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A POINCA_RE DUALITY:,,TYPE THEOREM
~_ FOR POLYHEDRA

by Gerald Leonard GORDON (%)

1. Introduction.

Let X be a locally finite n-dimensional polyhedron. Then
if we embed X < M where M is an orientable (n + s)-
dimensional C*-manifold with s > 1, we shall define groups
H,(X)y (resp. HP(X),) oalled tubular cycles (resp. cocycles)
where H,(X)y (resp. H?(X),) ‘are the homology groups
(resp. cohomology) of a subcomplex of X, but with a different
boundary operator. The subcomplex shall depend upon the
embedding. Then in section 2 we will give a geometric proof of

Treorem 2.3. — There are natural isomorphisms
H,(X) ~ H#(X)s and H/(X) ~ H,_(X)a
which induce a natural intersection pairing ‘

H,(X) ® Hy(X)s = Hpppn(X)a.

If X is a topological manifold, then thé isomorphism is
Poincaré duality if X 1is orientable, and twisted coefficient
duality if X is unorientable.

In section 4 we show, using spectral sequences, that H,(X),
and HP(X), are intrinsically defined on X; i.e., they depend
only on X and are independent of the embedding or the
ambient space M. In fact, the spectral sequences will be
isomorphic to the ones considered by Zeeman [4], and we

(1) This work was partially supported by NSF Grant GP-21058.



48 GERALD LEONARD GORDON.

shall give a geometric interpretation of these spectral sequences
which will allow us to prove a conjecture of Zeeman about
them.

Finally, throughout this paper H,(Y) (resp. H*(Y))
will denote H_(Y; G) (resp. H*(Y; G)) for any arbitrary
coefficient group G and any space Y. We can take the
supports fo be either, closed or compact. We also note thatif G
is any sheaf, then the I;esu]‘ts will still be true after appro-
priate modification in- -the various duality theorems.

2. A duality theorem.

Let X be an n-dim logally finite polyhedron and X < M,
where M is an orientable ( + s)-dimensional C® manifold
with s > 1 sush that X 1s. a subcomplex of M under some
triangulation.

By the regular nelgthurhood theorem we'can construct a
regular neighbourhood of X in M, denoted by T(X); ie.,
T(X) is a C* submanifold of M whose boundary =(X) is
an (n +.s — 1)-dim = orientable submanifold of M. Fur-
thermore, we can decompose X == U M;; where M,; is an
aorientable i-dim submanifold of M such that the M,; are
locally finite, the boundary of each M;; is a subcollection of
the M, for i’ < i andif T(M,)) is a tubular neighbourhood
of M;; in M, then, T(M;;) interseets each of the M;,
transversely. E.c., M,J could be chosen to be the open
i-simplices of X. {M;;} 1s called a stratification of X.

Let n:TX — X be the retraction and

710 3(X) = 71 X > 5(X).
If we set M, =M, — U JTM.), then

i'<i
= ’&J)’: T(.Mi = T(M) M.
Then on the c'haln level, <: C (M‘ ) = Cotn +,;i—j;(T(X)) where
p(M are the p- chalns of M o L
C,(X) = 2C,(X), where ¢ o(X) are the p-chains with
closed or compact support, then
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DeriNiTION 2.1, = Cy(X)p = {e € C;(X)|=(c) p+,_1(r(X))}
Define v, : C (X)A -> CP_I(X)A by the following diagram :
C,(X)a ~»CP+M<¢<X)
: 9 - S X
H(X)A < Cppeg(t (X))

where n# is the induced map on chains.
Example, — M=R*= (2, ¥, 2) and
= {z=0} U{z=0,y=0,z > 0},

then if c—-{(O 0, 0)},0—{m2—|—y—-1,z—0} and
= {4+ < 1, z=0}, then d5¢"=¢ —c¢ with g,
c e C1(X)A, since in this case © can be constructed so that

t(c) = {2® + y? = 12, z == ¢+ 1},
() = {a® + yt=1, 3= + 1}
and () ={12 <2+ ¢t <1, 2=+ 1}

Then (C,(X)s 9s) is a chain complex and let
H,(X; G)a = Hy(X)a (resp. H(X; G)s = H#(X)s) be the
homology (resp. cohomology) of the complex with coefficients
in G

Note. — In section 4 we shall show that H, (X), and
H*(X)s are independent of the embedding and the ambient
space M, but only depend on the abstract complex X.

DeriniTion 2.2. — H(X)a(H¥(X)a) are called the tubular
p-cycles (cocycles). -

Taeorem 2.3, — There exist natural isomorphisms
H,(X) @ H?(X)a H(X) = H,_,(X)a which induce a natural
intersection pairing Hy(X) @ Hy(X)a = Hypgon(X)a.

Proof. — Consider the following diagram
HA(M, X) —> HP(M) ——> Hp(X) ——> HPH(M, X) ——> Hr1(M)

N . . §
Hyypp(M—X) —> H,,, (M) —> H,_,(X), —> Hyppp s (M—X) —> H,,,_, (M)
Diagram 1.

where the top row is the exact sequence in cohomology for
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the pair (M, X), the vertical isomorphisms are Poincaré-
Lefschetz duality for homology with closed or compact
support (see Swan [3, p. 136]). Also, « is the map induced
from the t defined above, ¢, is induced from the inclusion,
and I is the map induced from geometric intersection on the
chain level; see, e.g., Lefschetz [2]. Equivalently, I is cap
product Wlth the dual class of [‘r( )] € Hptea(X), and then
project down by =,.

In [1, Corollary 4.17] the author shows that the bottom
row is also exact. The result there is only stated for X a
complex subvariety of M, ‘a complex manifold, but all that
is needed is that the stratum M;; obey the transversality
condition, as noted after the proof of Theorem 4.12. Essen-
tially, it is the Thom-Gysin sequence for 7(X) in M.

Then Diagram I induces a natural map HP(X) — H,_,(X)a
which is an isomorphism by: the 5-Lemma.

By looking at the corresponding homology sequence of the
pair (M, X) or by the above diagram and the universal
coefficient theorem, we also get H,(X) ~ H*?(X),.

To see the intersection pairing, 1f we think of the Poincaré-
Lefschetz duality theorems as between homology groups as
done in Lefschetz [2], then the above proofs show that given a
p-cycle y in X we can form its dual cycle in H, ,(X)a
(orin H, , 4(X)a if y is a torsion element). By definition
of H,(X),, this definesa n—p-+s—1 (or n—p+s—2)
cycle in (X)) which by Poincaré duality yields a p-cycle in
7(X). We can assume it is a p-cycle by choosing s > n; i.e.,
the (n — p + s — 2)-cyclé will be a torsion element, hénce
its dual i1s a p-cycle, while we can assume the (n—p-+s—1)-
cycle 1s not a torsion cycle since the torsion would measure
the obstruction to getting a «section» over y in =(X).
So by choosing M sufficiently large, which is always possible,
we have an injection H,(X)— H,(x(X)). Thus to get a
pairing between H,(X) and H,(X)s, we lift them both to
'r(X), do the mtersectmg there, and then project back to X
via w,

v Q.E.D.

Ezample. — X = R® given by

P+ 2= v{P+y—12=1.y>Y z2=0}
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1.e., unit' sphere. with a ;-dim handle attached at the points
P, Q = 3<i _\g_g % 0)‘5. Then Hy(X; Z) ~ Z and if «
is a small circle about P in S?, then [a] e H,(X; Z)y will
be the dual cycle to the generator of H,;(X; 'Z). But as &an
element of H (X‘ Z)p, « ~ P; 1e., [P]=1{«x]. What this
intersection palrlng states 1s that glven a non-torsion p-cycle y
in X, there is a representative of its dual T' in H, ,(X),
Which has dim (n — p) and y.I' = 4+ 1 in the sense of the
Kronecker pairing.

We remark that if X is oriented topological manifold,
then the isomorphism is just the usual Poincaré duality and if
X 1s an unoriented topological manifold, then the isomorphism
is the usual one between H,(X; G) and H*?(X;G) where G
means twisted coefficients (see, e.g., Swan [3, p. 136]).

Also if ye H (X)A, ‘then y transversely meets S, the
singular locus of X, i.e., S 1s the subcomplex where X fails
to be a topological manifold. That 15, ©(y) isa (p+s—1)-
dim cycle which bounds in M, say its boundary is ¢ and ¢
meets X transversely; i.e., X = U M,; and then ¢ inter-

sects each M;; transversely mma p-+s-+ 11— n-dim cham
and vy =c¢ N X.

3. A special case.

In this section we shall consider a special case when

X = UX and the X are submanifolds of M and they

i€l
intersect transversely, re., if X, is of codim «; in M, then

mX" is a submanifold of M of codim Y «; forall « < I.

i€a xea
This seems like a very restrlctlve case, but in algebraic geome-

try if X is-an arbitrary analytic subvariety of M, where M
1s a closed complex submanifold of either C“ or CPy, then
one can resolve the singularities of X; , there exists a
closed complex submanifold M’ of C* or CP (as M 1s)
and a proper holomorphic map =:M’'—>M such that if
X’ = n1(X), then X’ is the transverse intersection of
complex submanifolds of M’ and =|[M'— X —-+>M — X isa
bianalytic homeomorphism. In [1] it was conjectured that



52 - GBRALD ‘LEONARD GORDON

ker (HjM — X) - H,(M)} is invarfatit' unde¥ 'this résolus
tion, and proved in case. X was ample hypeérsurface, so that
in this ¢ase to study HP(X)A, it would suffice to consider X
as the transverse intersection:of submanifolds, except for the
one cycle coming from H,(GP)y, if p 'is even.

1 xJ_J X, let Mo=X,[)X,nX, where

jga
a <1, | =7 andif «= {Jiy ++ -y Ji}s then

X=X, ... nX,. \
M,, are the i-tuple poinis of X and UM,d gives the strati-

fication of X because of the transverse intersection. Let

M=UM. and ¥ = UM,a.“L__Jx Also let

lal=i

Mo, 1€ I(i) be the components of ‘M, where dim
igricy = ()], so that [i(j) < »—.
Given «, we set o' = {a} U {j} and can form UXa.

which is a transverse intersection of manifolds in X, so we
have 74: H, (U Xa)a = H,4,1(X,) where ¢ is the codi-
mension of U X, in X, Since 7,V Xy) € Mg o0 Wwe
have iterated maps Tjg_y: Mg o = Xo» Where «” < a,
|«”| = |a| — k which induce maps on homology, also called
Tlaw Which increase the dimension by one less than the
codimension of X, in X,.
In [1, Corollary 2.8] we have shown that
p

HX)a=3 @ ... eaHpmyioi(Me 100087

g=1jE€ID .
Note that My, 1y are the components of X. (It is actually
proved when all the X; are of codimension 2, but the exact
same proof goes through with the obvious modifications.)
What this says is that if a p-cycle y of X 1is such that
#(v) < M— X but v ~0 in X, then ‘Y‘-’c('{') for
some Y eM, andif v ~0 in lsz, then ' = =(y") for
some y” < Ms, etc.

Let H, = D .. "q-al—n—‘Iy(l)Fl-l(mw)l. a»)a- Then we
P o )
can say H,(X)y = ¥ H,,.

g=0
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~Given: X == U X, we' can eompute the eo‘homology of X

(L33
vla “the Maier-Victoris sequence ag., 1f lII = 3, .we have

Hrl(xlnx.)enrl(xxmxo © HX{) @ HA(X,)

HP1((X, AXq) UKy X))~ H(X, UX, UX,) — HP(X,) ® HP(X,UX,)

HrY(X, A X, ('\'X,) IR I HFYX, N Xl)
»,Diagram 1L :

Let Fr = (T & H(X)|i(F) = 0}; ie:
iy B (X o U Xa) > By o Hr-a (U X2)

with |a| = |«'| = ¢, e.g., in Diagram IT'if (T") =0, then
' = 8'(I") and i, # O implies I' € FF. Alsoif i,(T') # 0
then i,(;;T') = 0 will imply T e HP-1. Let

Hr = Hre /3 HP/

<o .
where Y H?~ means the subgroup generated by the
j<a
Hr~ = Hr
Prorosition 3.1. — In the isbmorphism of Theorem 2.3,

Proof — The proof 1% a dlagram chase and a multiple use
of the Poincaré duality in the various X,. E.g.,in Diagram JI
if e Hr? with T =3(I") and T’ ¢im 32, :then we have
I = (M2, T for 0 # T¥e H (X, n X)) (We have each
'V # 0 because I'e H#%.) Then applymg Poincaré duahty
in each of the XM X!s, we get (v, vis) and we ¢ldim
(Y12, Y13) € Hpy. In fact, 1f Xy mX; N X; # ¢, then one
can show that vy, N V = — y;3 NV,, so that we can
plumb together vy, 4 v;5 to 'form 0 # 71(v;3+ 1) € H(My)a.
To(¥is + Yiz) # 0 if' T # 0 from a diagram chase comblnmg
Dlagrams | and i1, which will also show that the’ I" “goes to
t3(Y1s 4 Y13) under the map induced from Dlagram I

The general case is proved in the same way.

QE.D.



b4 . GERALD LEONARD GORDON

- What this proposition says is that if under the isomorphism
HA(X) ~ H,,__,,(X)A we have T' e H?(V) going to an element
of H,,, ¢>0, then dim (supp ') =n—p —gq. By
supp I', we meanif T' is a cocycle, where we consider singular
cohomology, then z¢supp’ if z has a neighbourhood
U, €« X with I'(s) =0 for all singular p-chains ¢ with
supp ¢ < U,. Then for a cohomology class T, dim supp
I' = min (dim supp «). Equivalently, in the simplicial coho-

aE )

mology, since I': C,(X) = G, we say dimsupp ' < k if we
have that the p-chains on whlch I' does not vamsh lie in an
arbitrarily small neighbourhood of the fixed k-skeleton of X
in the original complex; i.e., we can take a sufficiently fine
subdivision of X and ﬁnd a representative of I' in this
subdivision which vanishes on p-chains away from the fixed
k-skeleton of the complex. We always have k< n—p
[4, page 177] and for topological manifolds, k=n—p
[4, page 178]. ’

So Proposition 3.1 is a special case of a conjecture of Zeeman,
which we shall prove in the next section.

4. Zeeman’s dihomology.

Recall, Zeeman [4] has defined spectral sequences for any
polyhedron (in'fact, any topological space) with

Ep? = HP(X ¢,) — H,_,(X)
Bpe = H,(X, Q)=> He-#(X)

where 4, (resp. ,) is the sheaf associated to the presheaf
which sends U — H X, X —U) (resp. U— HY(X, X — U).
Further, if X is a local homology manifold, then these spec-
tral sequences collapse at E$? yielding Poincaré duality 1if X
i1s oriented or twisted integer coefficient duality if X is
unoriented.

Because X is a polyhedron, we have by excision that
H/(X, X — U). ~ Hy(U, 2U) (resp. H(X, X — U) ~ HY(U, 2U)).

Suppose we embed X into M as a'subcomplex for M a
C~=-manifold. Then we have themap M — X' M and we can
look at the induced Leray spectral sequence

E2Y ~ HP(M, RY) = HP (M — X)
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where R? is the sheaf associated’ to. -the presheaf
U H(U— U n X) (see Swan [3, chapter 10], especially
Lemma 5). v :

Let us consider the sheaf RYX; ie.,let U be openin X
and =:T(X)—> X be the projection of a regular tubular
neighbourhood. Let =*(U) = U’. Then R%X is the sheaf
associated to the presheaf U — HY(U’ — U). But U — U
retracts onto dU’ —3U, because «(X) is regular neigh-
bourhood, so we can use transverse intersection of U’ with X
to show this. Then by Lefschetz duality, we have

H? U’ —dU) = Hiyepy (30U, 2U)
where dimM = n 4 s. But 32U’ has the same homotopy

type as U; i.e., we canm retract dU’ onto U by contracting
along the fibres of T(X) keeping dU fixed. Thus we have
that R?X is the sheaf associated to U — H,,, ,,(U, aU);
e, RIX ~ 4, ...

Similarly, if R? 1s the sheaf associated to the presheaf

U—>H(U—Un X), then R|X ~ §=+<-1 and
Eg?q = H,M, R,) = H,+ (M — X)

and' E is adjoint to E.

Notice that R, ~ Gy where Gy is the constant sheaf; i.e.,
Gu * M X G where G has the discrete topology. Also, for
PeM— X, (R, = {stalk of R? at P} =0 for ¢ # 0.
Hence for ¢ > 1 we have that R¢X =~ R? by extending
RYX tobe zero off X.

In [1, section 4] it was shown that E"‘ =3 coimage
{H,M — X) — H,(M)} and for

1, Bp? =~ ker {H (M — X) - H,(M)}.

lnfact if BA¢ ~ BP0 but BPY Eok2? for ¢ > 15 ie,
spectral sequence collapses at E,, then R27 c € Hpppoa(X)a
where s = codimension of X in: M and d_,(y) =0\ for
v e B2% determines whether <(y )40 mm M- X; ie,
domy () # 0 if and only if <(y) ~ 0 in M — X if and only if
y=InNnX for Te Hﬁqﬁ(M). Thus the d, are given by
transverse mtersectlons, 1.e;, Gysin maps wath appmpmate
identifications..
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~Similarly - E5® = image {HP(M)—>HPM — X))} and
for g=>1, Ef?9=— coker {H*(M) - HPH(M — X)}, whit
BP9 ¢ HrH—H(X),. o
"~ That is, we have

E2¢ = Hr(X, Bq| X) = Hrte—st(X),
HP(X gn-{-&—q—l) = Hn+:—q—1 p(X)
E” = H(X,R|X) =+ Hpppin(X)a

HP(X9 Qn“ﬂ_l) = Hn+:—q—p—ll(X)

where n = dim X, so that the isomorphism in Theorem 2.3
is ]ust given by looking at Zeeman’s Dlhomology So we have

PROPOSITION 41 .H (X)a. and H* (X)A are intrinsic
propertws of X.

- As stated above, the d, are intersection maps. To see thls
let us work out an example of.the cone over an elhptlc curve
(as Zeeman does cone over quadratic curve); 1e., G =17,

= {2+ P4 B = 0} in  GP; with homogeneous coor-
dmates [z, y, z, w]. X is the Thom space of normal bundle of
an elliptic curve C in CP, = [, y, z] Where C is given by
{2 +y* + 22 =0}, .a torus. Here n=4, s=2. Let P,
be the singular point of X. Then RyX =~ Zi, the constant
sheaf and . supp R|X = {P.} for i = 2,3 whit
R =Z ®Z ®Zy and (Ry)p,=Z @ Z because for a
sufficiently small neighbourhood U of P,, 2U = circle bundle
of degree 3 over C. ‘

So d21:B2 = Hy(X; Z)— H WP Z®ZLDZL) = Fge
is the intersection map of H,(X; Z) — H,(x(P_, X); Z) where

(P, X)=1+(P,) n X" is the 3-dim mamfold gotten by
intersecting X with 7(P,) the boundary of a regular tubular
neighbourhood in M of the complex P_. That is, d, is the
Gysin map and if F is the generator of Hy(X; Z), 1.e., the
fibre.of normal bundle, then JZ(F) 1s the generator of the .Z4
term, since this is the fibre over a point; ie., F n (P, X) =
circle,which is the fibre of .2U. Thus kerd, = 3F ~ C in X.

This is seen if v is the normal bundle of C in CP, and v*



A. POINCARE DUALITY TYPE THEOREM 57

the projectification; i.e., replace each fibre C! by CP,
yielding C_, the curve at o, then H,(v*) =7 ® Z with
generators F and C and C,=3F — C (degree C = 3).
Since X = v*/C,, the result follows. Thus we have C e Hy(X)a
as the abutment of F e Hy(X), 1e., C 1is the dual of
F*eH¥X;Z) and C-F=+4+1 in X.

Also, E2 = H,(P,; Ry|X) = Hy(z(P., X); Z) > Ez*1 = 0
and E3! — B2 has image Z,, so that d02 =d% =7 @ Z
with the generators being sections over «, B generators of
H,(C). Hence H,(X)y  has generators «, B and
« ~ (p X F)* e H(X; Z) (similarly for £ and
«.(p X F)y=+4+1 in X).

In [1, Corollary 4.13] we showed that if y e H,(X)s and
Yy ~0 in X, then ye Hy(z(S, X)) where S is some sub-
complex of X and =(S, X) = =(S) n X where =(S) is the
boundary of a regular tubular neighbourhood of S in M.
That is, y is the tube over a lower dim cycle y' sittingin S
and if ¥" ~ 0 1in S, then y'e H, (x(S, X)), etc. Hence,
what the above example illustrates is that the d, are essen-
tially Gysin maps, i.e., transverse intersection in appropriate
interpretation, and y € image d; means y is intersection of
some cycle, so that <(y) ~ 0; 1e., v ¢ H, (X)a.

Thus y e Hy(X, RyX) should be interpreted as some
p-cycle whose support lies in supp (R,X) where
P ¢ supp (R,|X) 1if there 1s a neighbourhood U of P in X
such that Q € U implies (R;|X)q = 0.

Notice that H*(X) has a natural filtration on it induced
from the spectral sequence; i.e., we say I € HY(X) has
filtration degree p if there 1s an element of

Epra = H (X, &)

which maps onto I' via the spectral sequence. E.g., if X
1s a topological manifold, then TI' € H?X) always has filtra-
tion degree n—gq as ¥ =0 owunless r=n But
H, (X, &%) ~ H(X, Ruppqa)=> H_(X)a. Thus T
has filtration degree p if its dual (n — ¢q) cycle in H,_,(X)a
has a representative y where 0 # y e H,(S) for some
subcomplex S of X.

But this p 1s what Zeeman calls the codim of an arbitrary

5
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cohomology class, where cohomology is taken to be singular
cohomology; 1.e., T' is of codimp if p = rznin (dim supp &),
er

1.e., I' is of codim p if its dual cycle y 1is the tube over
some p-cycle, but by taking a sufficiently fine subdivision,
the tube can lie in an arbitrarily small neighbourhood of the
p-skeleton of S.

Zeeman [4, p. 178] conjectures this to be true for all poly-
hedra, and we have proved this for all finite dimensional
locally finite polyhedra. However, from the statements in the
paper, polyhedron there means finite polyhedron.

Prorosition (ZEemaN) 4.2. — X s a locally finite, finite
dimensional polyhedron and T e H¥(X), then codim I' = ﬁl-
tration degree T'.

We note here that in [1], we showed that S 1s always an
analytic subvariety of X 1n case X 1s an analytic variety
(real or complex), 1.e., supp R%X 1is an analytic subvariety.
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