff (M)/Diff (M) one
has first the local problem of te^-concordance modulo A'-iso-
topy », i.e., deciding whether a diffeomorphism of M X P



PARAMETRIZED A-COBORDISM THEORY 63

which'on M X ^P preserves projection onto ^P can be
deformed to preserve projection onto V throughout. Procee-
ding in thisr'local problem one I factor at a time one encounters
successive obstructions in n^(M X P"^"1, b), 0 ^ I < k— 1,

(2) Generically a ^-parameter family ^ : M X I -> I meets
arbitrary singularities of « codimension » ^ /c, together with
their « universal unfoldings )>. For example when k < 4 one
encounters all the elementary catastrophes of Thorn [13],
Computing T^(^, <^) thus involves a global study of such
singularities of smooth real-valued functions, a study which
already at the local level is quite involved.

(3) Analyzing /c-parameter families leads one inexorably
to algebraic K-theory, and in particular to a definition of
higher K^'s which, although a priori unrelated to the K-
theories of Karoubi, Gersten-Swan, and Quillen, has good
reason to be the « one true » algebraic K-theory.

Computation of the groups T^(^, <^) is still in the early
stages* In addition to the /i-cobordism theorem itself, which
may be paraphrased as saying « 7Co(^, <^) w'Wh^(n^M)y>
if dim M ^ 5, one has only the following :

1.1. PSEUDO-ISOTOPY THEOREM. — Provided dim M ^ 7,
7Co^(M, bM) « ^(^, ^) W W/^TTiM) C W/^M; Zg X TTgM).

In the simply-connected case this theorem is due to Cerf [3]y
who proved then that ^i(^, < ^ ) = = 0 when dim M ^ 5.
For TT^M + 0, the WAa obstruction was discovered indepen-
dently by JLB. Wagoner [14] and myself [6]. More recently^
I have completed the determination of the second obstruction,,
the description of which is the main point of this paper.

The group W^TT^M) is defined as a certain quotient of
KgZ^M], where Kg is Milnor's Kg (see [10]). The compu-
tation of these groups Kg and WT^ seems to be quite diffi-
cult. In fact, until very recently only when TT^M == 0 was the
computation fully known : W/^O) = 0, in line with Cerfs.
theorem.

Now one hears that Quillen has proved results which imply
that W^Tc^M) == 0 when TT^M is free abelian. For certain
groups TTi it is also known that W/igTTi ^ 0, e.g., T^ == Z^o,
([11]) or ^ == Z © Zp for primes p > 5 ([15]).

5
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In contrast with this, the groups WA^TC^M; Zg X wgM) are
readily computable. To state the result, let (Z^ x 7^M)[^M]
denote the additive group of finite formal sums Sa^ where
a . e Z ^ X T T g M and a, e T^M. Thus (Z,s X ^M^M] is the
direct sum of \^M\ copies of Zg X TCgM.

1.2. PROPOSITION.
W/^M; Z, x ^M) » (^ X ^M)^ML.

(p. l .aor—a^TCTT""1 )

Here (P.I, ao'—o^Tcrr""1) denotes the additive subgroup of
(Z^ X 7C2M)[7i;iM] generated by the elements p.l and
aar — o^Tcrr-1 where a, p e Zg X TC^M, a, T e TCiM, i 15 (Ae
identity of T^M, anrf a^ denotes T acting trivially on the Z^
component of a anrf in t/ie usual way on the TC^ factor.

For example, if TC^M == 0 then WA^iM; Zg) is the direct
sum of Zg with itself as many times as there are conjugacy
classes in TC^M other than the trivial class {1}. Thus
WA^T^M; Z^) vanishes it and only if TC^M == 0. Since in
general WA^T^M; Z^ X T^M) splits naturally as

W/ii(7TiM; Za) C W/ii(7CiM; ^M),

this implies the following:

1.3. COROLLARY. — When dim M ^ 7,

7To^(M, bM) » Wi(^-, S}

is zero if and only if TC^M ==0.
As an amusing application of the WA^T^M; Zg X TT^M)

obstruction we have:

1.4. PROPOSITION. — The group

wo Diff(S1 X D", b(S1 X D")), n ^ 7,

is not finitely generated.
For by writing D^ == D""1 X I one obtains a map

TTo Diff(S1 x T)\^1 x D^-^TCo^S1 X D"-1, b(S1 x D11-1)).

The latter group contains (and is in fact equal to, using the
result of Quillen), WAi(Z; Zg) « Zg e Z^C ... Writing
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elements of W/»i(Z; Z^) as finite suirn ^ a;^ where (
i^o

generates Z and a, e Z^, one finds that the image of Y in
WAi(Z; Zg) consists exactly of sums S^1 ^or which

19&0

o^ == a_i (This involves a duality formula for the
WAi(7CiM; Zg X TT^M) obstruction). In particular, the image
of Y, hence also TCQ Diff (S1 X D", 5(S1 X D")), is not
finitely generated.

2. Coefficients.

In the following we shall have occasion to use only the
singularities of codimension 0 and 1. The codimension 0
singularities are the well-known non-degenerate critical points.
Critical points of codimension 1 we call birth-death points^
since in a transversal one-parameter family they occur when a
pair of non-degenerate critical points (of index i and i + 1
for some 0 < i ^ n = dim M) are introduced or cancelled.

We shall also need to provide the /< wrth gradient-like vector-
fields. These are smooth vector fields ^ which near the critical
point of f^ are the actual gradient of ft with respect to some
Riemannian metric ^ and which give ft a positive direc-
tional derivative away from the critical points. Such 7^
always exist and are unique up to isotopy. For non-degenerate
©ritipal points, specifying a gradient-like vector field for /< is
tantamount to giving a handlebody decomposition of M X I.
In effect, the stable and unstable manifolds of a non-degenerate
critical point of index i are the core disc D1 and trfilns.verse
disc D"4-1-1 of an i-handle D1 X D"-1-1-1, where n = dim M.
In the language of handlebody theory birth-death points
correspond to cancelling or introducing a complementary
pair of handles of dimension i and i + 1.

The simplest possibly non-trivial /c-parameter family f^:
M X I -> I, t e P, representing an element of ^(^, <^)
has its critical points arranged as follows : For ( belonging to
a disc D^ in the interior of P, ft has exactly two critical
points, which are non-degenerate of index i and i + 1,
and these two critical points coalesce into a birth-death
point of f^ for (e SD*. so that fi has no critical points
for rel^- D\
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For example when k .= 1, the path f^ consists of the
introduction and subsequent cancellation of a pair of non-
degenerate critical points of index i and i + 1. This situa-
tion can be visualized via the graphic of f^ which is the set
{^ft)\ft is a critical value} <= P X I. In the case k == 1:

ft

(Birth-death points appear as cusps).

One can now define the local obstruction to eliminating the
critical points of the/c-parameter family f^ Let V? be a level
surface between the two critical points, ( e D^. The intersec-
tion of the stable manifold of the critical point of f^ of index
i + l (respectively, the unstable manifold of the critical
point of index i) with V? is a sphere S| (respectively S?""1).
Taking the union over ( e D^ one has S1 X D* <= V" X D*,
S"̂  X D^ <= V" X D^ In general position the intersection
W == S1 X D^ n S"-1 X D" c V" X Dfc will be a submanifold
of dimension A*.

2.1. PARAMETRIZED gMALE L E M M A . — T h e following are
equivalent:

(i) The critical points of the family f^ can be cancelled directly,
i.e. by a deformation which simply shrinks the graphic of f^ to
zero.

(ii) The gradient-like vector field can be deformed so that Nk

becomes a k'disc intersecting each slice V^ in one point trans-
versely.

(iii) There exists a parameter-preserving isotopy of
S1 X D^V" X Dk fixed over ^ which changes W to a
k-disc intersecting each slice V? in one point transversely.

We now define a bordism invariant which in a stable range
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of dimensions gives the obstruction to finding an isotopy as in
(iii). If k + 2 < i ^ n — k — 2, N^ has contractions in
S1 X D^ and S""1 X D^ which are unique up to homotopy.
These two contractions give a map of the suspension
SN^-^V" X D^M X I X D^M. Adjoint to this is a
map N^ —> QM into the loopspace of M. Moreover, the
contractions of N^-> S1 X Dfc and N^ -> S^ X Dfc induce a
canonical framing of the stable normal bundle of N,

^ w v(s1 x iy, v" x D^ © v(s»-1 x D*. v» x D^ © vynxD^.
(for the framing of the last summand one must choose one of
the two contractions, say that in S1 X D^).

If N^ were a closed manifold then the map N^ —> QM
together with the framing of VN would define an element of
the framed bordism group i^iiM). However, since the two
critical points of /< cancel over bDk one knows that
^^k cz V'1 x ^Dk consists of one point in each t slice, i.e.
bN^ « bD^ == S^"1. Thus one is lead to consider a relative
bordism group (Q, Tc^liM) whose elements are framed
bordism classes of maps N^ —> QM, where the bordisms are
required to be trivial over bN^ w S^"1. Strictly speaking,
maps N —> QM should take a basepoint * e ^)N to the
constant path * e f2M. Addition in (Q, TT^QM) is via
boundary connected sum at * e ?)N. (This is not quite well
defined when k == 1). The zero element is represented by a
map D^ ->QM.

By transversality the bordism class of N -> QM in
(ii, Tr^QM) is an invariant of the isotopies described in (iii)
above. The converse is a parametrized Whitney procedure
(see [8]):

2.2. LEMMA. — If the class [N -> t2M] vanishes in
(0, Tt^ilM) and k + 2 < i < n — k — 2, then condition
{iii) above is satisfied. Moreover, if k > 0 and

k + 2 ^ i ^ n — k — 2

then all elements of (i2, ^^(QM) are realizable as such inva-
riants for some k-parameter family f^

When k == 1 this lemma was proved in [5] in a slightly
different form.
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The notation (JQ, n^QM) is chosen because one has a
natural long exact sequence

{ * ) ...^^(QM)--> O^nM)-^ (Q, ^(nM)
—^^(QM)-^...

where the « framed homotopy group » Tr^iSM) is just
7^(QM) e ̂ 0.

In the classical case A* = 0 it is easy to see that
(Q, ^^(QM) === Q^IIM) is isomorphie to the integral group
ring Z[7i;iM], whose role in geometric topology is well known.
When k = 1 the sequence (*) becomes:

0-> ^(^M) -> Q^QM) -^ (Q^^QM) ->0
^ % «

0->(Z.X^M)[1]->(Z, x ^M)[^M]^^^2^^^^^^^^

One has in fact

Q^^M) « Q^QM)^^] w (Q^M x ^(QM))^^]

for any k, where M is the universal cover of M (so that Old
can be identified with the identity component of QM) and
fij^ is the reduced bordism group. For k == 1, t^*) » Zg
and Q^DM) » ^(nM) « ^M.

The sequence (*) contains as a direct summand the sequence

. . . ̂  ̂ M ̂  ̂ (^ -^ (Q, TT)^) -^ 7T{1,(*) ̂  . . .

» » » »

• • • —> ^0 -^ Tri -^ cok (Jk) ® ker (J^-i) -> TTfc-iO -^ • • •

Here J^ is the classical J homomorphism to the k^ stable
homotopy group of spheres 74. For most /c, J^ is not an
isomorphism (e.g., k === 2), so lemma 2<2 gives many candi-
dates for non-zero elements of ^C^, ^) on an arbitrary
n-dimensional manifold M, n ^ 2/c + ^? t011 example on D"
or S". These local obstructions were first identified in [4].

To prove that the /c-parameter families with non-vanishing
local invariant in (Q, ^^(QM) really give non-zero elements
of TC^^, ^) one must somehow show that quite general
deformations of the family /^ (fixed over bP) do not destroy
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this invariant completely. This is a much harder problem,
and in fact I only know how to do this when k == 1. The
procedure will be outlined in the following two sections.

3. Algebra.

To define Ki(Za X ^[^i]? of which WA^; Zg X T^) is
a quotient, we need (Zg X ^[^i] w Qf^QM) to be a ring
with identity, or at least an ideal in such a ring. A natural way
of doing this is via the sequence

0 -> af^M) -> Q^ilM) x Q^(QM) -> ^(QM) -> 0
where the multiplication on the middle group is given by the
graded ring structure of Q^OM) (induced by the natural
H-space structure on QM), truncated above dimension 1.
This amounts to giving Qf^tIM) trivial multiplication (all pro-
ducts zero) and letting cr e TT^M <= Z[TCiM} « Q^tIM) act on
ar e (Zg X n^^i^^ ^(QM) via o(aT) == a^r and
(aT)<7 === <xT<y.

Recall the definition of Ki of an ideal (St in a ring St
with identity [10] : Let

GL((9L) = ker (GL(^) -> GL(^/B)) = { I + A e GL(^)|A

has entries in dt} and let E((St) be the mixed commutator
subgroup [GL((9L), GL(^)]. Then KA === GL(dl)/E((9L).

3.1. PROPOSITION. — 7/1 (9L8 == 0 f^n Ki<9L » (9L/(ra-ar)
via [I + A] i—>• trace (A).

Here (ra-ar) denotes the additive subgroup of 0L gene-
rated by elements ra-ar for a e <9L, r € ^.

Now define WAi(7Ci; Zg X Tig) as Ki(Zg X 7^2) [^i] modulo
matrices of the form I + (P - l ) tor P e Zg X TTg. Passing to
this quotient corresponds to passing from ^{^QM) to
(Q, TC^QM), which is where our local obstruction for graphics

i + 1

lies.

With this definition Proposition 1.2 is then a corollary of 3.1.
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4. Geometry.

To define a homomorphism 6 :

T ,̂ ^) -> W/li(7^]M; Zg X T^M)

we use the fact that when dim M is large enough (e.g., ^ 4)
any element of 7ti(^', <^) can be represented by a path ^:
M X I —> I with the following properties :

(i) As a one-parameter family f^ is generic, i.e., its singular
set consists of arcs of non-degenerate critical points and isolated
birth-death points.

(ii) For some fixed i, the non-degenerate critical points of
each ^ are either of index i or i 4- 1.

(iii) The critical points of index i have ft values which are
strictly less than the ^ values of critical points of index i + 1.

Moreover ^ has a gradient-like vector field which we can
assume to be in general position, i.e., stable and unstable
manifolds intersect transversely (as one-parameter families).
Thus one might have a graphic like

ft
i+ 1

The vertical arrows denote the isolated trajectories connecting
critical points of the same index. In handlebody theory these
are usually called handle additions.

For technical reasons we need also the following condition
to be satisfied :

(+) Birth-death points are independent in the sense that
there are no trajectories of the vector field connecting these
critical points with other critical points.
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In other words complementary pairs of handles are introduced
or cancelled disjointly from other handles.

The condition (+) is easily achieved by a deformation of the
vector field, at the expense of introducing more handle addi-
tions. One consequence of (-)-) is that, as far as intersections
of stable and unstable manifolds are concerned, the situation
is as if all birth points occured near ( == 0 all death points
near t == 1.

If one supposes that there are no handle additions, so that
all stable manifolds of index i + 1- critical points and all
unstable manifolds of index i critical points run uninterrupted
to a single intermediate leval surface V?, then the intersections
of these stable and unstable manifolds for the various arcs of
non-degenerate critical points determine as in § 2 a whole
matrix A with entries in Q^QM). In this case one sets
®[ A] == (- !)'[! + A] e W/^M; Z, x ^M).

The existence of such families having no handle additions
is intimately related to the WAa invariant, according to one
of the main results of [9] :

4.1. PROPOSITION. — When 2 ^ i ^ n — 2 the family ft
can be deformed, preserving (+)) so as to eliminate all its
handle additions if and only if an obstruction in WAg^M)
vanishes.

Thus the natural domain of definition of the WA^iM;
Zjg X T^M) invariant is the kernel of the W/^ invariant.
In this sense the WA^iM; Zg X TCgM) obstruction is a
secondary obstruction. It is also secondary with respect to
indeterminacy. For the natural way to deform a family ft
having no handle additions is to pass through a two-para-
meter family consisting of a circle of handle additions, or more
generally, of a number of concentric circles of handle additions.
This corresponds exactly to multiplying I 4" A by an element
of the kernel of GL((Z^ X -n^M)^, M]) -> K^Z^ X ^[^iM].
A priori the indeterminacy of I + A might be much greater
than this since one can alter ft by deformations much more
violent than just traversing circles of handle additions.

The difficulty then is to show that the WA^T^M; Zg X ^M)
obstruction is actually a primary obstruction, i.e., that it is
universally defined and has no further indeterminacy. This is
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done as follows: Subdivide the t interval I = (0, IJ into a
finite number of subintervals, with subdivisions occuring at
least in the ( slices containing birth-death points or handle
additions. Then in a ( slice in the /<A t interval <2>ne has,
after a suitable choice of bases, an i + ifi intersection
matrix My e GL(Z[7TiM]), just as in the zero-parameter
A-cobordism theorem (where the image of this matrix in
WAi(TCiM) is the torsion of the A-cobordism). Furthermore,
by a rather complicated normalization procedure at handle
additions, which involves a number of choices, one can define
a matrix Ay over (Zg X n^M)[^H] which me asures the one-
dimensional intersections of stable and unstable manifolds in a
level surface, even though these intersections do not form a
manifold but only a one-dimensional complex, du-e to singu-
larities at the handle addition points. The general definition of
6 is then 6 = (- I)1? + ^ M^Ay] e W/^M; Zg X ^M).

To show that 6 is well defined one must show that it does
not depend on the various choices which were made in its
definition. In particular one must show that a deformation
of ft through a second parameter, fixing /o and /i, to
another such fi involving only the indices i and i -|- 1
does not change 9. Since we only define 6 in the two-index
case, we must use the rather difficult geometric result that a
two-parameter family can also be deformed to push all its
critical points into two indices, at least « stably ». Then one
examines a small list of « catastrophes » which happen
to ft during this deformation and one sees that they all
preserve 9. The details of this argument will appear in [7].

5. Questions.

The cases k = 0 and k = 1 lead one to ask whether in
k

general TC^, <f) w ^ « W/i^+^Of^QM)) », at least tor
j=o

k < dim M. There seem to be several obstacles to proving
this. The first and most formidable is the problem of describing
the global behavior of singularities of finite codimension.
Ideally, one would like to prove, at least in a stable range, that
/c-parameter families can always be deformed into two indices i
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and i + 1. More precisely, let ^ c: ^ be the interior of the
closure of the set of morse functions having critical points
only of index i and i + 1.

Conjecture. — For some function <p : N ~> N, TC^^) === 0
whenever (p(/c) ^ i ^ dim M — y(A-),

The conjecture is true for k ^ i [9].
This conjecture would imply that one need only consider

the « nicest » singularities of codimension fc, namely those
with a local representation of the form

i ± ^± ̂ :i
j=i

Then presumably it would be just a matter of book-keeping
to define groups W/^^Qf^M)) in which the ( /+ I)51

order obstruction would lie. There would remain only the
question of deciding if these higher order obstructions were
in fact primary, i.e. of computing differentials in a certain
spectral sequence.

One would also like to know the relationship between these
hypothetical higher Whitehead groups and higher algebraic K
groups. I expect there to be only a map K^ -> W/i,, corres-
ponding geometrically to passing from families of morse
functions to general families of functions, which will not neces-
sarily be surjective as it is when n < 2.
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