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FOLIATIONS AND SPINNABLE STRUCTURES
ON MANIFOLDS
by Itiro TAMURA

Introduction.

In a previous paper, it was shown by using the methods of
differential topology that every odd dimensional sphere has a
codimension-one foliatiojn (Tamura [12]). This result and the
techniques used there, are powerful tools in carrying out the
construction of codimension-one foliations for compact odd
dimensional differentiable manifolds.

In this paper the concept of a spinnable structure on a
differentiable manifold is introduced in order to clarify the
implication of the differential topological arguments mentioned
above (see Definition 1). Roughly speaking, a differentiable
manifold is spinnable if it can spin around an axis as if the
top spins. The choice of axes of spinnable structures is essential
for constructing a codimension-one foliation. For example,
the existence of a codimension-one foliation follows from the
existence of a spinnable structure having an odd dimensional
sphere a.s axis (see Theorem 5). Thus the surgery of axes plays
an important role in our study. The middle dimensional surgery
is accomplished by means of spinnable structures of special
kinds on odd dimensional spheres (Theorems 1, 2). Making
use of the surgery, it is shown that every (m — l)-connected
closed (2m + l)-dimensional differentiable manifold admits a
spinnable structure having S2"*"1 as axis for m ^ 3 and,
thus, has a codimension-one foliation (see Theorems 8, 9).

The main results of this paper were announced with sketches
of proofs in a short note (Tamura [13]).
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1. Definition of spinnable structure.

We shall restrict our attention to the differentiable case,
although definitions and theorems of this paper are valid in the
piecewise linear category.

DEFINITION 1. — An m-dimensional differentiable manifold
1^ is called spinnable if there exists an {m — 2)-dimensional
submanifold X satisfying the following conditions :

(i) The normal bundle of X is trivial.
(ii) Let X X D2 be a tubular neighborhood of X, then

C == M"1 — X X Int D2 is the total space of a differentiable
fibre bundle over a circle^ say S.

(iii) Let p : C -> S1 be the projection of S? then the following
diagram commutes:

X X y-^C

where t denotes the inclusion map and p ' denotes the natural
projection onto the second factor.

The submanifold X is called an axis and a fibre F of S
is called a generator. F is an (m — 1)-dimensional submanifold
of M"1. Obviously Z)F = X holds if bM"* = 0. The fibre
bundle ^ = {C, p, S1, F} is called a spinning bundle, and the
pair (X, ^) is called a spinnable structure on AT". Notice
that M7" is obtained from C by identifying (x, 6) with
{x, 6') for each {x, 6), {x, 6') e X X S1.

Example 1. — The m-sphere S"1 is spinnable with (naturally
imbedded) S^""2 as axis and D^~"1 as generator, where D '̂"1

denotes the upper hemi-sphere of S"1"1.
The concept of spinnable structure originated with J. W. Ale-

xander [2] in 1923, and the terms of « axis », « generator »
were used by him. Recently H. E. Winkelnkemper [14] esta-
blished the existence theorem of spinnable structures in which
termes of « binding », « page » are used. See also A. H. Durfee
and H. B. Lawson [4].



FOLIATIONS AND SPINNABLE STRUCTURES 199

Example 2. - Let S2"4-1 = (S" X D»+1) u (D^ X S") be
the natural decomposition. Let A denote the diagonal of
S" X S" and let N be a tubular neighborhood of A in
S" X S". As is well known, N is the total space of D"-bundle
over S" associated with the tangent bundle of S" and bN
is the Stiefel manifold V^i 2. Since A is isotopic to S" X 0
(resp. 0 X S"), it follows that S" X D»+1 == N X I,
D"4'1 X S" == N X I. Thus the following decomposition holds :

S2^ == (V^a x D2) u (N x I) u (N x I).
This implies that S2""^ admits a spinnable structure with
^n-n,2 as axls B11^ N as generator.

2. A spinnable structure on S4""1'1.

In sections 2 and 3, we shall construct spinnable structures
on S4"4-1 [n ^ 2) and on S4"-1 {n ^ 2) respectively, which
will be used to perform a surgery on axes in section 6. In the
following homology group Hg( ) means always the integral
homology group.

Let n ^ 2 and let * be a point of S2". Let a and b
denote 2n-dimensional submanifolds S2" X { * } and
{ * } X S2" of S2" X S2" respectively, and let d (resp. d ' )
denote the diagonal {{x, x) \x e S2'1} (resp. {(x^ — x); x e S2'1}) of
g2n ^ §2n Let us choose orientations of S2" X S2" and of
submanitolds a, fc, d and d/ so that

[a], [fc], [d], [d'] e H^S2" X S2"),
W=[a]+[b], [d'}=[a}-[b^ [ a ] o [ 6 ] = l ,

where [a], [b] etc. denote homology classes represented by
a, b etc., and [a] o [b] denotes the intersection number of
[a] and [b]. Then it follows that

[d] o [d] == 2, [ d ' ] o [<f] = - 2.
Let S2" X D2''+1 (i = 1, 2, . . . , 17) be 17 copies of

g2n x ])2n+i and let

V = (S!" X D2^1) ^ (S|» x D|''+1) ^ • • • 1^ (S!? x D|?+1)

be the boundary connected sum of S2" X D2'̂ 1 (i = 1, 2, .. .y
13
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17). Then S411"̂  has the natural decomposition :

S4"^ == V+ u V^,

where V+ and V- are copies of V.
Let a^, &i, di and ^ denote oriented submanifolds of

S2" X S2" corresponding to a, b, d and df of S2" X S2"
[i = 1, 2, . . . , 17). Further let 64 (resp. &ia) denote
{ * '} X SS" (resp. { * "} X Sg), where * ' (resp. * ") is a
point of Sj" (resp. S^) different from * . We may suppose
that

a^ b^ d^ d'i, 64, &i2 <= bV+.

Now let us define subsets Ki, Kg of <)V+ by

K, = (^ # ^4) u d, u{d^# b,) u {d, # b,) u {d, # 64)
^{d,#b,) U{d,#b,) U(d,#b,),

K^ = (^ # ̂ ) ^ ^10 U (dn ̂  ^o) ^ (^12 ̂  fcn) U (^3 ̂  &i2)
^ (^14 # ^13) U (^5 ̂  b^) U (^e ̂  &15) ^ (^17 ̂  ^16),

where # denotes the connected sum in ^V+ formed by
using a tube which is disjoint from other submanifolds (Fig. 1).

Fig. 1.

Let GI and G^ be smooth regular neighborhoods of K^
and Ka in bV+ respectively and let G == Gi 1̂  Gg be the
boundary connected sum of G^ and Gg in bV+. Then G^
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and Gs have the homotopy type of bouquets of 2n-spheres.
it is easy to see that the homomorphisms

H^G) -^ H,,,(V+), H,,(G) ̂  H^(V-),

which are induced by the inclusion maps G -> V+, G -> V-
are bijective. Thus the inclusion maps ' '

G->V+1 G-^V-

are homotopy equivalences. Since G' = &V+ — Int G is
simply connected, it follows by the Poincare-Lefschetz duality
theorem that the inclusion maps

G'-^V+> G'-^V-

are also homotopy equivalences. Therefore, according to the
relative /i-cobordism theorem (Smale [11]), we have

G= G', V+ == G x I, V- = G x I.
This observation implies that S^1 admits a spinnable
structure with G as generator and 8G as axis.

Now let us study the generator G and the axis &G. It is
obvious that Ha,(G) is a free abelian group of rank 17 whose
generators are

[d[#b',-\, W, [^#b,], [di7#b,,],
and that the matrix of intersection numbers of these generators
is given by

- E.

E»
where

E,

F2 1
21 0
1 2 1

1 1 2 1
121
1 2 1

0 1 2 1
1 2

E»==

2 1
2 1 0
1 2 1

1 1 2 1
1 2 1

1 2 1
1 2 1

0 1 2 1
1 2j
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The matrix Eg is the well known positive definite uni-
modular matrix, and the rank of E9 is 8 and its elementary
divisor is (1, 1, 1, 1, 1, 1, 1, 1).

Consider the homology exact sequence of (G, bG) :

... -> H,(&G) -> H,(G) -> H,(G, &G) -> H,_i(&G) ->....
It follows by the Poincare-Lefschetz duality theorem that

H,(G, ^G) ̂  H^(G),
and that the homomorphism

H^(G) -> H,,(G, ^G) ̂  Horn (H^(G), Z)

in the above homology exact sequence is determined by the
matrix (-E- v

\ E. /
Thus the following holds :

^ CZ q=.0, 2n-l, In, 4n - 1,
q' ' (0 otherwise.

On the other hand, Gg is diffeomorphic to a handlebody formed
from — GI by attaching a 2n-handle representing d^ # b^ :

Ga == (- Gi)U (D2- X D271),
9

where g : ^D2" X D2" -> &(— Gi) is an attaching map. Since
^)Gi is the Milnor sphere (Milnor-Kervaire [8]), it is easy to
see that

G, = (- Gi) k, (D4" U (D2n X D2ra))-

According to the /i-cobordism theorem, B == D4" U (D271 X D2")
9

is the total space of a 2n-disk bundle over S2".
We have

bG=b(Gi fc) G,)=^(G, ̂  (-Gi)^B)==&G^(-bG,)^&B
=^B.

Since B is parallelizable and H^^i (?)B) ̂  Z, it follows



FOLIATIONS AND SPINNABLE STRUCTURES 203

by the standard arguments in differential topology (see Tamu-
ra [12]) that

B = S2" X D2", bB = S2" X S2"-1.
Hence, letting A == Gi b) (— Gi), we have

G == (S271 X D2") b) A, bG = S271 X S2"-1.
Thus the following theorem holds.

THEOREM 1. — S4"4-1 {n ^ 2) admits a spinnable structure
with (S271 X D271) fc) A as generator and S271 X S271-1 as axis.

This theorem is a key to the construction of codimension-one
fohations of odd dimensional spheres. The above proof is a
slightly different version of the proof given in a previous paper
(Tamura [12]). An approach to this theorem by means of the
Milnor fibering is considered by A. H. Durfee [3].

3. A spinnable structure on S471-1.

Let n ^ 2 and let * be a point of S271-1. Denote
S271-1 X { * } , { * } X S2"-1 and the diagonal {{x, x); x e S2"-1}
of S2"-1 X S271-1 by a, 5 and d respectively. Let us choose
orientations of S2"-^ X S2"-1 and of submanifolds a, 5 and d
so that

[a]^ [5], [d] e H^-i^-1 X S2"-!),
[d] = [a] + [5], [a] o [5] = 1.

Let S271-1 X D2" (i = 1, 2, 3, 4, 5) be 5 copies of
g2n-l >< D2n ̂  ̂

V = (S!71-1 x D2^) k, (Sj"-1 x DJ") b] ... ^ (Sr-i x D|")

be their boundary connected sum. Then S4"-1 has the natural
decomposition :

S4n-i ^v+ uV-,

where V+ and V- are copies of V.
Let a^ 5; and d, denote oriented_ submanifolds of

Sp-i >< g^-i corresponding to a, b and d of S271-1 X S2"-1

respectively (i == 1, 2, 3, 4, 5). We may suppose that

a,, 5,, d, c: 5V+.
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Let us define subsets Ki, Kg of bV+ by

K,=^ug^5,),
Kg == ^3 u (^4 ̂  63) u (^ ̂  ̂ 4).

Let d and Ga be smooth regular neighborhoods of Ki
and Kg in &V+ respectively and let G=Gi 1̂  Gg. Then
it is easy to see that the inclusion maps

G->V+, G->V-

are homotopy equivalences. Thus, according to the relative
A-cobordism theorem, we have

V^ == G x I, V- = G x I.
This observation implies that S4""1 admits a spinnable
structure with G as generator and ^C? as axis.

Now let us study the generator G and the axis ?)G. It is
obvious that Hg^-i^a) is a free abelian group of rank 3
generated by [dg], [d^ # £3], [rfg # ^4] and that the matrix of
intersection numbers of these generators is given by

/ 0 1 0\
- 1 0 1 .

\ 0 - 1 0 /

Let us choose new generators [c?g], [^4 # ̂ 3], [^d # d^ # £4] for
I^n-i^)- Then, since

[d^#d^#^^] o [4] =0, [d^#ds#^^] ° \d^#\} =0,

we can cancel geometrical intersections (^3 # d^ #_ £4) n d^
(c?3 #d^# £4) n (c?4 # £3) by an isotopic deplacement of
d^# d^# 54. Thus it follows by the A-cobordism theorem that

Gg == GI ̂  B,

where E denotes a tubular neighborhood of d^#d^#T)^.
The normal bundle of d^#d^# £4 is stably trivial and its

characteristic map, an element of n^_^(SO(2n — 1)), is the
sum of characteristic maps of normal bundles of d^ and d^.
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As is well known, the kernel of

7r^(SO(2n - 1)) -^ ^_,(SO)
is Zg or 0. This implies that

B = S2"-1 X D2"-1.

Let S = GI !=) Gi. Then, since ^d is the Kervaire sphere or
the natural sphere (Milnor-Kervaire [8]), we have b~S. = S4""3.

Thus the following theorem holds.

THEOREM 2. — g^-i ^ ^ 2) admits a spinnable structure
with (S2"^ X D2"-1)^ 05 generator and S2"-1 X S2"-2 05
aa;i5.

4. Foliations of odd dimensional spheres.

The following lemma is well known (Lawson [7], Lemma 1).

LEMMA 1. — Let E be a differentiable manifold with or
without boundary which is the total space of a differentiable
fibering over S1. Then there exists a codimension-one foliation
of E such that &E is a sum of leases in case where ?)E + 0.

The existence of a spinnable structure is closely related to
the existence of a codimension-one foliation. The following
lemma is a direct consequence of lemma 1.

LEMMA 2. — Let M be a spinnable differentiable manifold
with axis X. Suppose that X X D2 has a codimension-one
foliation such that X X S1 is a sum of leaves. Then M has a
codimension-one foliation.

In the following we shall prove the existence of codimension-
one foliations for odd dimensional spheres, making use of
Theorem 1 and Example 2 (or Theorem 2). Starting point is
the existence of codimension-one foliation of S5 which was
proved by H. B. Lawson [7] using the Milnor fibering of
^ + ^? 4- A = 0- The following simple proof is due to Tada-
yoshi Mizutani [9].

THEOREM 3 (Lawson). — S5 has a codimension-one foliation.
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Proof. — Consider the standard fibering p : S^—^CP2 . Let
T2 be a torus imbedded in CP2 — CP1 and let
T2 # CP1 = T2 # S2 be the connected sum in CP2. Let N be a
tubular neighborhood of T2 # CP1 in CP2. Then it is obvious
that the restriction of the fibering p : S5 -> CP2 on CP2 — Int
N is trivial. Thus we have

S5 = p^(N) u p-^CP2 - Int N)
== p-^N) u (CP2 — Int N) x S1.

Since T2 == S1 X S1, p'^N) is the total space of a fibering
over S1. Thus, by Lemma 1, both p^N) and
(CP2 — Int N) X S1 have the codimension-one foliation with
p~1 (6N) as a leaf. This completes the proof.

THEOREM 4. — E^ery odd dimensional sphere has a codimen-
sion-one foliation,

Proof. — S3 has the well known Reeb foliation (Reeb [10]).
Now, beginning with the foliation given in Theorem 3, we
proceed inductively.

Suppose that, for 2 ^ r < m, S21'4"1 has a codimension-one
foliation. As is well known, there exists a smooth closed curve
in S2^1 which is transverse to the leaves (Haefliger [6]).
Thus, by modifying the foliation of the complement of an
open tubular neighborhood of the curve, we have a codimen-
sion-one foliation of S27'"1 X D2 having the boundary
S2'-1 X S1 as a leaf (cf. Lemma 1).

In case where m is even, say m == 2n, S4"^1 admits a
spinnable structure with S2" X S2""1 as axis by Theorem 1.
Further S2" X S2""1 X D2 admits a codimension-one folia-
tion having its boundary as a leaf which is induced by the
projection S271 X S2"-1 X D2 -> S2"-1 X D2 from the foliation
of S2""1 X D2. Thus S4"4'1 admits a codimension-one folia-
tion by Lemma 2.

In case where m is odd, say m == 2n — 1, S4""1 admits a
spinnable structure with V^a (or S2""1 X S2""2) as axis by
Example 2 (or Theorem 2). Further Vg^g X D2 (or
g2n-i ^ g2n-2 ^ [)2^ admits a codimension-one foliation having
its boundary as a leaf which is induced by the projection
V2n,2 X D^S2"-1 X D2 (or S2"^ x S271-2 X D2-^2"-1 X D2)
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from the foliation of S2"-1 X D2. Thus S4"-1 admits a
codimension-one foliation by Lemma 2. This completes the
proof.

The following corollary is an immediate consequence of
Theorem 4.

COROLLARY. — S2^1 X D2 admits a codimension-one folia-
tion haying its boundary as a leaf.

Now let us consider a spinnable structure of a special kind.

DEFINITION 2. — An m-dimensional differentiable manifold is
called specially spinnable if it has S^-2 as axis.

By Lemma 2 and the above corollary, we obtain the follo-
wing theorem.

THEOREM 5. —Every specially spinnable odd dimensional
differentiable manifold has a codimension-one foliation.

Let M"1 be a specially spinnable m-dimensional differen-
tiable manifold. Then M" = (S"1-2 x D2) u C. Thus m-
dimensional differentiable manifold (S1 X D"1-1) u C which
is obtained by performing a surgery on S7"-2 is the total space
of a fibering over S1 having F U D^-1 as fibre. This yields
the following.

THEOREM 6. — Every specially spinnable differentiable
manifold is obtained from a fibering over S1 by performing a
surgery on a cross-section.

5. Existence of spinnable structures.

The following existence theorem of a spinnable structure
on a closed odd dimensional differentiable manifold is due to
H. E. Winkelnkemper [14]. In a previous note (Tamura [13]),
this theorem was proved under an additional hypothesis that
H^(M) is torsion free.

THEOREM 7. — Let M be a simply connected closed (2m + 1)-
dimensidnal differentiable manifold (m ^ 3). Then M admits
a spmnable structure such that the generator has the homotopy
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type of an m-complex and the inclusion map of the generator
into M is a homotopy m-equwalence.

Proof. — Let f: M -> R be a nice function on M and let

W = /^([O, m + (1/2)]), W = f-^[m + (1/2), 2m + 1]).

Then we have

M = W uW, b W = & W ==W n W^y^m-^ (1/2)).

It is obvious that W and W have the homotopy type of
simply connected m-dimensional finite complexes and that the
homomorphisms

t, : H,(W) -> H,(M), t; : H,(W) -^ H,(M)

induced by the inclusion maps i : W -> M, i': W ~>- M, are
bijective for q == 0, 1, . . ., m — 1 and surjective for q == m*
Further, by the homology exact sequence of (W, ^W), (W, bW)
and the Poincare-Lefschetz duality theorem, it follows that
the homomorphisms

T, : H,(bW) -> H,(W), T, : H,(OW) -^ H,(W)

induced by the inclusion maps i : ^)W -> W, i ': 6W ~> W,
are bijective for q = 0, 1, . . ., m — 1, and that the following
exact sequences hold :

0 ̂  H'"(W) -> H^(&W) —— FL(W) -^ 0,
0 ̂  H^W) -^ H,(&W) -^ H,(W) ̂  0.

Since H,n(W), H^(W') are torsion free, the above exact
sequences split:

H,(OW) ̂  H^(W) © H'»(W),
H,(&W) ̂  H^(W') © H'»(W').

Thus, in particular, H^(W) and H^(W') have the same
rank, say r.

Let

g2m+i ̂  ((§r X D?+1) b) (S? X D?+1) ^ • • • b) (S" X D^1))
u ((D?+1 x S?) 1^ (D^+1 X S?) ^ • • • b, (D"+1 x S?))
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be the natural decomposition and let

w = w ̂  (s? x Dr+1) ^ (s? x D?+I) L,... k, (s" x D»+I),
W = W^ (DF+I x S?) 1^ (Dr1 X S?) L, ... ̂  (D;-n x S").

Then M = M # S2"^ has a decomposition

M = W u W'.

Let T) : W -^ M, Y) ' : W -> M, y,: &W -» W and ^ :
5W -» W' be the inclusion maps. Then it is obvious that the
homomorphisms

T), : H,(W) -^ H,(M), -»)^: H,(W) -> H,(M),
^: H,(&W) -> H,(W), ^: H,(aW) -> H,(W)

are bijective for q == 0, 1, .. ., w — 1, and that

H,(W) ^ H,(W) © H^(S? x D^) ^ (s? x Dr1)
1̂  • • • k\ (S" x D?'+1)),

H^(W') ^ H^(W') ® H^((D^ x S^(Dr1 X S?)
k] • • • ^ (D^+i x S")),

H»(i)W) ̂  H^(W) © H'»(W) ̂  H^(W') © H'»(W').

Let a^, 03, ..., a, (resp. 04, ag, ..., a^) be a system of
generators of H^(W) (resp. H^(W')) and let p. (resp. (3;)
be a homology class of FL.(W) (resp. H^WQ) represented by
SF X O^resp. 0 XSD. Then a, a, .... a., ̂  ̂  ..., ((
(resp. a^, a^, . . ., a,., Pi, p^ • • •, P^) form a system of generators
of H^(W) (resp. H^(W')). By the splitting as above, we may
suppose that a,,a;,p; and p; are elements of PL,(&W).

Now let gr: 6\V -» R be a nice function and let F be a
compact 2/n-dimensional submanifold of &\V = &W formed
from ^([O, TO - (1/2)]) by adding w-handles such that
(i) the minimal number of m-handles which make

H^(F) ̂  H^(&W),
(ii) m-handles which represent homology classes

ax + Pi, ag + pg, . . . , a, + p;,
a! + Pi, «2 + P2, . . . , a; + P,
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of H^(€)W). Then it is easy to see that the homomorphisms

\: H,(F) -> H,(W), X, : H,(F) -> H^W)

induced by the inclusion maps X : F ~> W, X' : F -> W, are
bijective. Further, since the homomorphism H^F) -> H (5 W
induced by the inclusion map F -> <)W is bijective for
q == 0, 1, . . ., m —1, the homomorphisms

X, : H,(F) -> H,(W), x;: H,(F) -^ H,(W')

are bijective for q == 0, 1, . . ., m — 1. Thus the inclusion
maps

X : F - > W , x ' :F ->W

are homotopy equivalences. Since F, W and W are simply
connected, it follows by the relative A-cobordism theorem that

W = F X I, W = F X I.

This observation implies that M admits a spinnable structure
with F as generator. It is clear that the inclusion map
F -> M is a homotopy m-equivalence.

Remark. — The hypothesis on simply connectedness in
Theorem 7 may be omitted by replacing the A-cobordism
with the 5-cobordism.

6. Foliations of (m — 1 )-connected
(2m + 1 )-dimensional differentiable manifolds.

In this section we shall prove without using any classification
theorem of differentiable manifolds that every (m — 1)-
connected closed (2m + l)-dimensional differentiable mani-
fold (m ^ 3) has a codimension-one foliation. For simply
connected closed 5-dimensional differentiable manifolds, the
existence of codimension-one foliations is already shown by
making use of the classification theorem (A'Campo fi t , Fu-
kui [5]).
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THEOREM 8. — Let M2"14'1 be an (m — ^-connected closed
(2m -4- 1) -dimensional differentiable manifold [m ^ 3). Then
^pm+i ^ specially spinnable.

Proof. — According to Theorem 7, M27"4"1 has a spinnable
structure with F as generator such that the inclusion map
F —> M2"4'1 is a homotopy m-equivalence. Since M2^1 is
(m — l)-connected, it follows that F is a handlebody consis-
ting of m-handles :

F = D27" u (D? X D?) u (D^ x D?) u . • . u (D? x D?).

First let us consider the case where m is even, say m == 2n.
Let M4""^ == W U W' be the decomposition used in the
proof of Theorem 7 and let S4""^ == V+ u V- be the decompo-
sition of section 2. Then M4714"1 has a decomposition as follows :

M4n+i = (w \ V+) u (W b) V-).

For G, &i7 (see section 2) and F, we may suppose that

G, &„, Fc:&(W^V+)=&(\V 'b |V_) .
Let

L = D4" u (Df x 0) u (DJ" x 0) u ... u ((D2" X 0) ^ b^}

and let N(L) be a smooth regular neighborhood of L in
&(W^V+) (see Fig. 2). Then F' = N(L) u G is a compact
4n-dimensional differentiable submanifold of 8(Wl^V+)
having the homotopy type of a bouquet of 2n-spheres. It is
easy to see that the inclusion maps

F' -^ W ^ V+, F' -> W' b) V-

are homotopy equivalences. This implies that M4"^ has a
spinnable structure with F' as axis.

Since G = (S2" X D2") ̂  A. and &A == S4"-1 (Theorem 1),
it is easily obssrved that

aF' = &(N(L) u (S2" x D2") ^ A) = a(N(L) u (S2- x D2"))
= fi(D4" u (Df x D2") u (Dj" x 1̂ ")

u ... ^D^x D2" )̂).
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Thus, by repeating this process for each 2n-handles of F,
we can construct a spinnable structure on M4^1 having a

Fig. 2.

generator F such that bF = S4'1-1. That is to say, we
modified the axis bF to S4"-1 performing a surgery by
making use of Theorem 1.

In case where m is odd, we can perform a surgery on the
axis bF in a similar manner, by making use of Theorem 2,
so that bF is modified to S2"1-1. This completes the proof.
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As an immediate corollary of Theorems 8 and 5, we now
have the following.

THEOREM 9. — Every {m — ^-connected closed (2m + 1)-
dimensional differentiable manifold {m ^ 3) has a codimension-
one foliation.

The existence of codimension-one foliations for stably
parallelizable (m —IJ-connected closed (2m + ^-dimensio-
nal differentiable manifolds is proved in [4], by using a classi-
fication theorem of such differentiable manifolds.

The following theorem is a direct consequence of Theorems 6
and 8.

THEOREM 10. — Every {m — ^-connected closed (2m +1)'
dimensional differentiable manifold (m ^ 3) is obtained from
a fibering over S1 having an (m — i)-connected closed 2m-
dimensional differentiable manifold as fibre by performing a
surgery on a cross-section.

REFERENCES

[I] N. A'CAMPO, Feuilletages de codimension 1 sur des varietes de dimen-
sion 5, C.R. Acad. Sci. Paris, 273 (1971), 603-604.

[2] J. W. ALEXANDER, A lemma on systems of knotted curves, Proc. Nat,
Acad. Sci., 9 (1923), 93-95.

[3] A. H. DURFEE, Foliations of odd-dimensional spheres (to appear).
[4] A. H. DURFEE and H. B. LAWSON, Fibered knots and foliations of

highly connected manifolds (to appear).
[5] K. FUKUI, Codimension 1 foliations on simply connected 5-manifolds

(to appear).
[6] A. HAEFLIGER, Structures feuilletees et cohomologie a valeur dans un

faisceau de groupoides, Comm. Math. Helv., 32 (1958), 249-329.
[7] H. B. LAWSON, Codimension-one foliations of spheres, Ann. of Math.,

94 (1971), 494-503.
[8] J. MILNOR and M. KERVAIRE, Groups of homotopy spheres I, Ann. of

Math., 77 (1963), 504-537.
[9] T. MIZUTANI, Remarks on codimension one foliations of spheres,

J. Math. Soc. Japan, 24 (1972), 732-735.
[10] G. REEB, Sur certaines proprietes topologiques des varietes feuilletees,

Actualites Sci. Indust., No. 1183, Hermann, Paris, 1952.
[II] S. SMALE, On the structure of manifolds, Amer. J . Math., 84 (1962),

387-399.



214 ITIRO TAMURA

[12] I. TAMUBA, Every odd dimensional homotopy sphere has a foliation of
codimension one, Comm. Math. Heh.y 47 (1972), (voirComm. Math,).

[13] I. TAMUBA, Spinnable structures on differentiable manifolds, Proc.
Japan Acad., 48 (1972), 293-296.

[14] H. E. WINKELNKEMPEB, Manifolds as open books (to appear).

Itiro TAMURA,
Department of Mathematics,

The University of Tokyo.
Hongo Tokyo 113 (Japan).


