
ANNALES DE L’INSTITUT FOURIER

SEAN DINEEN
Holomorphic functions on locally convex topological
vector spaces. I. Locally convex topologies on H (U)

Annales de l’institut Fourier, tome 23, no 1 (1973), p. 19-54
<http://www.numdam.org/item?id=AIF_1973__23_1_19_0>

© Annales de l’institut Fourier, 1973, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1973__23_1_19_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
23,1 (1973), pp. 19-54

HOLOMORPHIC FUNCTIONS ON LOCALLY CONVEX
TOPOLOGICAL VECTOR SPACES :

I. LOCALLY CONVEX TOPOLOGIES ON X (U) (*)

by Sean DINEEN

In this article we study topological vector space structures on
9e(U), the set of all holomorphic functions on U where U is an open
subset of the locally convex topological vector space E. We apply our
results, in a further paper, to characterise certain pseudo domains.

These structures are of interest both intrinsically and because of
the role they play in the theory of convolution equations and in the
study of analytic continuation in infinite dimensions.

We discuss the following topologies on SCW) :
1) The ported topology of Nachbin, %^ . ([3], [28]).
2) The bomological topology associated with %^, %^ ^ . ([9],

[11])-
3) The bomological topology associated with the compact open

topology,^,. ([7], [9], [II] , [17]).
4) The %5 topology introduced in [29] (a semi-norm p on 96(U)

is said to be ^g continuous if for each countable open cover of U,
(U^)^, there exists C > 0 and n^ a positive integer such that

p( / )<C sup |/(jc)|

x^ (j U,1=1 '
for all /G ge(U)).
For U balanced we apply the theory of generalised bases ([22], [23])
and deduce many of the properties ofdHefV)^^ ^) and (^(U),^ ^)

(*) A number of the results contained in this paper were announced in C.R. Acad.
S.Q, Paris, t. 274, 544-547, 1972.
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etc. from those of (%("E) ,%^) and (%("E),^^) (%("E) is the
set of all continuous ^-homogeneous polynomials on E). The following
are some results obtained in such a fashion,

a) On 9€(V) the following are equivalent,
a.l) Oe(U) ,%^) = (ge(U) ,%5)
a.2) (^(U),^ ^) is barrelled
a. 3) %^ ^ is the finest locally convex topology on S^tOfor

which the Taylor series converges absolutely and which induces on
%("E) the %^ topology for each n.

b) (96(11),%^) is barrelled if and only if WE) , ̂  ^) is
barrelled for each n and %^ ^ is the finest I.e. topology on9e(U) for
which the Taylor series converges absolutely and which induces on
^("E) the ̂  ^ topology for each n.

c) (?e(U) ,%J is complete if and only if (%("E) ,%^) is com-
00

plete for each n and if P^ e %("E) for each w and ^ p(P^) < °° for
n=Q

00

each%^- continuous semi-norm p on 96 (U), then V P^ € S^OJ).
w^o

We also found this method of investigation useful in the cons-
truction of examples and counterexamples.

Unfortunately, it happens that ̂  =^'8^ ^ » for a large class of
locally convex spaces E. In particular we find that if E is a Frechet
space on which there exists no continuous norm then%^ =^= %^^ on
9e(U) (see also [15], [29]). This is unfortunate because if it were
otherwise we would immediately obtain the equivalence of holomor-
phically convex domains and domains of holomorphy ([14], [15]).

I would like to thank Richard Aron, Philip Boland, Gerard Coeure
and Philippe Noverraz for very helpful discussions and correspondence
during the preparation of this paper.

1. Definitions and Fundamental Properties of Locally
Convex Topologies on 9e(U).

Our notation (unless otherwise stated) will be the same as [3],
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[11] and [28]. However for convenience we state some of the more
frequent and important definitions and theorems.

N, R and C will denote respectively the set of non-negative
integers, real numbers and complex numbers. Let / be a complex
valued function defined on a set A, then

II/HA= sup |/0c)|
xeA

E will denote a locally convex Hausdorff(1) topological vector space
(briefly LCS) and U will denote an open subset of E.

Let A be a vector space of continuous functions on the topolo-
gical space X. %o(A) mil denote the compact open topology on A. A
semi-norm p on A is said to be ported ([28], [29]) by the compact
subset K of X if for each open subset V of X containing K there
exists C(V) > 0 such that p(f) < C(V) ||/||, for all f in A.

^(A) denotes the locally convex topology on A generated by
the semi-norms ported by the compact subsets of X.

A semi-norm p on A is said to be "gg -continuous if for each

increasing sequence of open subsets ofX, (U )̂;̂  , such that 0 U =X
n^l

there exists n^ a positive integer and 00 such that

P(/XC 11/H^ for all fin A.

%6(A) (see [29]) denotes the locally convex topology on A generated
by all the % ̂ -continuous semi-norms.

^o^bW (res?' ^a,,^)) W7/ denote the bornological topology
on A associated with %o(A) (resp. %^(A)(2), (3). // B is a subspace
of A and %(A) is any topology on A then T(A)|B will denote the
topology on B induced by T(A). A preliminary investigation of the
various topologies yields.

(1) This condition on E is not necessary for the development of the theory but
its inclusion helps us to avoid many rather trivial situations.

(2) Le. %o,&(A) (resp. %^^(A)) is the finest locally convex topology on A which
has the same bounded sets as %o(A) (resp. %^(A)) ([21]).

(3) We write ̂  etc. in place of%o(A) when there is no possible confusion as to
which A is involved.
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O^O^^^c^^-

iO^O^^^-
iii) (A, 'Eg (A)) is a bomological locally convex space.
A is said to be locally closed if the following condition holds ;

if f is a function on X and for each y E X there exists V open in X
containing y and /„ - ,GA such that IIA, , . — / l l v ^ 0 as n -> oo

" 9 J ' —»}• " y

then /GA.

PROPOSITION 1.1. ([29]). - //A is locally closed then (A ,%5(A))
is barrelled.

Proof. — Let OL = (V^)^i be an increasing sequence of open

subsets of X such that 0 V.. == X.n=i n

Let A,, = { / € A , H / l l v < °° tor each n}.a Yy,

A^ is a metrizable locally convex space when endowed with the topo-
logy generated by the semi-norms

P.cn-imiv,
Since A is locally closed A^ is a Frechet space for each such QL. Since
A is a space of continuous functions on X we have A = U A- . It is

CL w'

also immediate that the inductive limit topology, %,. , is finer than
the %5 (A) topology.

Now let p be a %, continuous semi-norm on A. Let QL^ = (V^)^=i
be an increasing open cover of X and suppose for each n there exists
/„ GQ^ such that ?(/„) > n and

l l /Jlv,<l
Let W^ = = { x EX ; \f^x)\ <m for each n}
Let W^ be the interior of W^ . By construction (9^ = (W^)^i is an
increasing open cover of X. Since p is ̂  continuous on A there exists
n^ a positive integer and C > 0 such that

P(/)<C||/||^ for all /<=A^



LOCALLY CONVEX TOPOLOGIES ON ^ (U) 23

Since /„ E A^ for each w this contradicts the fact that

supp(^) = o°
n

^("EK1) (^wp. J?("E)) w7/ A?wo^? rt<? ^ of all complex valued
continuous n-homogeneous polynomials (resp. continuous symmetric
n-linear forms on E).

A function f : U -> C is said to be holomorphic on U if for
each { G U there exists P^^ G %("E), n = 0, 1 . . . such that

A^== £ Pn.^-S) (1.1)
n==0

for all x uniformly in some neighbourhood of {. We call (1.1) the
Taylor series expansion o f / a t { and since this expansion is unique

^"/(S)we denote Py. ^ by ———— •" n !
We shall frequently use the following result which is often

taken as the definition of a holomorphic function ; / : U -> C is
holomorphic if and only if it is G-holomorphic (i.e. the restriction of
/ to each finite dimensional subspace of U is holomorphic as a function
of several complex variables) and locally bounded (i.e. for each x E U
there exists a neighbourhood ofx, V(.v), contained in U such that the
restriction of/ to V(x) is bounded). 9€ (U) will denote the set of all
complex valued holomorphic functions on U. For the remainder of
this paper U will denote (unless otherwise stated) a balanced open
subset of E. In this case the Taylor series at 0 of/G 9e(U) converges
pointwise at all points of U to the function /.

The remainder of section 1 will be devoted to convergence of
the •Taylor series in various topologies on ^(U) and to characterising
a generating family of semi-norms for the different topologies on
9€ (U).

Let S denote the set of all complex valued sequences, (o^)^o ,
such that

lim.sup. \^\lln < 1

(1) For n = 0, ^E) will be the set of constant functions from E to C.
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00 ^n f(Q}

LEMMA 1.1. -Letf= ^ -—'-'egedJ^da^a^es
w=0 ^ '

rt^Z

^ ^/(O)
^ == Z ^ ————— e 9€(U) .

w=o ^ '

Proo/ - Let K be a compact balanced subset of U. Choose
X > 1 and V a convex balanced neighbourhood of 0 such that

XK + X V C U and I I / I I ^ K + X V = M < oo .

By Cauchy's inequalities ([3], [28])

rf"/(0) 1
II ——— II < — M for each n.

n • K+V A

U ^ . , ^ r. ( l + x^Hence it | a^ | < C^ ^ ~——/ for each n where C^ is some positive

real number then

£ |«..|.||̂ 2>|| <;c,.£M(l-^;<-
"=o "' K+V n% v 2X /

^"ce ll^llK+v<00 ^ 8^9€W) .

PROPOSITION 1.2. - The Toy lor series of f <E SOW) at 0 converges
in (3e(U),%,) (and hence in (96(U) ,%^ ^) (3€W) ̂ ^^ and
(WO ,%„)).

A-oo/ - Let Sn = "2 S dtt^1 for each n
m=n m '

Let
WM ^^ . l ^nWI < 1 for all n>M}

and let V^ be the interior of W^ . By lemma 1.1. G V^ = U and
M^ 1

VI^VM+I t01" each M. Let p be a %g -continuous semi-norm on
9€(V). Hence there exists n^ a positive integer and 00 such that

p(f) < c 11/||^ for an /ege(U).
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( 00 /^ffO^X

Hence p(g^) < C for all n > n, , and thus p V ——— ) -> 0as
m%i w ! /

n -> oo. Hence the Taylor series of / at 0 converges in (96(11) ̂ ^

LEMMA 1.2. - Z^r B &e a bounded subset o/(9e(U) ,%o) (re5p.
Oe(U) ̂ J) flwd a = (a^)^o G S then the set

d^fWY
^ n\

( d"/(0)\00

Y^n ——.—/ ls bounded in
»=0, /eB

oe(U),%o) (wp. (9e(U),%^)).

Proof.—a) Without loss of generality we can suppose B = (/^)^=i.
Let K be a compact balanced subset of U. There exists X > 1 such
that XK C U. Hence there exists M > 0 such that

^P- I I ^ J k K = M < o o .
n

By the Cauchy integral formula for each m and n we have

,1 ^m(O) „ <M
"-^———"K^^

d"/(0)
Hence sup. || a,, —— ||

" " ' K

<M.sup.(i^i)<oo.
r» A '

This completes the proof when B is a bounded subset ofO^QJ), ^o).
b) Let p be a ^-continuous semi-norm on SeOJ). By the method

used in lemma 1.1. one easily shows that the semi-norm p^ defined by

^ v . . /^/(0)\
Pi(/)= S |ajp^————^

""v ^ !w=0

is always finite and ^-continuous on 96(11). An application of this
fact immediately gives the required result when B is a bounded subset
ofOCdJ),^).
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PROPOSITION 1.3. - Let p b e a %„ ̂  (wp. <S^, ̂  „) continuous
semi-norm on 3€(V), then there exists a%<, „ (r<;,yp. 'Sj,%^ ^conti-
nuous semi-norm on 3€(\J) such that

i) Pi > P

u),,(/).S P,̂ )
M=0 v ^ ' /

^oo<-^,,(/)»Sp(^<°>)
n=0 n '

then pi(/) is finite for all /G ge(U) and condition (ii) is satisfied.
If p is ^-continuous we have already seen that p^ is % -

continuous so there remains only to consider the bomological topo-
logies %^ and %^ . Let B be a %^ ^ (resp.^ ^) bounded subset
ofge(U). By lemma 1.2

sup
/eB

w = i , 2 , . . .

.(^^.MO.
d^(0)

w !v W /

/rf"/(0)>Thus we have sup V p (———) < V Wn2 < oo
/eB ^i < AZ ! / „=!

Hence ^ is %^ ^ (resp. ̂ ^^ continuous. Since the Taylor series
converges we also immediately get p^ > p. Before discussing the
same problem for the ^-topology on 3€(V) we discuss various topo-
logies on %("E).

Let p be a^CS^E)) continuous semi-norm. For each/G 9e(U)
let ?(n,, (̂̂

 w ! •'

Now if V is a convex balanced neighbourhood of 0 in U then (wV)^ i
is an increasing sequence of open subsets of E which covers E. Hence
there exists n, a positive integer and C > Q such that

d"^0^^ ,,rf"/(0)p(-^)<C,|-^,|
n\ ' n !

By the homogeneity of the elements of %("E) we get
^v



LOCALLY CONVEX TOPOLOGIES ON 9C (U) 27

?(/)<C.(n^ II^^H
/ 2 ! V

for all /ege(U)

Hence p is ̂ (W^I^E. continuous on %("E) since p \ „ == p.
We thus have the following relationship between various topologies
on % ("E).

LEMMA 1.3. - On S^E) the following topologies coincide
^(W))!^, %^(9e(U))|^, ^.(^(U^l^^^^^rE)),
^OOT^^aOT)).

We note also that %("E) and 96 (U) are both locally closed vector
spaces and hence (SecU),^) and (%("E),%J are both barrelled
and bomological. Similarly it is possible to show that on %("E) we
have

^.(^(U))1,^=^,(%("E))

PROPOSITION 1.4. - The %5 topology on 9€W) is generated by
all semi-norms p on 3€(V) which satisfy the following conditions

.(/) - £ P C )̂
n=0 n 'n =0

ii) p | „ z*5 % ̂ -continuous for each n.

Proof. — Let p be a semi-norm on 9€(U) which satisfies condi-
tions i) and ii). Let V = { / , p(f) < 1}. V is convex balanced and
absorbing. Now let /^ E V, /„ ^ f in Oe(U) ̂ g). Since p |^^ is

oo .• ^ u oo .. i, ^ /^/(0)\ . ,%^-contmuous and hence ̂  continuous we have ^ p ^————^ < 1
n = o w •

for all positive integers fe, hence p(f) < 1. Thus V is a closed subset
of (^(U), '65) and since this space is barrelled it is a neighbourhood
of 0. Hence p is '§5-continuous on ^(U). Conversely i f p i s a ^ g -
continuous semi-norm on 3€(V) then

^ ^ /rf"/(0)\<^/(0)-
^ !^(^-S^C-r-)
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satisfies conditions i) and ii). Hence p^ is '65-continuous on 9€(V).
Since the Taylor series converges in (^(U),^) we have p^ > p.
This completes the proof.

COROLLARY 1.1. — %5 is the finest locally convex topology on
3€(V) for which the Taylor series converges absolutely and which
induces on %("E) the ^^ topology for each n.

COROLLARY 1.2. - Let (/a)aeA be a bounded net in (96(U), %),
(%=%^ ̂ .^.ft ,%6), ^^ f^ ^ 0 as a -^ ^ if and only if

—f0^ -^ 0 as a -^ oo in (%("E), %)
^ !

(<<:s=CSo^^^ for each ")-

Proof. - For % = %^ , '6^ or %^ ^ we use lemma 1.2 and
proposition 1.3. For % =%g apply lemma 1.1 and proposition 1.4.

Remark. - We note that for the different topologies the conti-

nuous semi-norms of the form p(/) = ^ p^———— ) generate the
« = o " '

topology and also that such semi-norms are directed i.e., if p^ and p^
are two such semi-norms then there exists another such semi-norm p
such that

p, <p for ^ = 1,2

2. Generalised bases in !S€(V),

We now combine the results of the last section with results from
the theory of generalised bases to find further relationships between
the various topologies on 9€(V).

DEFINITION. — ([22], [23]) a) A decomposition of a topological
vector space E is a sequence of non-trivial subspaces of E, (Ey,)^ ,

00

such that each x in E can be expressed uniquely in the form x = ^ Y{
i =1

where y^ e E, for each i.
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b) The decomposition is said to be Schauder if there exists a
sequence of continuous orthogonal projections, (Q^)^=i , such that

Q^E)=E^and x= ^ QJx).
w = l

n
c) // the projections R^ = ^ Q, are equicontinuous then the

1=1
decomposition is said to be equiSchauder.

d) A Schauder decomposition, (E^ , Q^)^=i , ^ said to be
shrinking if(E^ , Q^=i ^ a Schauder decomposition for (E', ^(E', E))
w/w^ £„ Z5 the topological dual of E^ , Q^ ^ ^Ae adjoint ofQ^ and
^ ( E * , E) is the strong dual topology on E\

PROPOSITION 2.1. — (%("E) ,%)^=o ^ ^" equiSchauder shrinking
decomposition for (96(11),%) where % = %^ , %^ ,%^,6 ^^s •

A-oo/. — Since the set of all %-continuous semi-norms on ^(U)

which satisfy the condition p(f) = Y p(————) generate the %
n ^ o ^ ^ ! 7

topology on ^(U) it is immediate that (%("E) ,%)^=o is an e(lui'
Schauder decomposition for 96(11).

Now let T€ (36(11),%)'then T== ^ T^ where T^E(%("E) , %)'

„„ T(/) - ̂  T.(̂ ). Hence"?/) » ̂  IT.̂ I is

a %-continuous semi-norm on ^(U). An application of lemma 1.2
completes the proof for % = %^ ^ , %^ , ̂  ^ .

There remains the case % =%§ .By lemma 1.1. and proposition
1.4. we get that

T,./)-^|T.(^),

is a %g-continuous semi-norm on ^(U). Hence if B is a ^5 bounded
subset of H(U) we have

" /^/(Oh
sup |T(/)- ^ T,(———) | -> 0 as M -> oo.
/ e B /=0 v n ! /

This completes the proof for % =^5 .
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PROPOSITION 2.2. - (9e(U),<6) <%=%(, ,0,%^ .b ) fo barrelled if
and only if the following conditions hold.

1) (%("E) ,<6) is barrelled for each n.

2) //T.. G (%("E), %)'/br eacA n anrf ^ T,, (d /(0)) converts
n=0 ^ •

00 d^/CO)/or each f = Y ———! e ge(U)
^o i !

then ^ T^eOecU),^/.
yi=0

A-oo/ - We apply corollory p. 381 [23]. Since (9e(U),%) is
bomological it has the Mackey topology. It remains to show our
decomposition of 36 (U) is Schauder with respect to P((9€(V),%) ;
(9e(U),%)'). Let B be a a((9€(V),%/, 3e(U)) bounded subset of
(9e(U),%)'. We must show

sup | V T ( d /(0)) 1 - ^ 0 as m ^ oo
TeB n==w v W !

~ dnf(0)
for a given fixed / = ^ ———— E 9e(U). Suppose this were not

n=o ^ '
true then there exists e > 0 and (Wy)J°=i an increasing sequence of po-
sitive integers and T^ G B such that,

|"ST.,(^)^
n=^.+i / v n ! /

00 ^7^ fff\\
By using (*) and the fact that V | T f———) | < oo for each T C B

n = o v " ! /

we can construct a sequence a = (O?^)^Q € S such that

, v -r/^0^,sup I S a^T^————^1 =00
TeB w = 0 n •

oo .JW ff0)

But this contradicts the fact that ^ a^ ——^— E 96(11) and hence
w = o n '

completes the proof.
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COROLLARY 2.1. ~ (^(U) ,%^&) ZJ barrelled if and only if the
following conditions hold ;

1) (%("E), %„ ^) ^ barrelled for each n,
2) ^o & ^ ̂  /w^r locally convex topology on 96 (U) /or w/ncA

the Taylor series converges absolutely and which, induces on %("E)
the %^ ^ topology for each n.

Proof, — By the proceeding proposition if (9e(U) ,%^ &) is bar-
relled then 1) is satisfied.

Let p be a semi-norm on 90 (U) for which the Taylor series
converges absolutely and which induces on €K(nE) the %^ ^ topology
for each n. The set

v-S/e^iSp^)^
n 'n=0

is a closed convex balanced and absorbing subset of (^(U),^ ^)
and hence a neighbourhood of zero. Hence 2) is also satisfied.

Now suppose 1) and 2) are satisfied and let T^ e (S("E) , %^)'
for each n be such that

2 T.(̂ )
^w/(())>

^"TTw^o

rf"/(0)>is convergent for each /G 9€(U). By lemma 1.1 S I T^ (———) I <<»
n==0 ^ •

for all /eae(U). Hence ^ T^ G (9e(U), %„ ̂ V and an application
w=0

of the proceeding proposition completes the proof.

PROPOSITION 2.3. — The following are equivalent ;
i)(ge(U),%5)=(ge(U),%^).
2) (96(U) ,%^^) is barrelled.
3) %^ ^ is the finest locally convex topology on 3€(V) foy which

the Taylor series converges absolutely and which induces on %("E)
the %^ topology for each n.
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flroo/ — We have already seen the 3) =» 1) => 2) and the same
method as in the previous corollary can be used to show 2) s^ 3).

We now turn to be problem of completeness for (9€(V), %).

DEFINITION. - Let % be a locally convex topology on 9€(V) then
U is T.S.^ (T.S. = Taylor series) complete if whenever (P^)^Q is a
sequence of continuous n-homogeneous polynomials on E and

00

S P^n^ <^ °° for any' % -continuous semi-norm p on 9€ (U) then
n=o

^ P^ege(U).
w = 0

PROPOSITION 2.4. - (96(U),%) (%= ̂  , %^ , ̂  , %5) is
complete (resp, quasi complete, sequentially complete) if and only if
the following conditions hold

1)(<£(WE),%) is complete (resp. quasi-complete, sequentially
complete) for each n.

2) U is T.S.% complete.

Proof. — Apply the theorem of [22] and the fact that our de-
composition is equiSchauder.

Remark. - 1) U is T.S.^^ (resp. T.S.%^^) complete if and only
if it is T.S.%o (resp. T.S.%^) complete.

2) If %^ > ̂  on 96(U) then if U is T.S.%^ complete it is also
T.S.%^ complete.

COROLLARY 2.2. - (^(U),^^,) is complete if and only if
(9e(U),%^) is complete.

PROPOSITION 2.5. - 06(U),%) (% =%^ , %^ , %^ , ^5) is
semi-reflexive if and only if the following conditions hold.

1) (SE("E) ,CS) is semi-reflexive for each n.
2) U is T.S.% complete.

Proof. — Apply theorem 3.2 of [23].



LOCALLY CONVEX TOPOLOGIES ON sf€ (U) 33

Condition 2) of the above proposition is not surprising since
(9e(U), %) (%= %^ ft ,%^fe , %g) is reflexive if and only if it is semi-
reflexive and a reflexive space is always quasi-complete.

It is also possible to use this method to give necessary and suffi-
cient conditions for (36(1]),%) to be Montel, Schwartz, etc. We
restrict ourselves to stating some results of this kind.

PROPOSITION 2.6. - a) (9e(U),%) (%= %^ , %^ , %^ , ̂ )is
a Schwartz space if and only (/*(%("£),%) is a Schwartz space for
each n.

b) (96(U) , % ) ( % = %^ , %^ , %5) is a Montel space if and
only if (%("E),%) is Montel for each n and U is T.S.% ̂ -complete..

3. Examples and Counterexamples on 3€(V).

In the last section we found different necessary and sufficient
conditions on ^(U) for the various topologies to coincide. In this
section we see how difficult it is to find necessary and sufficient
conditions on E for the topologies to coincide. We provide at the
same time a number of interesting examples of the different topologies
which seem to indicate that if such conditions exist they will not be
of the usual functional analytic kind (e.g. barrelled, bomological or
complete) but may possibly be of the form, there exists a continuous
norm on E or the compact subsets of E are all finite dimensional.
We hope to return to this classification problem at a future date. For
the moment we concentrate on special examples related to the fol-
lowing questions.

1) When is %^ = ̂  ?
2) When is %^ ̂  ?
3) When is %^ = %^ ?
The following is a useful starting point and we shall also need

this result in Paper II.

LEMMA 3.1. — // U is an arbitrary open subset of a metrizable
space then
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(36(U) ̂ ^ = (36(U), ̂ ^ = (9e(U) ^fi)

^roo/ - Let B be a bounded subset of (3QCU), T^). For each
w let

¥„ = { ; c e U , |/(jc)| <n for all /EB}

Let W^ be the interior of V,, . Since E is metrizable G \V, = U.
n^l

Hence B is a bounded subset of (9e(U) ,^5). Since (^e(U), %^ ^) is
bomological and %g > %^^ this implies (^(U), %o &) = (^(W ^fi)-

An examination of the proof suggests we proceed in the following
direction.

DEFINITION. - A subset B of H(U) is said to be equibounded if
it is uniformly bounded in a neighbourhood of each point.

By the method of the last lemma we see immediately that if
every %o-bounded subset of 96(U) is equibounded then

(WO ,%^) = oeoj), %^) = oe(U). ̂ .
LEMMA 3.2. — If E is a Baire space then every % abounded

subset of 9C(E) is equibounded.

Proof. — Let B be a bounded subset of (9e(E), %o). By lemma
/ ^7^ y^o^v0 0

1.2. ^——,—j is also a bounded subset of (3e(E),%o).
n • w = o , / e B

For each m let

( dV(0) )
V^ = ]x , | ——— (x) | < m for all w and /e B

Then U V^ = E and since E is Baire there exists n^ a positive
vn :=l

integer, ^ G E and V a convex neighbourhood of 0 in E such that

x + V C V_ ."i
By the method used in lemma 1 [13] we immediately get that

V C V.. . Hence
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SUp||/||i <oo.
/cB 2 V

This means B is bounded in a neighbourhood of 0. Since the point
0 was arbitrarily chosen we get that B is equibounded.

LEMMA 3.3. — If E is complete and every ^ bounded subset of
3C(U) is equi-bounded then E is barrelled.

Proof. — Let V be a closed convex balanced absorbing subset
ofE.
Let B = { ^ E E ' , Mlv<l}

Since V is a barrel in E, V absorbs ([21] p. 208) every closed balanced
convex complete subset of E. Since E is complete V absorbs all compact
subsets of E. Hence B is a ^-bounded subset of 96(U). By hypothesis
there exists W a neighbourhood of 0 in E such that

SUP || ̂  H^y < 1
<ft€B

The Hahn-Banach theorem implies that W C V. Hence V is a neigh-
bourhood of 0 and E is barrelled.

LEMMA 3.1. implies that the completeness condition is necessary
in lemma 3.3.

We now ask ourselves a series of questions all arising from the
above and all of which we answer.

Q.I Is every % 5-bounded subset of 96(E) equibounded ?
Q.2 If E is complete and barrelled is ^5 :=<Sc^& = ^o.b on

3?e(E) ?
Q.3 If E is complete but not a Baire space can we have

^6 = ̂  == ̂  on ^(B) ?

Q.4 If(9e(E,), ̂  = (96(E,) ̂  ^) = (96(E/) ,%^ „) fori = 1,
2,is%, -^^^ o n 9 e ( E ^ x E , ) ?

These questions will be answered in the examples which we give
in the remainder of this section.
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Let E = ^ E, where each E, is a Banach space and let E be

endowed with the direct sum topology.
00 y.

We let F^ = ^ E, and F71 == V E..
i ^ w + l 1=1 l

LEMMA 3.4. - For E = § E, W PEQ^E), if we let P ^
f = i "

defined by

P^ ^ V) = P»(^) /o/- a// x G F^ ^d >/ e F» ,

then P^ -^ P uniformly in a neighbourhood of each point of E.

^•oo/ - It is immediate that we only need consider a neigh-
bourhood of 0. Choose V^ open convex balanced and bounded in E.
such that I J P I I v < 1. l

For x, G E, , i = 1 , 2.

P î + ̂ 2) = P(^i + ̂ 2) == S (m) A(x^ (x,)^
k=o v /c /

where A is the symmetric w-linear form associated with P ([28]).
Hence there exists V^ open balanced convex and bounded in E, such
that

sup S (m)\A(x,)k(x,)n-k\<l

x,eV, 0< k<m VA:/ 2
< = 1 , 2

i.e. \P^x, + x ^ ) - P , ( x , +^) |<^-

By induction choose V^ open convex balanced and bounded in E
such that

iP.(S^-P^(2.,)i<^

for 1 x, £ t V,
1 = 1 <=i
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00

V = ^ V, is a neighbourhood of 0 in E.
1=1

k
Now for ^ x, G V ,

1=1
fc n

\f(x) - P^(x)| = |P( S x,\ - P( S ^-) I <v , = i / v , = i /

< i |P(S ^)-P(i:\)i
;=/ i+l V | = l / v i = l /< s ̂

; = M + 1 z ^

Hence || P - P^ Hy -^ 0 as n -^ oo.

00

PROPOSITION 3.1. — Let E = ^ E, wA^re ^acA E, is a Banach
1=1

/ 00 \
5pac(? rten %^ ^ =C6^ ^ = %5 on 3€[ ^ E,) .

v i-=i /

Proof. — Let p be a ^5 -continuous semi-norm on S^ ( ^ E,).
v , = i /

We can suppose (by proposition 1.1.) that

P(f)= i P(d^s)-) fora11 /e^(E)^ = 0 v n ! /

We claim there exists m a positive integer such that if/€E9e(E) and
/| ^ = 0 then p(/) = 0. If this were not true then by using the
proceeding lemma and the fact that polynomials are dense in (S^E),^)
we can construct (?„)„=! a sequence of homogeneous polynomials
on E such that for some increasing sequence of integers (^)^=i we
have the following

1) PJ , = 07 n•fkn

2) P^ + y ) = P ^ ( x )

for all xEF^"''1 , y E F.' ^yi+l
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3) P(P^) ̂  0 for any n.

We claim (\V^=i is a I,-bounded sequence in 9C(E) for any
sequence of scalars (\)^ . We prove this by showing the sequence

is equibounded. Let x e E be arbitrary then x € ^ E< ^r some po-

sitive integer /. Without loss of generality we can'suppose / < w .
Choose V a convex balanced bounded neighbourhood of 0 in

P"!r which contains x.

Let "=2|\ i IHPiHv

Now for Xi £ F"1, ̂  € V E, and ^3 € F we have
( = n i + l 2

P^i + X^ + Xy) = P^(x^ + X^) =

= S (^A,^)*^-^.)
0<fc<73 v ^/

where 7^ is the order of P^ and A^ is the symmetric 7^-linear mapping
associated with P^ .

Since (*) does not contain the summation *; = 7^ we can choose
"2

a convex balanced bounded neighbourhood of 0 in V E. V'i ' "n-, »
I ' = W ^ + l

such that
I^MIPJIv +v <a

"1 "2

By using expansions similar to (*) and an inductive argument we find
V a neighbourhood of x in E such that

I \i I • II ̂  HV < a for each n.
Hence (X^P^)^o is a Tg-bounded sequence.

If we now take \, = we get a contradiction to the fact

that (^F^i is ^-bounded.

Hence there exists m a positive integer such that if
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/ege(E) , / |_=o
then

p(/ )=o.
Let B be a ̂ -bounded subset of 3€(E). For each/e B we let / eS^E)
denote the element of9e(E) defined by

7{x + y) = /(x) for x G F^" , ^ € F^
/^>

Hence (f)f^ is an equibounded subset of ^(E). This implies that
/^/ ' /-S-.

sup. p(/) < 00. For each /G B we have f — f\ ^ = 0, hence
/eB

P(/- / ) = 0 i.e. p ( / )==p( / ) .

Hence sup. p(/)<°°. This implies that p is %^ ^ continuous on
f€B

9€(E) and on 36 ( ̂  E,)^ *• = i f

^=^- %<,,<,.
/^^marfo.

1) This answers Q.3 since ^ E, is not Baire if E, ^= 0 for an
1=1

infinite number of i's.

2) By using the fact that %o ^ = %§ on 3C( ^ E, ) one easilyv 1=1 /

shows that

^o^^^^o^^ on ^(S H,)\ ,=i /

if Ef is a finite dimensional space for each L
3) We see later that this example also provides a solution to Q. 1

but we first proceed to construct an example which provides a solution
00 00

to questions 2 and 4. Let E^ = ^ C and E^ = '[""[ C. Since E^ is
1=1 i= i

Frechet ̂  ^ = %^ ^ = ^5 on 9e(E^) and proposition 3.1 shows that
the same is true of 9€(E^. We let ((^)^=i , (^)^=i) denote the
generic point of E^ x E^ (note this implies x^ = 0 for all n sufficiently
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large. U^ (resp. V^) will denote the element of E^ (resp. E^) for which
x^= 0 for ^ ^= m (resp. ^ = 0 for n ̂  m) and x^ = 1 (resp.
^ = 1).

PROPOSITION 3.2. - (ge(E, x E,) , ̂  ,) ̂  (ge(E, x E,) , %^ ,).

A-oo/ — Let $„ be the 2-homogeneous polynomials on E^ x E,
defined as follows :

^ ({^}^=1 ; {^}^=i) = ̂ nYn

We claim (^)^i is a %o-bounded subset of Q^Ei x E^). Let K be

compact in E^ x E^ . Then K C K^ x f[ L, where K., is a compact
1=1

00

subset of ^ C and hence is contained in some finite dimensional
1=1

00

subspace of ^ C and L, is compact in C for each z.
» = i

Hence ll^ U K = 0 for all n sufficiently lai-ge and thus we have

sup || $„ UK < °° •
n

This implies (<^)^i is a %o-bounded subset of S^E^ x E^). We
now show ($^)^i is not a ^-bounded subset of^E^ x E^). For
each Pe^Ei x E^) let

T(P)= S IP (U^ .^ ) -P (U^ ,0 ) |
w = l

oo

By the same method as used in [26] for fj c one shows that T(P)
1=1

is finite for each P G Q^Ei x E^). Since (%(^ x E^) , %^) is barrelled
this implies that T is a %^-continuous semi-norm on S^E^ x E^).

We have however
T(<^)=^

and hence sup. T(^) = oo. Hence (<^)^i is not ^-bounded on
n

%(2El x E,) and thus %^ „ ^%<,^ on ̂ E, x E,) and on 3C(Ei x E,).
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Remarks, —
1) E^ x E^ is a complete barrelled space but '6^^ =^ %o,& on

9€(E^ x E^) and this provides an answer to Q.2.
2) Q.4 is also answered in the negative by this proposition.
3) EI x E^ is an example of a barrelled space which is not C-

barrelled in the sense of Leiong ([24], [25]).
4) In the above examples we either have ^o.b^^w.b or

%o & == %^ & = ̂  . We do not yet have an example in which
%^ ^^/for H(U) (see also [29]).

5) An example is given in [29] in which ̂ ^ ^= %o^ .
We now discuss the question of when %^ = %^ ^ . We commence

by discussing bounding sets since if there exists a non-compact boun-
ding set then %^ ̂  ([12], [13], [14]).

DEFINITION. — A closed subset C of E is said to be bounding if

I / He < (

for each /ESe(E).

PROPOSITION 3.3. — Let E be a locally convex space such that
(E , p) is separable or reflexive for each continuous semi-norm p on E
then the bounding subsets of E are precompact.

Proof. - If C C E is not precompact then there exists p a conti-
nuous semi-norm on E such that C is not precompact in (E , p). An
application of the result from Banach spaces ([ 12], [17]) now completes
the proof.

COROLLARY 3.1. - // E is complete and separable then the
bounding subsets of E are compact

One of the interesting questions concerning bounding sets is to
characterise the E for which they are relatively compact. This problem
is intimately related to the following problem, if E is a locally convex
topological vector space with completion E and F is the largest subspace
of E such that all /e 96(E) can be extended (uniquely) to elements
of 96(F) is E == F ? This in turn involves one in characterising domains
of holomorphy. We refer to [17], [34] for further details.
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PROPOSITION 3.4. — Let E, &^ a Banach space "with an uncon-

ditional basis for each i = 1 , 2 , . . . rA^yz cw 36^ ^ E,) .
v /=i /

^-^=^-^

J>-oo/ — We have already seen that

^=^=^6 on ge(i E,)
\ ,=1 /

Let p be a %, ^ continuous semi-norm on ^(E) (^E = ^ E,). For
V 1=1 /

( " " )
each n let V^ =] x e E, x = ^ ^, » S ll^i 11» ^ n where || ||, is a

( ^i /=! )
fixed norm on E, for each f. Since U ¥„ = E we can find(1) C > 0

n=l
and w^ a positive integer such that

p(/)<C||/|lv (*)
n!

for all /ege(E)
n

Since ^ E, has an unconditional basis for each positive integer n we
1=1

can apply the method of [13] to (*) to complete the proof.
We now find however that for a large class of locally convex

spaces E
^^^ on ^(E).

DEFINITION. — A sequence (^)^=i of non zero elements ofE (a
locally convex space) is very strongly convergent to 0 if \nxn "> ^
as n -> °° for any sequence of scalars (\,)^:=i(2).

(1) It is true in general that if (V^)^ is an increasing sequence of subsets of U
such that each compact set is contained in some V^ and p is a %^ ^ continuous
semi-norm on 3€(V) then we can find C> 0 and n^ a positive integer such
that p( / )<C| | / | Jv for all / e ^C(U).

n!

(2) It is easy to prove that (.x-n)^=i is very strongly convergent to zero if and
only if for each continuous semi-norm p on E we have p(x^)=0 for all suf-
ficiently large n.
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PROPOSITION 3.5. - // E contains a very strongly convergent
sequence then

(^(E^^^E),^,).

Proof. - For each / G ̂ (E).

Let P( / )= S 1/(^+^)-/(^)1
w=0

where y is a fixed non-zero element of E. Since each element of 96(E)
is continuous and each bounded holomorphic function is constant this
immediately implies that p(f) is finite for each /e3e(E).

Let B be a ^-bounded subset of 3€(E). Hence the set

/^/(O)x00

1 n } ^O./eB

is a %o-bounded subset of ^(E). Since the point 0 is not special to
the definition of%Q we have also that

/ ̂  /^A0)\ \-
^ ̂ ~^~)(y))m ! v n ! w,w=0,/eB

is a bounded subset of (9e(E), <So). The sequence (\. x^)^ is
compact in E for any sequence of scalars (\)n=i and we thus have

sup ( d " 1 (d"fW\ \
ftB ' ̂  }C———) (3/)/ (^ xk)\<QO•m! ^nT'^ ^/^t-n, w=0, l , . .

fc=1.2.

"• ^ iix.r-^,(^)<.,)(.)i<sup IH,1"-1—. -—-(y) fr,)|<~
n^ w = 0 , l ,

m <n
fc= l , 2 , . . .

This means there exists k^ a positive integer such that

/ ^/^/(OX \
^(-T-)^)^-0

for k> k^ and n> m.
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Since

d"f(0) " / d " 1 /d"/(0)\ \ ,
———— (̂  + x,) = S (-7 (-:- ) ̂ )) ̂  =
"' ' m-So^! v n\

^ ^ ( d " /^/(O)
-t^(-r-^)» v » v•' / 7 ^j^m ! v n ! /w =o

this implies
d"/(0) , , , rfV(O) , ,——— (ny + x^) = ——_— (ny)

n! " n!

for all k>k^ , n = 0 , 1 , . . .

and / G B .
Hence

d"/(0). . . ^ ^/(O)
- ".T" (^ "h ̂ ) = ^ ".Ty»=0 'l ' n=0 " •

/., . . v ^ JW ^ a-fw , , / . , ,
/(^ + ^fc) = Z, ——— (ny -h ^fc) =1 , ——.— (w) = f(ny)„ —/» M ' - « — f\ yi !

for all k >k^ and/EB.
This means that

k

supp(/)=sup S \fUy +^)-/(/> /)1
/eB /eB /=0

<oo

Hence p is%^ ^ (and hence 'S ,̂ ^) continuous on ^(E).
Now suppose p was ported by the compact subset K of E.

Choose $eE1 such that $0) ̂  0 and $(^) = 0 for all w (by
using subsequences if necessary). Again by using subsequences if neces-
sary we can choose a Sequence of elements of E' such that

1) ^n^m) ̂  0 ^ ^d only if n = w.
2) <^(j0 = 0 for all n.

Let ^Pn m = ̂ n ' ^m ^or eac^ P311 °^ i11^®1'5 w ^d m- We now have

P(^,m)=l'""*W"^m^m)l

If V is a neighbourhood of K in E we have by assumption C(V) > 0
such that

P(/) < C(V) 11/Hv for all /e 96(E)
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Hence
mn | ̂ (y) I" | $^) I < C(V) || $ ||̂  || $„ ||v

Taking n^ roots of both sides and letting n -> oo we get

w. |$001<||$|lv

Now letting V -^ K (in the obvious way) we get

m. | <S>(y) | < || <t UK

This is impossible since m is arbitrary. Hence (^(E), %^) is not
bomological.

COROLLARY 3.2. — // E is a metrizable space on "which there
exists no continuous norm then (9e(E) y^) is not bomological.

Proof. — Let (p^)^=i be an increasing sequence of semi-norms
of E such that p^ ^Pn+i for each n and (Pn\=i defines the topo-
logy on E. Choose x^ GE, x^ 1=- 0 such that p^(x^) = 0 for each n.
Then it is easily seen that (x,,)^ is a very strongly convergent
sequence in E. Hence (S€(E) ,% ^,) is not bomological by the proceeding
proposition.

Examples :

1) E = J"J E, where A is any infinite indexing set and E, is a
ieA

locally convex space for each f€EA( 1 ) .
2) E = (^(ft) where Sl is any non empty open subset of R" and

Q-^Sl) is the set of p-times continuously differentiable functions on
S2 (1 <p <oo)

3) E=^(R").

We note that the existence of a continuous norm on E is not
sufficient to ensue that (9€(E) ,%^) is bomological (see [13] where it
is shown that (9e(/oo) ^cj) ls not bomological).

(1) This generalises the following result announced in [29] ; (^ (y\ CY%^^is

not bomological.
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We now discuss the question of completeness for (96 (E), %). We
have seen already that (3€(E) , % ) ( % = ̂  ,%^ ,%^ , ̂  is com-
plete if and only if (%("E), %) is complete for each n and if ?„ E %(" E)

00

for each n and ^ ?(%„) < °° for all %-continuous semi-norms p on
n = o

^(E) implies ^ ?„ G 9e(E). In particular we immediately encounter
n = o

00

the following problem, if ^ || ?„ 11^ < °° for all compact subsets K
n = o

00

of E does/ = V Py, €E ̂ (E). A stronger problem has been considered
w = o

in the literature where it has been solved for Banach spaces [36],
Frechet spaces [33], Baire spaces [27] and for a variety of spaces in
[19]. In particular we have

PROPOSITION 3.6. — If E is a Frechet space then (96 (E), %o ^,)
is complete if and only if (%("E), %^) is complete for each n.

For E Frechet (%("E), %^) is the inductive limit of a sequence of
Banach space and one can apply the results of [21] to solve particular
cases. By such a method we get ;

00

COROLLARY 3.3. — IfE = n E, where each E, is a Banach space
1=1

then
(9e(E), %^) and (3€(E) ,%J are both complete.

We now discuss completeness of (9C(E) ,%^ ^) where E is a
countable direct sum of Banach spaces. We employ our earlier notation
for direct sums. For E a Banach space 9^ (E) = { /E 3€(E), II / l lg < °°
for each bounded subset B of E}.

PROPOSITION 3.7. - (3e( S E,) , %)(% ==^ ^ ,%^ ^ ,%^ . %fi)v v1=1 / /

is complete if and only ifSe^F") =^e(F't) for each n where E, is a
n

Banach space for each i and F" = ^ E .̂ /or each n.
1=1
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COROLLARY 3.4. - // E, is a separable Banach space for each i

then (9e(^ E,) , % ) ( % = ̂  ,%^ ,%^ ,%^) „ comp/e^ if and

only if E, ^ a finite dimensional space for each i.

Proof. - (of proposition). Let E= ^ E^. .
1=1

Since %^ = %^ = ̂  on ge(E) (by proposition 3.1) and since
(corollary 2.2). (S€(E) , ̂  ̂ ) is complete if andonlyif(3e(E), %^) is
complete we need only consider the problem for (^(E), %^). Suppose
without loss of generality that 3^ (E^) ̂  3e(E^).

Let /„ E ^(E,) for each w have radius of boundedness — ([28])

and suppose /„(()) = 0 for all n. Let /„ denote the projection o fE
onto E^ . For each n > 1 let ̂  be a continuous linear form on E of

00

norm 1. Now let f(x) = ^ (pj/Jx)) f^(j\(x)) for all xEE. Since
w = 2

J'nW = 0 for all but a finite number of n this sum is always finite and
hence also G-analytic. Let

V^ = xEE|||^(^)||^ < 1 and

ll/.^)ll.,<inf/l, ^
2.11^.W,,

\ w ! EX

(II HE^ denotes a fixed norm on E, for each 0. Then V^ is a neigh-
bourhood of 0 in E and if x G Vfn

^'"^/(O) ~ d"1/CO)
'(^rnTiw1''^^^--^^^'

< s iî îi • . 1
n=2 w ! ^ ^ii^^ii

'"! E,

< i
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^/(O) .
Hence ——;— is continuous for each m. Now suppose there exists am !
convex balanced neighbourhood of 0 in such that

sup |/(x)|< 1 .
xeV

Hence there exists 5^ > 0 such that

VD{^€E^ , ||;C||E <6Jfi
for each integer n.

Choose ̂  G £„ such that ̂  (^) ̂  0 then for x^ E Ej| x^ || < 5^ ,
1 1
î +^^E V•

Hence 1 > \\f\\y > sup |̂  (- ̂ ) / (4-L) I which implies that
II^IKI \2 / ^ 2 ^

sup 1/^MI <<»
xeE,

l̂ llE î6!

Since /„ has radius of boundedness — this leads to a contradiction.
H

Hence /f 3e(E).

Now /| ^ea€(F") for any n and thus § || d /(0) || <oo
m=0 ^ ! K

for any K compact in E. This means that (3€(E) ,%o,&) i s not complete.

Now suppose 3€^( ^ E,) =9e( ^ E,) for all i. Let/= ^ P^
^1=1 / f = i / n = o

00

where P^ G S("E) for each n and ^ || ?„ H^ < 00 for all K compact
n=0

in E.
Choose 6^ > 0 such that

I I^H^eEi j i^ i iE <^}<t~^ f°^ all n > 1 .

Now suppose 61 , . . ., 8^ > 0 have been choosen such that
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iipji( . ^i^y
xeF"^= £ ^H^HE. < = 1 V 2 /

\ /=! l)

» for all m > 1.
Let Qm = Pm ~ Fm where PW is defined on E by

Pm^-^-POO tor x e F " , > / e F ^ = ^ E, .n
/=n+l

Then 7= ^ p^ e ge(E) and 7|-/|..^-n, -———— —— /'F"-^Fn

Hence P^(x + y) = P^(x) + ^ (m) A, (x)'1 (>>)'" -R
^ '

0 < R < wn^n ̂  »». v A\ '

for xGF", ^EE„^.^ and A^ is the w-linear form on E associated
with P^ for each w.

Since ge(F'1) = ^ (F") we can choose 6^+i > 0
such that

n+1

.̂ .(̂  . sup lA^W——K^)'
""^l^'^^yi+l

"^"E^^II^K^+i
X,€E/

for all w > 0,
This means

IIP, II ny )

^f^P^i.ll^HE^f

n+1 i

^ 2j ""7 tor each w .
/=i 2

Hence there exists a neighbourhood V of 0 such that || 9^ Hy < 1 for
all m. Since it is possible to use the same method about any point of

Ewe have proved that fe3€(E). Hence (se( ^ E,),^) is complete.
1=1
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(Proof of Corollary). — Apply the proposition and the result
that 9e^(E) = 96 (E) for E a separable Banach space if and only if E
is a finite dimensional space.

00

COROLLARY 3.5. - If f is a G-holomorphic function on ^ C
1=1

then f is holomorphic.

Remarks 1). — This proposition also provides an answer to Q.2
for if / is the function discussed in the first part of the proposition

( JVt f f f\\ \°° oo

then ———— ) is a %5 -bounded sequence in 3e( ^ E,) but it is
n ' w = o ^'=1 /

00

not equibounded for then we would have / E 9^ ^ E,) .
\ ,= i /

/^/(O)^00

2) By means of the sequence ^————/ ^ discussed above we
00

can also show that ^ E, is a barrelled space which is not C-barrelled
1=1

in the sense of Leiong ([24], [25]).
3) An examination of the proof also yields the following facts :

i) S (" S E^.), %^) is complete for each n.
1=1 / /

ii) PG®^ ^ E/) if and only if P| n ^^(m ^ ^) for
\ ,=i / 2 E, \ i = t i /

1=1
each integer n,

4) If (96 (E) , %^ ^) is complete then it is barrelled. By propo-
/ / °° °° \ \sition 1.3. we thus have (9e( ^ C x f"[ C) ,%^ ^) is not complete
v ^=0 n=0 / ' /

and we have already seen that (W S c},^ ^ and 3C( f] c) ,
\ \^=o ^ ' ' Vn»6 ^

^o,^) are both complete.
5) The method used in proposition 3.7. can also be used to show

00 00

(3€ ( V C x n c Y^fi ) is complete.
v v i = o 1 = 0 / /



LOCALLY CONVEX TOPOLOGIES ON 8€(V) 51

A related problem is also encountered in the literature ([19],

[27], [33]) ; if ?„ € %("£) for each M and ^ P^(^) converges for all
yi=0

00

- v E E does ^ P^GH(E) ? In terms of the terminology we have
n=Q

developed we could state this as follows. Is E T.S.% complete where
%p denotes the topology of pointwise convergence on H€(E) ? This
problem arises in extending Hartog's theorem to infinite dimensional
spaces. We have the following proposition whose proof is immediate.

PROPOSITION 3.8. - 7/E, for i = 1 , 2a^T.S.%p complete L.C.S.
and each separately continuous polynomial on E^ x E^ is continuous
then every separatly holomorphic function on E^ x E^ is holomorphic
if and only if E^ x E^ is T.S.%p complete.

If E^ is a separable infinite dimensional Banach space and
E! = £ C then E/ for i = 1 , 2 is T.S. %- complete and separately

^=1
continuous polynomials on E^ x E^ are continuous. However, we
have seen that O€(E^ x E^) ,^5) is not complete and hence E^ x E^
is not T.S.%p complete.

We finish this section by giving an example of when (9e(E) , %^ ^)
is a Montel space.

PROPOSITION 3.9. - Let E be a Frechet Nuclear space then
0^),%^^) is a Montel space.

Proof.- By [35] p. 525.

( E & E & . . . ® E / = L ^ ( E )
n times

By [35] p. 520 E <8> E ® • . . E is Montel and hence (^(E), |8) is also
Montel where j3 denotes the strong topology on /?„ (E). Let

F = { x e E ® E ... ®E| / ( JC) = 0 for all /ES^E)}.

F is a closed subspace of E ® . . • & E and

%("E) ={/e^(E) | / ( ;c )=0 fo rxGF}
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By a slight modification of Corollary p. 285 [21 ] (extend it to Frechet
Montel spaces) we find that the topology on %("E) induced from
C^(E) ,f5) and the strong dual topology of (E § > . . . < § ) E Ip)' coincide,
Hence (%("E), fS) is the strong dual of E § > • • • « > E |p. Thus (%("E),/3)
is Montel and hence barrelled. But the strong dual of a metrizable
space is barrelled if and only if it is bomological ([35] p. 39).

Hence (%(^E), j3) is bomological. Since E is Frechet %^ ==%^ ^
and %^ ^ > j3 and this implies ̂  = <3. An application of proposition
2.6 completes the proof.
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