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SOME REMARKS ON CONVOLUTION EQUATIONS

by C.A. BERENSTEIN and M.A. DOSTAL

Introduction.

Let (B(Sl) (SW) be the space of all Schwartz testfunctions
(distributions) with compact support in an open convex subset ft
of R" (l) ; both spaces are considered in their respective topologies
(cf. [18]). Starting from an idea due to B. Malgrange [15], we studied
in [3], [5], [9] a special description of these topological vector spaces
by means of Fourier transform. The main objective of the present
note is to derive by this method a formula for the supporting function
hyy ^ of the set cv. sing supp < E > , $ € 8\ Although the expression for
hyy ^ , at which we arrive in Section 2, is again a formula ofPaley-Wiener
type, it is of different kind than the known one (ct. [i2], [13], [7]).
Some applications of this result to convolution equations are discussed
in Section 3. Section 1 contains several auxiliary statements some of
which seem to be of independent interest. Part of the material pre-
sented in this article was announced in our note [4].

OThe first author was supported in part by the Army Office of Research
(Durham, USA).

(l) Further notation : S>9 = ^'(R") ; S"~1 ={a C R" : ||a|| = 1} ; for x , y e R",

< x , y > = ^ x^y^ S;~1 (S"~1) denotes the open upper (lower) hemisphere
f= i

on S"~1 ; sing supp $ is the singular support of a distribution $ (cf. § 1 below) ;
h^(rf) is the supporting function of the set A, i.e. h^) = sup < x , 17 > , T? € R";

A
cv. A is the convex hull of A, hence h^ ^ = h^ ; bA denotes the boundary
of A. If $ € 8', we shall write h^(h^ resp.) instead of h,^^ (^,pp<,
resp.).



56 C.A. BERENSTEIN AND M.A. DOSTAL

1. Auxiliary statements.

We start with several facts about convex functions, which will
be needed in the sequel. (1)

Given an open convex set Sl =^= 0 in R", <£(Sl) will denote the
class of all convex functions p defined on ft and such that

lim -^=- (2) (1 )jc-^an Ibcll v /

If K is a compact subset of R", let %(K) = U %(ft). Obviously
HDK

%(K) == %(cv.K). When K = 0 (K = supp $ , $ G &\ resp.) we shall
write %(£($), resp.) instead of S(K). Furthermore, for p G %, i2
denotes the domain of definition of p, 9 p

Np = min p(x), Hp(s) = {;c : p(x) < N- + 5}
"P

for 5 > 0, and hp(s ;a) = /!„ ^(a). In a certain sense, the mapping

s ^ h p ( s ; a ) represents a substitute for the inverse function of p.
The first lemma is an immediate corollary of the Hahn-Banach

theorem in its geometric form (cf. [6]).

LEMMA 1 . - For any fixed p E% ,5 > 0 and a G S"-1, let
x* = x*(s, a) G 9Hp(s) be an arbitrary point such that

<^,a>=^(^;a) .

// T r ( x * , s , a) denotes the linear variety

{(x , y) C R^ : <x - x * , a> = 0, y = Np + s} ,

then there exists a hyperplane V(p , x*, a) which is tangent to 9[p]
(cf.(2) at the point (x* , Np + s) and contains 7r(;c*, s , a).

For each p G ®(S2), the so-called normal mapping v of the
convex surface 9[p] can be defined as follows (cf. [I], [2]), Fwx € n,

( A ) Cf. [9] where similar questions are discussed.
(2) The convexity ofp means that the set [p] d£f {(x , y) € R"-1-1 : ̂  e Q,, y> p(x)}

is convex and p is continuous.
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let Tf(p , x) be any tangent hyperplane of 3[p] passing through the
point (x , p(x)). If a = (o^ , . . . , » „ , c^) G S" is the corresponding
outer normal vector, then a E S". (1). Hence, for some positive
X , X c .̂n = — 1. Set Vp(x) = Vp^(x) = (Xc^,. . ., Xo^).Ifjc is fixed,
SfLp(x) will denote the normal cone of p at x , i.e. the set of all possible
vectors Vp(x). Each3t (x) is a compact convex subset of R" (cf. [2]).
The mapping x ^-> Vp(x), which in general is multivalued, is called the
normal mapping of the surface 9[p]. If the function p has total dif-
ferential at the point x, then obviously the set SfC(x) contains only

( 9p 9p \
one vector, namely v.(x)~= —— , . . . , ——). Hence, by a well-knownp 9x, 9x^
theorem of K. Reidemeister [16], the normal mapping v is univalent
almost everywhere in ft. Furthermore, it is not difficult to see that if,
for a fixed a € S""1 and s > 0, x*(s , a) denotes any point of the sort
appearing in Lemma 1, then \\v(x*(s , a))|| / oo when s -> oo. Moreover,
an easy compactness argument shows that for each p G %, the function

Cp(s) = inf{\\Vp(x)\\ : Vp(x) ̂ Sfip(x) , x € 9Hp(s)}

is such that
C^(s) t oo for s -^ oo. (2)

It is not difficult to construct functions p for which C (s) grows
arbitrarily fast ; this can be done by a procedure called in [9] the
convex interpolation. Here we state only a special case which will
be used in the sequel.

LEMMA 2. — Given ft as above and constants N real and 6 > 0,
there exists a function p € % (ft) such that N- = N and

Cp(s)>- (s>\\ (3)
o

This lemma has an interesting consequence which will be used
in Section 2. Let p be the function of Lemma 2 and;^ = x*(s^ , a) as
above (s^ > 1). By Lemma 1, there exists a vector Vp(x^) G 31p(x^)
such that Vp(x^) = \\v-(^)H.a.Hence, for any x^ G ft and ^ = p(x^\
the convexity of p implies

< (x, - x , , p(x^) - p(x,)), (Vp(x,) , - 1)> < 0. (4)

( l) Cf. (!), p. 55.
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whence

Cp^X——i-^-^ (5)
<x^ — x^ , a>

for <x^ — Xi , a» 0. In particular, if x^ is such that

x^ = x * ( s ^ , a ) ^ H p ( S t )

then Lemma 2 combined with (5) shows that

s,(h^, ^) - h^ , a)) < 5(5, - ̂ ) (a G S"-1 ; s, > ̂  > I)
(6)

Remark 1. — We have just proved the existence of functions p
with property (6). However much more can be said. If S2 is bounded,
then for any p E ®(S^) and 5 > 0, there is a constant a such that the
inequality (6) holds for all a and s^ > s^ > a. For R unbounded,
the same statement remains valid, if one assumes that each p grows
at infinity faster than indicated in (1). It suffices to suppose, for
instance, that

log p(x)
lim „ ,, = °°. (1*)jc-^an II x II

The proofs of these statements are omitted since they are rather
tedious. However, it will be clear from the context that by using
these statements one could simplify the construction in the next
section.

Finally, the convex interpolation mentioned above easily yields
the following lemma about extensions of convex functions :

LEMMA 3. - Assume that Sl' C n. I f p is a function in %(ft')
satisfying condition (6), then for each SQ > 0, there exists a function
p G a(ft) also satisfying (6) and such that p = p ' on Hy ( p ) and
p < p ' everywhere.

Let e be the class of all functions X which are concave, increasing,
continuously differentiable on [0 , °°) and such that

0 < 2(s 4- 1) \'(s) < 1 for all s > 0.
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LEMMA 4.(1) - Let \ be a function in (° and p its inverse.
Then for any a > 0 and b > 1,

/ 00 00 .

max (S ^(^-^ , ^ ^-W5)) (7)
^=0 ^=o /

< (3+^) ̂ (t)- (2)

Proof. - Set /(5-) = exp [flX(5/6) - 5] and estimate the first sum
in (7). The Euler-Maclaurin formula implies

21 f(bs) < /(O) + (a- + l) r /(5) &. (8)
5=0 ^ ' "o

The integration by parts in the integral 3^ = j f(s) ds gives ̂ < 2f(a).
This inequality combined with (8) and the obvious estimate,

ff^ds < expLx Ql ,

yields (7). The estimate of the second sum in (7) is similar.
In the next section we shall study the singular support of a dis-

tribution <&. Let us recall that the set sing supp $ is defined as the
complement of the largest open set on which $ is equal (in the sense
of distributions) to a C^-function.i3') The Fourier transform of a
a distribution $ G 8>' is defined here as the entire function

W = $0?-^^) (? == S + n? ^ C")

Set o?(S) = log (2 + 1 { |), and for t real and a G S"-1,

FO, a) ={? E C" : ? = ?(£) = $ + farco(S)} .

By virtue of the Paley-Wiener theorem and the formulae of Plancherel
and Cauchy-Poincare, one has

(1) This lemma is a slightly stronger version of a similar statement used in [5], [9].
(2) Actually, in the second sum the index s runs only over the integers > X(0).
(3) We write $ G C^KU) (/ = 0 , 1 , . . . , oo ; eff open) if $ is equal in "U to a

function which is continuously differentiable in "U up to the order/. Similarly,
$ G ̂ (Xo) if 4> € C^W) for some open neighborhood ̂  of XQ.
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$(^ = 1w f $(?)^(-?)rf^ (9)(27r) J^(t.a)

where the integral f /(?) d? is understood to be
v - ^ / ^ . ^.\T(f,a)

L^^^—-^^'---'^- (10)
^R^-^aal,...,^)

Then, for some positive constant C,

9(rl ' • • • ' ^ l < C(l + tY. (11)
aOi, . . . , U

Using this estimate, equation (9) and the Fubini theorem, we arrive
at the following standard lemma :

LEMMA 5. — Given a distribution $ € &' and an integer j > 0,
assume that there exist t real, a G S""1 and an open set U in R" such
that for any multiindex 7 , 17! < /, the integral

^00= f F e^^ $(?) rf? (12)
• "r^co

converges absolutely and locally uniformly in U. Then $ G C^(U).
The order of a distribution $ ($ E §') is defined here as the

infimum M($) of all numbers M such that, for some C > 0 and R > 0,

I^COKCe^^^^

By the Paley-Wiener theorem (or by the previous lemma), sing supp $
= 0 (Le; $eC^(R") ) i fandonly i fM($)==-oo .

Let A(? \r) be the polydisk {z E C" : max |?y - z,| < r} and

A(?;r) its distinguished boundary. If g is analytic in A(?;r), set

|^(?)L = max \g(z)\ ;
r zeA(?;r)

[̂ )]. =—————„ / 1 ^ ( ^ 1 ^ 1 .
(27^)" ^(?;r)

(13)

LEMMA 6. — Given e> 0 and g analytic in A(ZQ ; 2e), then for
each k = 0 , 1 , . . . ,
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^W^^'^^^)^. (14)

The proof is an easy application of the Cauchy formula. One
can clearly assume n = 1. Fix r E (0 , e] and ? such that I ? — ZQ I = r

Then the Cauchy formula and the monotonicity of G(r) = [^(Zo)lr
yield

— /6 r^1!^?)! dr < y[g(?)], rdr

< ft l^(w)| |dw|< ft^o)]^ r d r *
"^(zo^e) ^o

and the estimate (14) easily follows.

2. Formula for hyy ^.

Let %o(ft) = { p C W) : Np == 0} and ®o = ^ %()(")• For each

00

p € %o(^) » ^ ^> 0 ̂ d any convergent series 2d ^a suc^ ̂ a1 O^6^ ̂  1»
5=i

the series
00

W) = fe(p ; fe,> ; M ; ?) == S e, exp [A/5, r?) - Ox + s) ̂ )]
s=l (15)

is obviously locally uniformly convergent in C" and hence represents
there a positive continuous function. Let 3C(Sl) be the family of all
such functions k and Qi(9C(Sl)) the space of all entire functions /
satisfying the condition

11/H = sup l/(nl < oo (Vfe €= 3C(S2)). (16)
S-eC" k^)

The natural locally convex topology on QLOQfl)) is the one gene-
rated by all the norms II • 11 .̂ It was shown in [3], [9] that the topolo-
gical vector spaces OL (96(12)) and 6E)(ft) are isomorphic, the corres-
ponding isomorphism ^ : (D(ft) -> QL(SfC(^l)) being the Fourier trans-
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form, §?(<p) = ^. Furthermore, it was proved in [4], [51 that by a
suitable extension of the "Taylof'-type series (15) to the "Laurent"-

00

type series k(p ;{£,};?)= ^ . . . , one obtains a similar description
J=—oo

of the space &'(S2)(1).
Let $ E S(H) be fixed. Lemma 4 and the Paley-Wiener theorem

imply that for each k G 3<:(^2) there are constants N' real and C > 0
such that

l$(ni <C^'^k(^ (17)

Let N(p, <I>) = 1 4- inf(N'- ^) where the infimum is taken overall
numbers N ' — ^ which appear in inequalities (17) with the k's of the
form k = k(p ;. . .). Hence, for some C\ > 0 and a sequence {£^},

1^0)1 < C^'^ £ e, exp[A/^r?) -^^)]. (17*)
5=0

It follows from Lemma 4 that

N(p , $) > M($). (18)

In the sequel we shall need a decomposition of the class S^)
into subclasses of functions with the same growth (in the sense of
condition (6)). Let 6 be a positive number and o(a) an arbitrary
function of a G S"-1, a(a) > 1. Then ®o(n ; a ; 6) denotes the fa-
mily of all functions p G ̂ (Sl) satisfying inequality (6) for all a
and s^> s^> o(a). As was shown in Sect. 1, %o(ft ; 1 ; 6) ^= 0 ;
therefore, %o(ft ;a ; 6 ) ¥ = 0 for all 5 and a as above. For each a
fixed, there is an obvious decomposition of%o(i2),

%o(")=U%o(";^;5) ;
(19)

%o(n;a;6^) C %o(n;a;6,) for 6^ < 6^

Remark 2. — If we limit ourselves to those p ' s which satisfy
condition (1*) instead of (1), then by Remark 1 (cf. Sect. I), for
each fixed 6 > 0, there is a decomposition of ^(Sl) given by the
formula

(1) Actually, in [4], [5] this was shown only for ^ = R". However, the extension
to general Sl is straightforward.
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€i^)=U^(n;a;S). (19*)
<7

Moreover, in (19*) we can limit ourselves to constant functions a.

Let ^(a) = A$; ̂  ; a ; a) be the function

e (a) = lim lim inf {h(s -h N(p , <&) ; a) : p C %.(S2 ; a , 6)}.a-.o ,— , ^

Setting
%o($;a;6)= U a^";^5).supp<i> en

one could similarly define a function S^(a) given by the same for-
mula (20), but with 9^(n ;a ;6) replaced by the class %o(<& ;a ; 5).
Obviously, for each ft D supp $,

^;<^, (21)

and both limits in (20) can be replaced by the suprema. Thus, for
instance, we can write

^(c0 = sup sup inf { A p ( . . . ) : p € %o($ ;a ; 5)} (20*)
6 s p

The interest in functions given by formulae (20) or (20*) is jus-
tified by the fact that the only other possible choice of the order
of the three limits in (20*) has an interesting geometric interpre-
tation :

PROPOSITION 1. — For every $ € &' and arbitrary a,

sup inf sup A p ( . . . ; a) == h^W (p e S ($ ; a ; 5)} , (22)
6 p s

Proof. — As can be easily seen from the Paley-Wiener theorem, for
each fixed S,

h, ̂ (a) = inf sup {h^(s ; a) : p G %^($ ; a ; 6)}, (23)
P s

and formula (22) follows.

Remark 3. — Actually, formula (23) leads to a simpler expression
for A , ^ ,
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h, ̂ (a) = inf sup {h p(s ; a) : p €<£($)}. (24)
p s r

Moreover, by the above proposition,

^<h^. (25)

In view of the last proposition, it is natural to consider the func-
tion B^ defined by (20*) and to ask whether the function S^ (or K)
has a similar geometric interpretation. The answer is remarkably
simple :

THEOREM 1. — For every distribution $ E S,an arbitrary convex
region R containing the support of <&, and any function a(a) > 1,

A$ ; S2 ; a ; a) == ^($ ; a ; a) == h^a) (Va). (26)

Proo/ — First we shall prove the inequality

^(<&;a;a)>^^(a). (27)

By (25) we can obviously assume that sing supp $ ̂  0 ; and, that
aE S""1 is fixed so that

^($;a;a)<A,^(a).

(On the other hand, the case ^?*($ ; a ; a.) = — o° is not excluded).
Let A be any number > — oo such that

/?*($; a; a) < A</^(a).

Chooses > 0, £ <A, ^(a) — A. In order to prove (27), it suffices
to show that $ e C^jCo) 0) for all / = 0 , 1 ,. .. and all XQ in
the set

A + 4e «XQ , a> < h,^(a) + c. (28)

From now on, A ,s ,/ and XQ are fixed. Since sing supp $ ^= 0,
M($) > - oo (cf. Sect. 1). Let 6 < £/2 and

SQ > max {a(a) , |M($)| + 1 , / + n 4- 1}.

By (20*) and (28) there exists p e S ^ , a , 8 ) such that, for
N = N ( p , $ ) ,

hp(s'Q +N;a )«Xo ,a>~3e .

(^Cf.C^p.S^



SOME REMARKS ON CONVOLUTION EQUATIONS 65

Fix p and 6. Then the second inequality in (28) combined with (22)
shows that, for some integer SQ > SQ ,

hp(sQ + N ;a) < <XQ ,a> - 3£ < h^ + N + 1 ;o). (29)

If we choose s^ > 5o + 1 so that

Ap(5i - 1 + N ; a) «XQ , a> - 2e < hp(s, + N ; a), (30)

then

SQ + N > 1 ; s, > 3s^ + 2N > SQ + 1. (31)

Indeed, SQ + N > 5o + N > |M($)| + 1 + N > 1 ; on the other hand,
by (29), (30) and (6),

£(5, — 5n)
e<^+N)-^+N)<^-^,

which gives (31). Similarly, one obtains the inequality

hp(s, + N;a)«Xo,a>-£ . (32)

For each s = 0 , 1 , . . . , let x* = x * ( s , a) be as in Lemma 1. Then
there exists a hyperplane Tr which is tangent to 3[p] at the point
(;c*(5i + N ;a), p(x*(s^ + N ;a))) and such that, for some t > 0,
ta = y ^(x*(s^ + N ;a)). It will be shown below that, for

U = {x G R» : <jc - JCo , a> > -£}

and the variety r(r,a), the hypotheses of Lemma 5 are satisfied.
This will complete the proof of (12).

Let 7 be any multiindex of length l7 l </'. We claim that the
integral 3 (x) in (12) is uniformly and absolutely convergent in U.
Since by (12), (11) and (17*),

1^001 < C £ £, ( (2 + ISD^S, (33)
s=o "R"

where

E,0c) = N + 7 - s + t [hp(s ;a) - <x ,a>] (^ > 0), (34)

it suffices to prove that, for instance,

E,(jc)<-n- 1. (35)
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Consider first s = 0 , 1 , . . . ,s, - 1 + N. Then the inequaUty
(4), applied to ̂  = x*(s, + N ;a), x^ = x*(Sy + N ;a), v (x^) = ta,
and the inequalities (29), (30) and (31) give

^>_______s! - Sp______^ 2(^ + N)
" A/^i + N ; a) - h,(s, + N ; a) ' ——e——' (36)

Hence by (30) and (31), the function E,(x) satisfies in U the estimate

E,(x) < N + / - s - te < N + /• - s - 2(So + N) < - n - 1.
(37)

Now let s > St + N. Then, for x £ U, inequalities (4) and (32)
yield

E,0c) < N + / - s + t [hp(s -.a) - hp(St + N ;a)] \

+ t[hp(s^ + N ) - < x , a > ] < / - S i ^(38)

<-n - 1.

Thus, inequality (27) is established.
By inequality (21), it remains to prove that, for an arbitrary

n 3 supp $,
/?($ ; ft ; CT ; a) < A,, 4, (a). (39)

We can assume /?($ ;ft ;o ;a) > -oo. Let £ > 0 be fixed. Then
one has $ = $1 + $3, where <t>, G C;(R") and $. € &' is such
that

^.t/0) < e + A^ ,(a). (40)

Let ft' be the open e-neighborhood of the set cv. sing supp $. Choose
p G %o("' ; 1 •; 6). Then by (40),

l<^(ni < C '̂̂ ) fc(p' ;{£,} ; l ; ̂  (i) (4i)

where N' = N(p' ; <&). Taking an arbitrary S Q ^ I N ' I and setting
^o = ^o + N' in Lemma 3, we obtain a function

pG^o^; ! ; 5 ) C % o ( n ; o ; 6 ) .

However the Paley-Wiener theorem for C^-functions shows that for

(') The Paley-Wiener theorem implies that if p ' is chosen so that supp * C
int Hp.(l), then N' < M ($,) + 1 = M ($) + 1. '
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any real M and the same sequence {£,} as in (41), there is a C^ > 0
such that

W?)l < CM e^) fc (p ;{£,}; 1 ;?) . (42)

Adding the last two inequalities (with M = N(p' ; $) in (42)) we get

l^nKC'e^'^)^...;?). (43)

Hence N = N(p ; $) < N' and

Ap(^ 4- N) < Ap(5o + N') = hp^) < /^ + e ,

which proves (39).

Remark 4. - It follows from Theorem 1 that a plays only an
auxiliary role in the formulae (20) and (20*). However, Theorem 1
also has the following consequence. It can be shown (cf. [4], Prop.
3 0)) that, as in the case of the space (0(0) (cf. (16)), one can
describe the topology of the space &\Sl) by means of all inequalities
(17) with p e%o(n). But then the equation J?(<& ;ft ;a) = h^^(a)
means that by looking at the inequalities (17) for? e^(^2) only(2)
(i.e. at all the seminorms of $ in the topology of S(Sl)), one can de-
termine the set cv. sing supp <&. This obviously fails for the set
cv. supp $. In this case we have to use inequalities (17) for all
p G ^(4>). (In other words, the set cv. supp $ cannot be described
by the function which, in accordance with the above notation, could
be denoted by J?($ ; Sl ; a ; a).) This shows that the topology of
S'(ft) is more closely related to singular supports than to supports.

3. Some applications.

Consider the convolution equation

$ * <^ = ^ , (44)

where $ and ^ are given distributions, $ E8', and write

(1) The formulation of Proposition 3 in [4] is not precise and must be slightly
changed. We shall return to these questions elsewhere.

(2) and not necessarily for all p e ^o (<!>).
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0($ ;C ;A ;?) = C exp [A^) 4- h, ̂ (r?)]. (45)

PROPOSITION 2. — Gn^w a distribution <&€§ ' , r/^ following
conditions are equivalent :

(i) rt^r^ ^c^ constants r > 0 , C > 0 and A real such that
for every entire function f,

©($;c;A;m/0)| < IWADI, (v? e c") ; (46)
(ii) condition (i) "with f = 1 only ;
(iii) condition (i) w^YA 1. . . ly replaced in (46) &y [...],. ;
(iv) condition (iii) w^A / = 1 o^fy.

Proof. - Let ? be fixed. It suffices to show that (ii) ==> (i) =^ (iii).
Consider the inner function B (z) corresponding to the function

<&(z) and the polydisk A(? ; r ) (cf. [17]). Then $(z)= Q(z)B(z)
where both Q and B are analytic in A (^ ; r), Q (z) ¥= 0 in A (? ; r) and
|B(z)| = 1 on A(? ;r). The mean value property of harmonic func-
tions combined with condition (ii) gives

IQ(?)1 = IQ(ni. = 1$0)1, > € ( • • • ; ? ) .

Hence, if / is an arbitrary entire function, then

IADI 6(. . . ; ? ) < l/(nQO)l < l/(?)Q(?)Ir = l/(?)^(r)lr>

and the inequality (46) is established. The rest follows easily from
Lemma 6.

DEFINITION. — A distribution $ with compact support is said
to be of class <%, provided $ satisfies one of the conditions (i) — (iv)
in Proposition 2. <% will denote the class {$ : $ E (R}.

The simplest examples of distributions of class <% are linear
partial differential operators with constant coefficients ; in other
words, all polynomials are in the class <%. This was proved by
Malgrange in [14], and a similar statement appears in Ehrenpreis [10].
Actually, in this case one can show that inequality (46) is satisfied
for each positive r(1). It is natural to ask for other examples of
such distributions.

(1) Distributions with this property will be called of class (R^.
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PROPOSITION 3. - Let P(?) be an exponential polynomial, i.e.

P(D= S P,(?)e<^>,
fc=i

^here the P^s are polynomials and a^ = (c^ , . . . , c^) E C" ore ̂
so-called frequencies of P. 5^ Ap(?) = max Re<c^ , ?>. Then, for

each € > 0, there exists a constant C = C(e,P) such that, iff is
an analytic function in the polydisk A(? ;£), then

!/(?) I e^ <C [/(?)?(?)],. (47)

Remark 5. — In particular, if all frequencies are pure imaginary,
i.e. o^ = — ̂  , ̂  e R", then P is the Fourier transform of a distri-
bution T with finite support and /Zp(?) = h^(rf). In this case, Pro-
position 3 implies that T G (R^

Proof of Proposition 3 : We can assume that

Ap(?) == Re <a, ,?>.

There exists a differential operator Qi(D) with constant coefficients
such that

Q^(D)P(?) = C^e^i'^ (C, ^ 0).

(Qi(^i , . . . ,x^) can be defined as a certain product of factors
^7 - a^ ; hence C^ depends on the coefficients of the polyno-
mial P^ and the frequencies of P). The Cauchy formula then yields

IC^i^l <C^£ ,P) [P(U],.

As in the proof of Proposition 2 we shall consider a function R (z)
which is analytic and ^ 0 in A(? ;£) and such that |R(z)| = |P(z)|
on A(? ;£). (For n = 1, it suffices to divide P by the corresponding
Blaschke product ; for n > 1, one has to use inner functions, cf. Rudin
[17]). Then,

|R(?)1= [R(?)], >^ehPW .

Applying the Cauchy formula to R(?)/(?) completes the proof.

Remark 6. - By virtue of this Proposition, the characteristic
function of each bounded parallelepiped in R" is in the class C% ;
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but then it is natural to pose the following problem : Given an
arbitrary compact convex set K in R", is its characteristic function
\^ in the class <% (or even (R.Q ) ? We can prove it only when K is
a polyhedron. (*)

Remark 7. — If we replace in (47) the exponent Ap(?) by
—CAy(?), C > 0, we obtain a weaker inequality which was proved
by Ehrenpreis in [11] by using mean periodicity. This inequality is
still sufficient for the proof of the division problem for exponen-
tial polynomials P in the spaces <3)p(R") , <3)(R"), etc. (cf. [10],
[11]). However, if we want to prove that, e.g., for each ^ G (D'(Sl),
equation (44) (with $ = P) has a solution \p € <3)'(S2') where Sl' — cv.
supp P == S2, then we need in (47) Ap with the "4-" sign. More
generally, one can show that for distributions of class C% the solution
of this division problem is surprisingly simple (cf. [9], Th. 2). To
some extent this explains the interest in such distributions. One can
expect that these distributions will have some further interesting
properties. We shall mention only two of them.

PROPOSITION 4. — For each <!»€<%,

cv. supp 4> = cv. sing supp $. (48)

Proof. — Inequality (46) with /= 1 and estimate (17) with
arbitrary p €%Q($ ; 1 ;6) imply by Lemma 4, 0)

exp[A, ^(ry)]< C'(l + |T?|) exp [(Np - A)co + h^\l^ ;T?)].
(49)

Fix £ G (0 , 1) , a e S71"1 and consider only those ? € C" for which
<f]|\<n\=a. Then for each 6 < 6g and s> s^ there is a function
q == ^ e 8^($ ; 1 ; 5) such that

A^-hN^aXE + h^(a)

N^ < M(<&) 4-1 (cf.O.p. 66).
(50)

(^N^NO?;^).
(*) Added in proofs : If K is a sphere, or more generally, an ellipsoid, then

\^^:(R. (cf. our forthcoming paper. On convolution equations I).
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Taking logarithms on both sides of (49) and dividing by | T? | we get

h^(a) < [log C, + (N^ - A)O) + log(l + IT? |)] IT? |-1

+ Vlr?|/^ ;a).
(51)

Setting IT? | == (5 + N^)c<; and letting 5-^ oo, inequalities (50) and (51)
imply

hs^a) < hss^a) + £ >
which proves the proposition.

THEOREM 2. — (The Titchmarsh-Lions formula for singular sup-
ports). For each $ e <% and ^ e 8',

cv. sing supp ($ * ̂ ) = cv. sing supp $ + cv. sing supp .̂ (52)

/Voo/ — It suffices to show that

cv. sing supp ($ * ̂ ) D cv. sing supp $ -h cv. sing supp ^ (53)

By Proposition 4, one has to prove,

^.^W - ^(cO > ̂ .^(a)- (54)

Let a be fixed. If e is any positive number, then by Theorem 1,
for all 5 small and s large, there is a function q satisfying (50) with
$ replaced by $ * ̂ . Hence by Lemma 4 and inequality (17) applied
to $ * ̂  and k = k(q ; . . .) , we obtain

l$(?)^(?)lr<CO + |T?l)exp[N^+^( |T? | /a ; ;T?)] . (55)

By (46), this estimate gives

log 1^0)1 <C' + (N^ - A)CJ + log(l + IT? |) +
(56)

^(hl/O; ; T?) -/^ (T?) .

Taking as before 17 = (s + N^)o?a, we obtain by (50),

r r ^gl^?)! ^ . . , , . , ,^ ̂ hm. —f^r~ ^£ + h^^ -h^^
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Since the double limit in (57) is the well-known formula for the
function h^ ^ (cf. [12], [7], [8]), inequality (54) follows.

Remark 8. - Another condition on $, which is sufficient for the
validity of the equality (52) with any ^ E8', appears in [8]. This
condition imposes certain restriction on the regularity of growth of
<i> at infinity. It would be interesting to compare the two conditions.
Yet another approach to the problem of singular supports of con-
volutions is due to Hormander [13]. Hormander uses the technique
of plurisubharmonic functions. Besides having important consequences,
this method is interesting, because as above, the set cv. sing
supp $ is described in terms of a whole family 30^) of functions.
However, in concrete cases it is not easy to describe such families
3e(<&). Nevertheless, there seem to be some common features of
Hormander's description of cv. sing supp $ and the formula (26)
of the present article. Thus, for instance, the concluding statement
in [13], which also concerns the equality (52), requires that 3€(^)
consist of a single function, namely, hy ^. (Incidentally, this condi-
tion is satisfied for distributions with finite support and it also implies
(48)). Hormander's result resembles Theorem 2 and Proposition 4
above. However, we were unable to find the exact relationship between
Hormander's condition on $ and $ being of class <%.
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